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1. Introduction

Recently, Ramanujan [11 ] discussed some notions of classical sum-
mability in a Banach space setting. Summability in certain linear topo-
logical spaces has also been considered in [1], [6], [9], [10], [12], [14],
[15], and [17]. Ramanujan’s discussion depends on duality theory
of vector sequence spaces rather than on regularity conditions of the
matrices involved. In this paper we show that the regularity conditions
and classical techniques of [4], [5], [7], [8], [13] and [16] may be
readily employed to prove consistency and inclusion results in a general
F-space setting. In particular, our Theorems 4.1 and 4.4 answer a question
raised in [11 ] and Theorem 5.2 extends a result of Cowling [5].

2. Notation and Definitions

Most of our notation corresponds to that of [11 ]. Given a vector space
E over the scalar field K of complex numbers, a vector sequence space
S(E) over E is a set of sequences (Xn) of vectors Xn in E, which set also
forms a linear space over under the usual componentwise operations.
Let w(E) denote the vector sequence space of all sequences of vectors from
E. When denoting scalar sequence spaces, we use the standard notation
of S’, instead of S(K). In the sequel, let (E, pi) and (F, qj) be F-spaces,
i.e., locally convex Hausdorff spaces which are metrisable and complete,
whose topologies are generated, respectively, by the countable collections
(pi) and (qj) of semi-norms. Let m, c, co denote the scalar sequence
spaces of bounded, convergent, null sequences, respectively, with the sup
norm topology. Denote by lp(p &#x3E; 0) the scalar sequence space of sequences
X = (Xn ) such that   oo and let 100 be the space of X = (Xn )
such that 03A3|Xn|pn  oo for all p &#x3E; 0. The space lp has the norm topology
given by ~X~ = , while 100 has the F-topology given by the family
{hn:n = 1, 2, ···} of semi-norms, with hn(X) = max {|03A3Xkzk| : |z| = n}.
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We shall be concerned with the following vector sequence spaces:

Let A = (Ank) denote an infinite matrix of bounded linear operators
of E into F. Given X in w(E), formally define y = (Yn) by

and write y = AX. If a(E), 03B2(F) are two vector sequence spaces, we say
that A E r( a(E), 03B2(F)) if X E a(F) implies y E 03B2(F), Call A reversible
if the equation y = AX has a unique solution X in a(E) for each y in
03B2(F). Denote by DA(E, F), the domain of A, the set {X = (Xn) E
w(E): y = AX exists in w(F)}. The p-summability field of A, denoted
by 03B2A(E, F) is the set {X = (Xn) E w(E) : y = AX exists in w(F) and
y E 03B2(F)}.

3. Preliminaries

In this section we shall state a number of results for the subsequent
consistency and inclusion theorems.

PROPOSITION 3.1 [10]. If E, F are locally convex spaces and E is quasi-
complete (closed and bounded sets of E are complete) then any collection
of continuous linear operators from E into F which is simply bounded is
bounded for the topology of uniform convergence on bounded sets.
Note that if E is an F-space it is quasi-complete and also barrelled.

PROPOSITION 3.2 [10]. Let (Tn) be a sequence of continuous linear

operators on E into F, where E, F are F-spaces. If limn Tn(X) exists.for
each X in a fundamental set of E and if for each X in E, (Tn(X)) is bounded
in F then T(X) = limn Tn(X) exists for all X in E, and T is a continuous
linear operator of E into F.
The next two propositions are easily proved using the techniques of

[10], [14] and [15].
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PROPOSITION 3.3 The matrix A = (Ank) E r(co(E), c(F)) if and only if
(i) for each bounded set Ma in E and for each fixedj,

and Xk ~ M03B1, k = 0, 1, ···, and

(ii) for each X E E and each fixed k = 0, 1, ···, limn AnkX exists.
Also, lim AX ~ limn Lk AnkXk = 0 whenever lim X = 0 if and only if

(i) holds and (ii) is specialized to

(ii)’ limn AnkX = 0 for each XE E and each k = 0, 1,...

PROPOSITION 3.4. The matrix A = (Ank) E 0393(l1 (E), c(F)) if and only if
(i) for each bounded set Ma in E and for each fixedj,

and Xk ~ M03B1, k = 0, 1, ···; and

(ii) for each X E E and each fixed k = 0, 1, ···, limn AnkX exists. If (i)
and (ii) hold then lim AX = Lk limn AnkXk for X E 11(E’).

PROPOSITION 3.5. Let p and q be positive numbers.

(i) A = (Ank) E r(lp(E), lq(F)) if and only if for each bounded set
Ma in E and for each fixed j,

and Xk ~ M03B1, k = 0, 1, ···.

(ii) If, for each positive integer r there exists an s = s(r) ~ r such that
for each bounded set Ma in E and for each fixed j = 1, 2, ...,

and Xk E M03B1, k = 0, 1, ..., then A = (Ank) E F(1.(E), l~(F)). The con-
verse holds if the topology of F is given by the finite collection (qi), i =
1, ···, 1.

(iii) If there exists an s = s(q) &#x3E; 0 such that for each bounded set
M(1. in E and for each fixed j = 1, 2, ...,

and Xk E Ma, k = 0, 1, ..., then A = (Ank) E r(loo(E), 1,,(F». The con-
verse holds if the topology of F is given by the finite collection (qi)’ i =
1, ..., 1.
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(iv) A = (Ank) E r(lp(E), l~(F)) if and only if for all r &#x3E; 0 and for each
bounded set Ma in E and for each fixed j = 1, 2, ...,

and XkEM(1.,k = 0, 1,....
PROOF. Part (i) follows from [15] and the fact that the maps (Xk) H

(Xkpk) and (yn) H (ynpn) are one-to-one correspondences between lp(E)
and l1(E) and between IP(F) and h (F), respectively.
We prove (ii) as follows. Suppose that for each positive integer r there

exists an s = s(r) ~ r such that A E F(1,(E), lr(F)), i.e. the condition

of (ii) holds. We note that lv(E) ~ lw(E) if 0  w  v and h (E) -
~~v=1 lv(E). Let X = (Xn) E 1. (E) and let a positive integer r be given.
Therefore, there exists an s = s(r) ~ r such that A E r(ls(E), lr(F)).
Since XE Is(E), A(X)~lr(F). This shows that A E 0393(l~(E), l~(F)).
Conversely, assume the topology of F is given by the finite collection

(qi)i=1 and let A E 0393(l~(E), l~(F)). For each X E lp(E), let 03C3ip(X) =
n= 0 Pi(Xn)pn, p &#x3E; 0, i = 1, 2, .... Then 03C3ip is a seminorm on Ip(E).
Let the topology of 1,,,,(E)be given by the sup of 0(vO) where 0
{03C3ip : p = 1, 2,... ; i = 1, 2, ···}. Then (l~(E), v4» is a locally convex
complete space. Let q be a given positive integer .Then A E 0393(l~(E), lq(F))
and for each y = (yn) E lq(F) we let uq(y) = 03A3~n=0 t(Yn)qn, where
t = . Then (lq(F), u.) is a locally convex complete space and A
is continuous as a map from (l~(E), v03A6) to (1,,(F), uq). Thus there exists
a number M and a finite collection, say 03C311, ···, 03C3ip, of seminorms such
that for each X ~ 1,,,, (E)

Since, for each j, 03C3jr(X) ~ 03C3js(X) if r ~ s, we may choose p such that
p ~ q and

Let a(X) = 03C31p(X)+···+03C3ip(X) and (lp(E), a) is a locally convex com-
plete space. Since 11(E)!;2 l2(E) ~···~ lp(E) it follows that A is

continuous as a map from l~(E) with the a-topology of lp(E) to
(lq(F), uq). For vectors t~E define b"t = (0,0,..., t, 03B8, ···) (0 is the

zero vector). Then 03B4nt ~ l~(E), n = 0, 1, ···, and the series 03A3 0 03B4nXn
converges to X = (Xn) in the a-topology for each X E lp(E). Therefore
l~(E) is dense in (1,(E), a) and we may extend A to a continuous linear
operator T from (lp(E), a) to (1,(F), uq). But for X = (Xk) e IP(E),

and so for each n = 0, 1, ···,
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which shows that T is still given by the matrix A. Therefore, to each
q = 1, 2, ···, there exists a p = p(q) ~ q such that A E 0393(lp(E), lq(F)).
The proof of (iii) is similar to that of (ii) and (iv) follows from the fact

that 1. (F) =  0 1,(F).
Let w(E), w(F) be given the weakest linear topologies such that the

coordinates are continuous, i.e., w(E) has the F-topology given by the
family of semi-norms 03C0ki(X) = pi(Xk), k = 0, 1, ..., i = 1, 2, ... and

w(F) has the F topology given by the collection (Jkj(Y) = qi(Yk)
k = 0, 1, ···, j = 1, 2, ···. If E is an F-space and H = w(E) has its

topology given as above, then the corresponding FH-spaces (see [13])
will be called FK-spaces over E.

PROPOSITION 3.6. Let 03BB be any one ofc,co,lp,loo. Then DA(E, F) and
ÂA(E, F) are FK-spaces over E, with semi-norms {03C0ki, f3kj : k = 0, 1, ···,
i, j, = 1, 2, ···} and {03C0ki, 03B2kj, : k, n = 0, 1, ···, i, j = 1,,2, ···}, re-

spectively, where, for X = (Xn) E D A(E, F)

and, for X E 03BBA(E, F), i:(X) = in(AX) where ~n are the semi-norms

generating the F-topology of 03BB(F).
If A is row-finite f3kj may be omitted; if A is reversible, 7tki, f3kj may be

omitted.

PROOF. The result follows from Proposition 3.2 and standard techni-
ques found in [ 13, p. 227].

It is easy to show that various choices of À lead to the following
generating families for the F-topology of 03BB(F):

4. Consistency Theorems

Foi convenience we shall call the pair (a, j8) admissible if a is one of
l p , 100 where p ~ 1, and fl is one of lq , 100 where q ~ 1. If a is any one of

c, co, lp, 100 and p is any one of c, co, lq, l~ and A E r( a(E), 03B2(F)), we
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say that A is perfect if 03B1(E) is dense in 03B2A(E, F), where 03B2A(E, F) has the
F-topology of Proposition 3.6. Let (a, 03B2) be admissible and A, B be in
0393(03B1(E), 03B2(F)). For X E 03B2A(E, F) define 03C3 o A(X) = ¿LnkAnkXk. We
write B - A if 03C3 o A(X) = (j o B(X) for X E a(E). If 03C3 o A(X) = 03C3 o B( X)
for X E 03B2B(E, F) n PA (E, F), we say that B is (j-consistent with A.

THEOREM 4.1. Let (03B1, 03B2) be admissible and A ~ 0393(03B1(E), 03B2(F)). If
a = 03B2 = 100 or a = l~ we assume that the topology of F is given by the
qi, i = 1... 1. Then 03C3 o A E L(P,(E, F), F) (continuous linear operators
on 03B2A(E, F) to F) and A is 03C3-consistent with every B E 0393(03B1(E), 03B2(F)) such
that B - A and 03B2A(E, F) ~ 03B2B(E, F) if and only if A is perfect.
We shall give the proof for the a = fi = 100 case. The other cases will

be seen to be similar. First we require two lemmas on the representation
of continuous linear functionals.

LEMMA 4.2. If p E [1.,(E, F)]’ (topological dual of l~A(E’, F)) then
there exist g E [DA(E, F)]’, h E [loo(F)]’ such that, for X E l~A(E, F),

The inverse projections /1;1 E~DA(E,F) and 03C0-1n: F ~ l~(F) are
defined by 03BC-1k(t) = ()k t, 03C0-103C0(t) = 03B4nt, where 03B4nt = (0, 03B8, 03B8, ···, t,
0, ...). We have g~03BC-1k~E’ and 

PROOF. If 03C1~[l~A(E’, F)]’ = (A-1[l~(F)])’, a version of Theorem 5
of [13, p. 230] for vector sequence spaces implies there exist g E

[DA(E, F)]’ and h e [l~(F)]’ such that for all X E l~A(E, F), p(X) =
g(X) + h~A(X). If X = (Xk)~DA(E’, F) then 

0, ...) and clearly  in the DA(E, F)-topology. Therefore
g(X) = g(03B4kXk), the series converging in K. Similarly, if y =

(Yn) E l~(F) then 03B4kyk ~ y in the topology of l~(F) and we obtain
h(y) = h(03B4kyk) where the series of scalars converges. If ,uk 1,
n; 1 are defined as in the statement of the lemma, then Proposition 3.6
shows that 03BC-1k~L(E, DA(E, F)) and ~L(F, l~(F)). Thus, for

X = (Xk ) e l~A(E, F) and y = (Yn) = Ax,

LEMMA 4.3. If t e (F, q i , i = 1, ···, 1) and p e [l~A(E, F)]’ then there
exists a method B = B(t) such that B~0393(l~(E), l~(F)), l~A(E, F)
~ l~B(E, F) and fI o B(X) = p(X)t for all X E l~A(E, F).
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PROOF. In the notation of Lemma 4.2, define B = (Bnk) by the following
equations. For X ~ E, let

Clearly, Bnk~L(E,F) and 03C3~B(X) = 03C1(X)t for X ~ l~A(E, F). We
apply Proposition 3.5 (ii) to show that B E h(h (F), l~(F)).

Fix j and a bounded set Ma in E. Let X = (Xk) where Xk e Mx
(k = 0, 1, ...) and let q be a positive integer. We must show the exis-
tence of p o = p0(q) ~ q and a number K = K03B1,j,p0,g such that

Let k be a given positive integer. Then, for any positive integer p,

We have

and we shall show the existence of a positive integer pi and a number
R = R(a, pl) such that

Let z, n, i, y be given positive integers and suppose pi(Xk) ~ 1,
k = 0, 1,... It follows that 

and

Since A E F(1,,,,,(E), l~(F)), for each 03BC = 1, 2, ... there exists a positive
integer z = z(y) and a number R’ = R’(03BC) such that
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Since g E [DA(E, F)]’, there exists a number M ? 0 and positive integers
a, b, c, d such that, for any positive integer p,

for k = 0, 1, ···. It follows that there exists a positive integer pl and
number R = R(03B1,p1) such that

Next, since A ~ 0393(l~(E), 1.(F», Proposition 3.5 (ii) yields for each
positive integer w, an s = s(w) ~ w and a number T = T(a, p, s, w)
such that

We have 03C0-1n o Ank(Xk) = c5nAnk(Xk) = (03B8, 03B8, ..., Ank’ 03B8, ...) with AnkXk
appearing in the n-th position. Let yk = (yku) with yku = 03B8(u ~ n), ykn =
AnkXk, k = 0, 1, .... The remark following Proposition 3.6 says that
the toplogy of l~(F) is given by the collection {Q03BC,r : 03BC, r = 1, 2, ···}
with

Since h E [l~(F)]’, there exists a number N ~ 0 and positive integers
e, f such that

It follows that, for positive integers p,

Thus there exists an si = s1(q) ~ q and a number Ti = Tl (a,j, si, q)
such that

Finally, combining the above we obtain a p o = p0(q) ~ q and a number
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K = K(03B1, j, p0, q) such that (4.1) holds. The proof that l~A(E, F) ~
l~B(E, F) is straightforward and Lemma 4.3 is proved.

PROOF oF THEOREM 4.1. Repeated applications of Proposition 3.2

show that 03C3~A ~ L(l~A(E, F), F) and, if 100 A (E, F) ~ lOOB(E, F),
6 o B E L(1,,,,(E, F), F) also. Utilizing Lemma 4.3 above, the proof now
goes through just like that of [4, Theorem 3 ].

Let A, B ~ F(co(E), co(F)). Iflim BX = 0 for X ~ coA(E, F) n cB(E, F)
we say that A is consistent with B. Thus coA(E, F) ~ cB(E, F) and A
consistent with B imply co,(E, F) ~ coB(E, F).

THEOREM 4.4 Let A E 0393(c0(F), c0(F)).
(i) If X is in the co,(E, F)-closure of co(E) then lim BX = 0 for every

B E r(co(E), co(F)) such that coA(E, F) ~ cB(E, F).
(ii) If X E c0A(E, F) is not in the coA (E, F)-closure of co(E) then, for

any scalar Il and non-zero t E F, there exists a B E r(co(E), c0(F)) such
that c0A(E, F) 9 cB(E, F) and lim BX = j1t.

(iii) Method A is consistent with every B ~ T(c0(E), co(F)) such that
c0A(E, F) 9 cB (E, F) if and only if A is perfect.

PROOF. Clearly, (iii) follows from (i) and (ii). Part (i) is obvious since
coA(E, F) ~ cB(E, F) implies (by Proposition 3.2) that limB is continuous
on coA(E, F) in the topology of that space. Under the hypotheses of (ii)
we choose f~ [coA(E, F)]’ such that f(X) = j1 and f vanishes on co (E).
Then we construct a B E r(co(E), c0(F)) such that coA(E, F) ~ cB(E, F)
and limB y = f(y)t for all y E coA(E, F). First, since 03A3mk= 0 03B4kzk ~ z in the
topology of c0(F) if z E c0(F) we have (in a manner similar to the proof
of Lemma 4.2)

for y = (yk) E c0A(E, F), where Il; 1, nn ’ are as in Lemma 4.2 with

1,,,,(F) replaced by co(F), g E [DA(E, F)]’, and h E [co(F)]’. Define

B = (Bmk)by the equations

We have

for y = (y,) E cOA(E, F) and m = 0, 1,2, ..., since, for each n,

03A3~k=0h ~03C0-1 o A nk(Yk) is a convergent series of scalars. Therefore,
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It follows that B e r(co(E), co(F)) and coA(E, F) ~ cB(E, F). This

completes the proof of Theorem 4.4.
A sequence (fn) of continuous linear functionals on an espace F is

said to satisfy property P(A, 03B2) if it is bounded for the topology of uni-
form convergence on bounded sets and knfn(AnkXk) converges in K
for every X = (Xk)Ef3A(E,F) where A = (Ank) ~ 0393(03B1(E), 03B2(F)) and
(a, 03B2) is admissible.

THEOREM 4.5. Let (a, 13) be admissible and A ~ 0393(03B1(E), f3(F»). If
a = 13 = l~ or ri = l~ let the topology of Fbe given by qi, i = 1, ..., 1.
Then A is perfect if and only if for each (fn) satisfying P(A, 13) we have

for all X = (Xk) E 03B2A(E, F).

PROOF. We give the proof for the a = 03B2 = 100 case. It follows from
Lemma 4.2 and Proposition 3.1 that f~ [l~A(E, F)]’ implies there exist
uniformly bounded sequences (gn), (hn) with gn E E’, hn E F’ such that

for all X = (X,) E looA(E, F). The proof now follows the lines of [4,
Theorem 1 ].

In [2] Brown gives an example of a perfect non-reversible Il - 11
matrix A = (ank) of scalars for which

diverges for a certain XE 11A and uniformly bounded sequence (f,) of
continuous linear functionals. In his example fn(X) = X for all X e K,
n = 0, 1, ···,

Let (a, fi) be admissible and A = (Ank) e r(a(E), P(F». We say that
A is type M* if, for every sequence (fn) of continuous linear functionals
on F which is bounded for the topology of uniform convergence on
bounded sets, the conditions
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imply fn ~ 0, n = 0, 1, ···.

THEOREM 4.6. Let (a, fi) be admissible and A E r( a(E), 03B2(F)) be

reversible. If a = 13 = l~ or a = l~ let (qi) = (qi, i = 1, ···l). Then A
is perfect if and only if A is type M*.

PROOF. Using the representation of [03B2A(E, F)]’ given in the proof
of Theorem 4.5, the proof becomes a repetition of that of [4, Theorem 2].
We may now state the following corollary which extends a result of

Macphail [7]. The case a = fi = l~ is not considered in [7].

COROLLARY 4.7. Let (a, 03B2) be admissible and A e r(a(E), 03B2(F)) be
reversible. If a = fi = l~ or oc = l~ let (qi) = (qi, i = 1... 1). Then A is
a-consistent with every B E 0393(03B1(E), 03B2(F)) such that B - A and 13 A(E, F)
g f3B(E, F) if and only if A is type M*.
Let (a, fi) be admissible and A = (Ank) ~ 0393(03B1(E), 03B2(F)). An X =

(Xk) E 03B2A(E, F) is said to be perfect if

for all sequences (ln) of continuous linear functionals on F which
satisfy P(A, 03B2). An X = (X,) e PA(E, F) is said to be type N if

for all (fn) satisfying P(A, 03B2).
PROPOSITION 4.8. Let (a, fi) be admissible and A e r(a(E), 03B2(F)). If

03B1 = 03B2 = l~ or 03B1 = l~ let (qi) = (qi, i = 1, ···, l).
(i) X e 03B2A(E, F) is perfect if and only if Xe 03B2A(E.F)-closure of 03B1(F);
(ii) if X ~ 03B2A(E, F) and A is reversible then X is perfect if X is type N.

PROOF. The proof of (i) follows the lines of [2, Lemma 2].
(ii) Let X~03B2A(E, F) be type N and /e [03B2A(E, F)]’, f(y) = 0 for

y e a(E). It follows from the representation of [PA(E, F)]’ that

where (hn) satisfies P(A, /3). Since A is reversible, Proposition 3.6 says
that the topology of /3A(E, F) is given by () where (y) = in(Ay)
and (in) generates the topology of /3(F). It follows easily that

where (AJ satisfies P(A, fl). Therefore f(X) = 0 and X is perfect.
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The following example, suggested by the referee, shows that the con-
verse of 4.8 (ii) is false. Take 03B1 = 03B2 = l1, E = F = K, and A = identity
matrix. Then A ~ 0393(l1, l1), each XE 11A is perfect, A is reversible, yet
every X ~ l1A is not type N.

Let (a, 03B2) be admissible and A E r( a(E), P(F) be reversible. If

= fi = l~ or a = l~ let (qi) _ (qi, i = 1, ... 1). Consider the follow-
ing :

(i) A is type M*;
(ii) A is perfect;
(iii) all X E 03B2A(E, F) are perfect;
(iv) all X e 03B2A(E, F) are type N.
Then (i) ~ (ii) ~ (iii) ~ (iv).
The next result gives the usual characterization of type M* for our

setting.

THEOREM 4.9. Let (a, fi) be admissible and A E 0393(03B1(E’), 03B2(F)). If
a = 03B2 = l~ or a = l~ let (qi) = (qi, i = 1,... l). The following are
equivalent:

(i) A is type M*;
(ii) The collection of sequences (A,,k (X», k = 0, 1, ···, X E E, is

fundamental in 03B2(F);
(iii) A[03B1(E)] is fundamental in 03B2(F).

PROOF. The proof employs known procedures (see [11]) and the
following facts.

Let (f.) be a uniformly bounded sequence of continuous linear

functionals on F and define f(y) = fn(yn), y~ P(F). We claim that
f e (j8(F))’. (The proof is given for = 11; the other cases are similar).
Let y = (Yn) e l1(F) and rn(X) = rh(X)r | for X E F. Then rn is a semi-
norm on F and, since (f") is bounded for the topology of uniform conver-
gence on bounded sets, there exists a number M = M(j) ~ 0, independ-
ent of n, such that rn(X) ~ Mqj(X), j = 1, 2, ..., n = 0, 1, .... (See,
e.g., [14] or [15]). Therefore

and f E (ll(F))’. Now let z E A[03B1(E)] and write z = A(03BC), 03BC E a(E).
We claim that
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We verify this as follows for the a = fl = h case. If A = (Ank) E
0393(l1(E), l1(F)) and ( fn) is bounded for the topology of uniform conver-
gence on bounded sets, fn E F’, we claim that B = ( fn o Ank) E 0393(l1 (E), 11).
Clearly fn o Ank E E’ for all n, k and we use Proposition 3.5 (i) to show
that B ~ 0393(l1(E), l1). Let Xu E Mq , a bounded set in E, for u = 0,1,....
Since (fn) is bounded for the topology of uniform convergence on bound-
ed sets, just as before we have, for j = 1, 2, ···, a number M(j) ~ 0
such that

Proposition 3.5 (i) implies that B~ 0393(l1 (E), 11). The required interchange
of summation now follows from observations in [15].

5. Inclusion Theorems

Suppose ri, f3 are any of c, co, lp, 100 and A = (Ank) E r( a(E), 03B2(F))
is reversible. Fix X E F and let the sequence 03BEp = 03BEp(X) correspond to
ôPX under A, i.e.,

Define maps !p,n from F to E by the equations fp,n(X) = 03BEpn, n, p =
0,1, ···. Clearly, f p, n ~ L(F, E) for all n, p.

THEOREM 5.1. Let A E r(co(E), co(F)) be reversible and let fp, n, n, p =
0, 1, ··· be the maps defined above. Let B = (Bnk) be a row finite matrix
of continuous linear operators on E to F. Then c OA (E, F) 9 cB(E, F) if
and only if

PROOF. If X = (X,) E coA(E, F) and y = AX we define Pk(Y) = Xk.
Using the fact that A is reversible it is easy to show that pk E L(co(F), E),
k = 0, 1, ···. It follows that

where pnk E L(F, E). We can easily show that 03C1nk ~ fkn for all n, k so that
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Then

and the series on the left converges in F whenever (Xk) E coA(E, F) since
B is row finite. Using the fact that B is row finite, we then have

Finally, the left-hand sequence is in c(F) if and only if (i) holds.
We have an analogous result for absolute summability (see also [5]).
THEOREM 5.2. Let A E 0393(l1(E), 11(F) be reversible and let B = (Bnk)

be a matrix of continuous linear operators on E to F. Then 11A(E, F) z
11B(E, F) if and only if

The author is indebted to the referee for a number of helpful sug-
gestions and to Professor H. I. Brown for helpful comments concerning
the proof of Proposition 3.5 (ii).

REFERENCES

A. ALEXIEWICZ AND W. ORLICZ

[1] ] Consistency theorems for Banach space analogues of Toeplitzian methods of
summability, Studia Math., XVIII (1959), 199-210.

H. I. BROWN

[2] The summability field of a perfect l-l method of summation, Journal D’Analy.
Math., XX (1967), 281-287.

H. I. BROWN

[3] Entire methods of summation, Comp. Math. 21 (1969), 35-42.

H. I. BROWN AND V. F. COWLING

[4] On consistency of l-l methods of summation, Mich. Math. J. 12 (1965), 357-362.

V. F. COWLING

[5] Inclusion relations between matrices, Math. Zeitschr. 98 (1967), 192-195.

R. H. COX AND R. E. POWELL

[6] Regularity of net summability transforms on certain linear topological spaces,
Proc. A.M.S. 21 No. 2 (1969), 471-477.

M. S. MACPHAIL

[7] Some theorems on absolute summability, Canad. J. Math. 3 (1951), 386-390.

S. MAZUR

[8] Eine Anwendung der Theorie der Operationen bei der Untersuchung der

Toeplitzchen Limitierungsverfahren, Studia Math. 2 (1930), 40-50.
H. MELVIN - MELVIN

[9] Generalized K-transformations in Banach spaces, Proc. London Math. Soc.
(second series) 53 (1951), 83-108.



327

M. S. RAMANUJAN

[10] Generalized Kojima-Toeplitz matrices in certain linear topological spaces, Math.
Annalen 159 (1965), 365-373.

M. S. RAMANUJAN

[11] Vector sequence spaces and perfect summability matrices of operators in Banach
spaces, to appear in Publ. of the Ramanujan Inst. India.

A. ROBINSON

[12] On functional transformations and summability, Proc. London Math. Soc.

(second series) 52 (1950), 132-160.

A. WILANSKY

[13] Functional Analysis, Blaisdell, New York, 1964.

B. WOOD

[14] Series to sequence and series to series transformations in Fréchet spaces, Math.
Annalen 184 (1970), 224-232.

B. WOOD

[15] On l-l summability, Proc. A.M.S. Vol. 25 2 June 1970, p. 433-437.

K. ZELLER

[16] Allgemeine Eigenschaften von Limitierungsverfahren, Math. Z. 53 (1951),
463-487.

K. ZELLER

[17] Verallgemeinerte Matrixtransformationen, Math. Z. 56 (1952), 18-20.

(Oblatum 22-VII-70) Prof. B. Wood,
Department of Mathematics,
The University of Arizona,
Tucson, Arizona, 85721
U.S.A.


