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This paper is a sequel to the earlier paper on the construction of
degenerating curves. The basic ideas of the 2 papers are very similar and
we refer the reader to the introduction of that paper for discussion and

motivation. We limit ourselves here to an outline of the contents of the

present paper.
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Throughout this paper, A will stand for a fixed excellent integrally
closed noetherian ring with quotient field K, I c A will be an ideal
such that I = I and A is complete with respect to the I-adic topology.
We will be interested in group schemes over the base scheme:

which have particular properties over

(1) the generic point 1 E S
(2) the closed subscheme So = Spec (A/I ).

If X is a scheme over S, X~ and Xo will stand for the induced schemes
over {~} and So . A smooth commutative group scheme G of finite type
over any base Z will be called semi-abelian if all its fibres Gz are connected

algebraic groups without unipotent radical, i.e., each Gz is an extension
of an abelian variety by a torus (= a form of Gm over k(z)). The rank
function will be the map

associating to each point z the dimension of the torus part of Gz ; r is
easily checked to be upper t-continuous (e.g., by looking at the cardinali-
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ty of the fibres of the subscheme Ker(nG) c G, étale over Z where n is
prime to the residue characteristics of Z). The semi-abelian group
schemes G of constant rank are globally over Z extensions of an abelian
scheme over Z by a torus over Z. We are interested in constructing
semi-abelian group schemes G/S such that

(1) Gn is an abelian variety,
(2) Go has constant rank.

According to an idea of John Tate, if r = rank (Go), then G should be
canonically represented as a ’quotient’ of a semi-abelian group scheme G
of constant rank r over the whole of S by a discrete subgroup Y of L-
valued points of G with Y ~ Zr. (L a finite algebraic extension of K).
To simplify matters, we will consider only the case where Go is a split
torus, i.e., Go éé Gm x So, in which case G ~ Gm x S and the points of Y
are K-valued. Our plan is the following:

i) start with a set of periods Y c G(K) where G ~ Gm x S, satisfying
suitable conditions;

ii) construct a kind of compactification:

such that the action of Y by translation extends to P, and Y acts freely
and discontinuously (in the Zariski topology) on -Po. Unlike the case
of curves, P is neither unique nor canonical!

iii) Take the I-adic completion $ of P, construct 13 = B/Y, algebrize
B to a scheme P projective over S, and take a suitable open subset G c P:

iv) prove that G is a semi-abelian group scheme over S independent
of the choice of P, Gn is abelian, and G0 ~ G0 ~ Gm x So.
We will also show that this uniformization G ~ G is uniquely determin-

ed by G, i.e. if G/Y1 ~ G/Y2 , then Y1 = Y2 . However we will not discuss
at all whether all semi-abelian G as in (iv) admit such a uniformization.
This seems to be a fairly difhcult question. In case dim A = 1, and A is



241

local, Raynaud and I have proven (independently) that all G’s as in (iv)
do admit uniformizations. Raynaud’s method is highly analytic and mine
is an application of my theory of 2-adic theta functions*. We both have
reason to believe that our methods will extend to the general case, but
this has not yet been done. Instead I conclude the paper with many
examples. For me, one of the most enjoyable features of this research
was the beauty of the examples which one works out without a great
deal of extra effort. In fact, the non-uniqueness of P gives one freedom
to seek for the most elegant solutions in any particular case.

1. Periods

To begin our program, let G be a given split torus over S. Then if X
is the character group of G ,for all a E X, the character is a canonical
element

Moreover G is affine and can be described explicitly as:

Let:

Note that if y E G(K) and a E X, then the character X2 takes a value on
y which is an element !!£(1.(y) E K*.

(1.1) DEFINITION : A set of periods is a subgroup Y c G(K) isomorphic
to Z’".

The only assumption that we will make about Y is that they admit a
polarization, in the following sense:

(1.2) DEFINITION: A polarization for the periods Y is a homomorphism

such that:

i) X~(y)(z) = X~(z)(y), all y, z E Y,
ii) !!(tP(y) (y ) E I for all y E Y, y ~ 0.
Note that by (ii) ~ must be injective, hence also [X: 4JY]  +00.

Before going further, we stop to prove a basic lemma of a technical na-
ture concerning periods and polarizations which will be very useful:

1 On the equations defining abelian varieties, Inv. Math., Vol 1 and 3.
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(1.3) BASIC LEMMA: Suppose that for every y E Y, y :0 0, a positive
integer ny is given. Then there exists a finite set of elements y1, ···, yk E Y,
y i :0 0 and a finite subset S c Y such that for all z E Y- S,

PROOF: Since Y is finitely generated, there is only a finite set of minimal
prime ideals p c A such that

Let these prime ideals be p1, ..., pn, and let vi be the valuation ordpi.
The axioms for a polarization tell us that

is a positive semi-definite quadratic form on Y. We can extend Qi i
uniquely to a R-valued quadratic form on Y Q R. Since A is integrally
closed, the assertion to be proved is equivalent to:

For all y E Y, y ~ 0, let

Note that Cy is a convex open subset of Y Q9 R such that ÂCy ~ Cy if
Â E R, 03BB ~ 1. To prove the lemma, it suffices to check that:

for some y 1 , ..., yk . But first I claim that

In fact, suppose z E Y 0 R and z ~ 0. If we approximate z by an element
of Y Q Q which lies in the same Null-spaces of the Qj that z does, and
multiply this element by a large positive integer, we find a y E Y such that

Therefore N· z E Cy if N » 0, hence z E 1/N Cy. This proves (**). By
the compactness of the unit sphere in Y Q R, it follows that there are
yl, ’ ’ ’, Yk E Y, yi ~ 0, and positive integers Ni such that
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Then ~ki=1 CYi contains all spheres of radius ~ max (Ni) so (*) is proven.
QED

Another basic fact which is very useful is:

(1.4) LEMMA: For any ri E X, there exists an n ~ 1 such that

PROOF. Let p1, ···, ,pn and Q1, ···, Qn be as before. Note that using
4J: y  X, we can identify X with a subgroup of Y Q R so that

We must show that for n » 0,

But

Since Y projects into a lattice in Y Q R/Null-space Q i , it follows that
if n is large enough, then for all y, either

a) y E Null-space (Qi)
or

b) ny + 03B1/2 is arbitrarily ’big’ in Y 0 R/Null-space Q i . In either case,
Qi(ny + 03B1, y) ~ 0. QED

2. Relatively complète models

We now return to our basic problem: given a set of periods Yfor which
a polarization exists, construct canonically a ’quotient’ of G by Y. The
main tool will be the following:

(2.1) DEFINITION. A relatively complete model of G with respect to
periods Y and polarization ~ will be a collection of 5 pieces of data:

a) an integral scheme P locally of finite type over A,
b) an open immersion i : G  P (we will henceforth identify G with

its image in P),
c) an invertible sheaf L on P,
d) an action of the torus G on P and L (we denote the action of an

S’-valued point a of G by

and
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e) and action of Y on P and L (we denote the action of y ~ Y by

and

such that

(i) there exists an open G-invariant subset U c P of finite type over S
such that

(ii) for all valuations v on R(G), the field of rational functions on G,
for which v ~ 0 on A, v has a center on P if and only if

(These valuations are allowed to have rank &#x3E; 1 !)
(iii) The action of G and Y on P extends the ’translation" action of

G and Y on G given by the group law on G.

(iv) The actions of Y and G on L satisfy the identity:

all y E Y all S’-valued points a of G.

(v) L is ample on P.2

We turn first to the construction of relatively complete models. We
need one more definition:

(2.2) DEFINITION. A star l is a finite subset of X such that 0 e Z,
- 03A3 = 03A3 and 1 contains a basis of X.

Let 03B8 be an indeterminate and consider the big graded ring:

Let Y act on à via operators Sy :

2 By definition, we take this to mean that the sections of Ln, n ~ 1, form a basis
of the topology of P. In EGA, II. 4.5., Grothendieck only defines ample on quasi-com-
pact schemes, but this seems to be the best property among his equivalent defining
properties for our purposes.
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Let

(2.3) DEFINITION. R~,03A3 = subring of -4 generated over A by the
elements Sy(x03B103B8), y E Y, a ~ 03A3,
i.e.,

This ring is only what we want in case  E A for all y E Y,
a e r, i.e., in case

However, we can always make sure that this extra condition is satisfied
if we replace the polarization ~ by n~ for a large enough n. This follows
from lemma (1.4). From now on, we assume that 0 has been so chosen
that  E A, all y E Y, a E I.
Now consider Proj(R~,03A3). I claim it is a relatively complete model of

G! Since it is Proj of a graded ring generated by elements of degree 1, it
carries a canonical ample invertible sheaf (9(l). Moreover, the auto-
morphisms Sy of Rp,-, induce automorphisms Sy of Proj (R~,03A3) and a
compatible automorphism Sy of O(1), i.e., an action of Y on Proj(R~,03A3)
and onO(1). To get an action of G on Proj(R~,03A3) and on O(1), it suffices
to define, for every A-algebra B and every B-valued point a of 0, an
automorphism Tt of B Q AR~03A3, in a way which is functorial and

compatible with compositions. In fact, let

This clearly has all these properties and gives us our action. Since:

where

it follws that the Ta’s and S,,’s skew-commute as required for the polariza-
tion 2~.
Next Proj(R~,03A3) is covered by the affine open sets:
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Although we have here an infinite number of open sets, the action

Syo of y o E Y carries U(1.,y to U03B1,y+yo, so there are only a finite number of
orbits mod Y in this collection of open sets. All the affine rings are integral
domains contained in K(..., ~03B1, ...). Moreover,

Thus Proj(R~,03A3) is an integral scheme over A containing G as a dense
open subset. Next we prove:

(2.4) PROPOSITION. U(1., y is of finite type over A.

PROOF. Since U(1.,y is isomorphic to U03B1,z for any y, z ~ Y, is suffices

to check this for U(1., o. The affine ring of U03B1,0 is generated by the infinite
set of monomials:

It is easy to check that:

Now for all z, choose a positive integer nz such that

Then by the basic lemma (1.3), there is a finite set z1, ···, Zk such that
for all y E Y except for a finite set ,S’ c Y,

Therefore

so that

Thus M03B11z, ···, M03B1,zk plus the Mp, y with y E S generate the whole ring.
QED

It follows that if U =  U03B1,0, then U is an open subset of

Proj(R~,03A3) of finite type over A such that
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It remains to check the following completeness property for Proj(R~,03A3):
if v is a valuation of R(G), v ~ 0 on A, then

Clearly v has a center on Proj (RO, 1) if and only if

As for the other side, note that it is equivalent to any of the statements:

Now to check the implication ’~’, suppose that:

If (*)" is false, then take the z E Y for which v(X03B1(z)· X~(z)  0, all

oc E X, and simply note that

Conversely, assume that (*)"’ holds. For all y E Y, choose ny large
enough so that

and

By the basic lemma (1.3), there exist y1, ···, yk ~ Y such that for all
z e S, a finite set, H~(z)(yi) E  for some i. But then
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so that the minimum in question exists for some z E S. This completes
the proof of:

(2.5) THEOREM. Let G be a split torus over S, let Y c G(K) be a set of
periods and 4J: Y ~ X a polarization. Then if 0 is replaced by n4J for
n E Z sufficiently large, Proj(R~,03A3) is a relatively complete model of G
over S relative to Y and 24J.

3. The Construction of the quotient

We can now forget about Proj(R~,03A3) and deal with an arbitrary
relatively complete model P. The first thing I want to prove is that P
is not ’too much’ bigger than G:

(3.1) PROPOSITION. Let y E Y and let f = (y). Then in the open
set Pf c P, q,(y)... i.e., ~ 0393(Pf, O*P ).

PROOF. By the axioms for a polarization, it follows easily that for all
aEX,

Therefore !!£(1.(y) E Af. In other words, the section y of G over {~}
extends to a section over Sf too. For clarity, call this y’. Then we have
automorphisms Sy and Ty, of Pf and Sy and T*y’, of Lf = L/PI. Since
Sy = Ty’, on Gf, Sy equals Ty’, everywhere, so

The law of skew-commutativity of S* with the operators Tâ shows that

for all points a, b of Gn in some K-algebra B. Therefore, on G~, the
function 03BB/H~(y) is constant along the fibres, i.e.,

But Â and X~(y) are units on the bigger open set (7f , hence ( must be a
unit in Af. Then 03BB and ( -’ are units in Pf so  is also. QED

(3.2) COROLLARY. 0, = P".
Next, let’s look at the closed subscheme Po of P.

(3.3) PROPOSITION. Every irreducible component of Pois proper over
A/I.

PROOF. First apply the completeness condition (ii) to prove that if Z
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is any component of P o and if v is any valuation of its quotient field
R(Z), with v ~ 0 on A/I, then v has a center on Z. In fact, let v, be a
valuation of R(G), v ~ 0 on A, whose center is Z, and let v2 be the
composite of the valuations v and v 1. Since for all z E Y, if n » 0,

is regular and zero at the generic point of Z by (3.1 ),
it follows that v1(H~(z)(z)n·H~(z)) &#x3E; 0, hence V2(~(z)(z)n· H~(z)) &#x3E; 0.

So by the completeness condition, v2 has a center on P, hence v has a
center on Z.

The Proposition now follows from the rather droll:

(3.4) LEMMA. Let f: X ~ Y be a morphism locally of finite type, with X
an irreducible scheme but Y arbitrary. If f satisfies the valuative criterion
,for properness for all valuations, then f is proper.

PROOF. The usual valuative criterion (cf. EGA. II-7-3) would hold if
we know that f was of finite type. It suffices to prove that f is quasi-
compact. To prove this, we may as well replace X by X,,,d, Y by Yred;
then looking locally on the base, we can assume Y is affine, say Spec(A);
and finally we can assume f is dominating. Then A is a subring of the
function field R(X) of X: let X be Zariski’s Riemann Surface of R(X)/A
(cf. Zariski-Samuel, vol. II, p. 110). Set-theoretically, H is the set of
valuations v of R(X), v ~ 0 on A. By the valuation criterion, every v has
a center on X, so there is a natural map 03C0: H ~ X taking v to its center.
Now X is a quasi-compact topological space and 03C0 is continuous and

surjective. Therefore X is quasi-compact. QED

(3.5) COROLLARY. The closure U0 of Uo in the scheme Pois proper
over So.

PROOF. Since Uo is of finite type over So, U0 has only a finite number
of irreducible components, and by the Proposition, each is of finite type
over 80. QED
The next thing I want to prove is that Y acts freely and discontinuously

on Po in the Zariski-topology:

(3.6) PROPOSITION. Let U c P be the open set given by the definition
of a relatively complete model. Let U0 be the closure of Uo in P o . There
is a finite subset S c Y such that

PROOF. Let F c P be the closed subset which is the locus of geometric
points left fixed by the action of G. The action of G on the invertible
sheaf L|F is a 1-dimensional representation of G over the base scheme
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F. Therefore for every connected subset F’ c F, there is a character

a E X such that G acts on LI F, via the character a. Moreover, if y E Y,
then SY(F’) will be another connected subset of F, and by the skew-
commutativity of the actions of Y and G, G will act on LlsY(F’) through
the character 03B1 + ~(y). Now F n U0 has only a finite number of connect-
ed components: let 03B11, ···, an be the characters G associated to the
action of G on L on these sets. Then G acts on L at the points of

F ~ Sy(U0) through the characters 03B11 + y, ···, 03B1n + y. Now suppose

Sy(V 0) n Sz(U0) ~ 4J. Since this intersection is proper over Spec(A/I),
by the Borel fixed point theorem (cf. A. Borel-Linear algebraic groups;
Benjamin, 1959; pag. 242, th. 10.4):

Looking at the action of G on L here, it follows that one of the characters
03B1i + y must equal one of the characters 03B1j + z. Let S = {···, 03B1i - OEj,
Thus y - z ~ S.

QED

(3.7) COROLLARY. Y acts freely on P o .
PROOF. If some y E Y, y ~ 0, had a fixed point x in PO, then since y

has infinite order, x would be left fixed by an infinite subgroup of Y and
this would contradict the Proposition. QED

(3.8) THEOREM. P0 is connected.

PROOF. Note that since A is complete in the I-adic topology, and A
has no idempotents, A/I has no idempotents either, i.e., So is connected.
Therefore G o is a connected open subset of P0 and it determines a

canonical connected component of Po . Now suppose there is a 2n’
connected component. Choose a point x E P0 in this 2nd component and
let v be a discrete rank 1 valuation of R(G), v ~ 0 on A, with center x.
Let A’ = {x ~ K|v(x) ~ 01. Let S’ = Spec(A’) and P’ = P  sS’. Now
A’ is a discrete, rank 1, valuation ring with quotient field K, so S and S’
have the ’same’ generic point, and P, P’ have the ’same’ generic fibre.
Let P" be the closure in P’ of its generic fibre. P" is an integral scheme
with the same quotient field as P, namely R(G), and it is locally of finite
type over the valuation ring A’. Now S’ has only 2 points - its generic
point and its closed point. Let P"0 be the fibre of P" over the closed point.
There is a natural morphism

1 claim that (a) x E Image, and (b) Go c Image, hence the image meets
~ 2 connected components, hence.P’ 0 1 is disconnected too. The reason
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for (a) is that if Rv = valuation ring of v, then we are given morphisms:

hence we get a morphism Spec(R,) P’, which takes the generic point
of Spec(R,) to the generic fibre of P’. Therefore this morphism factors
through P". The image x’ E P"0 of the closed point lies over x. The reason
for (b) is that G ~ P, and G is smooth of S; so 0 x , S’ ce P’, and it is
smooth over S’; so G  s S’ Pl 1.
Now because of the completeness property (ii) of P we know exactly

which valuations of R(G) have centers in P" too. We have reduced the
Theorem to:

(3.9) LEMMA. Let A be a discrete rank 1 valuation ring with maximal
ideal (03C0), let G be a split torus over S = Spec(A), let P be an integral
scheme, locally of finite type over S containing G as a dense open subset.
Assume:

1) the generic fibres G~, P, are equal,
2) for all valuations v of R(G), v ~ 0 on A and v(n) &#x3E; 0, v has a

center on P if and only if for all a E X, (the character group of G),
-nv(03C0) ~ v(H03B1) ~ nv(03C0), if n » 0.
Then the closed fzbre Po of P is connected.

PROOF. Introduce a basis in X, and let H1, ···, !!£r be the corre-
sponding characters. For all n, let

This scheme is a relative complete intersection in As r over Sand is
smooth over S, hence regular, outside a subset of codimension 2. There-
fore P(n) is a normal scheme. P(n) and P have the same function field, so
let Z(n) c P(n) x A P be the join ofthis birational correspondence. By (1)
and (2), all valuations v of R(G) with a center on P(n) also have a center
on P, so Z(n) ~ P(n) satisfies the valuative criterion for properness.
Since Z(n) is at least locally of finite type over pen), by lemma (3.4), Z(n)
is proper over P(n). Therefore by Zariski’s connectedness theorem, all

fibres of Z,n) over P(n) are connected. Now the closed fibre of P(n) is

isomorphic to:
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where k = A/(03C0), which is certainly connected. Therefore the closed
fibre of Z(") is connected. Therefore if

Wn is connected too. But 1 claim that P0 = ~nWn. In fact, every valua-
tion v with a center x on Po has a center on some P(n) because of (2).
Therefore x lifts to a point of z(n) for some n, hence x e Wn . This shows
that Pois connected. QED
We are now ready to begin the construction of G. The first step is:

(3.10) THEOREM. For every n ~ 1, there exists a scheme Pn , projective
over A/In, an ample sheaf O(1) on Pn, and an étale surjective morphism:

such that set-theoretically, 03C0(x) = 03C0(y) if and only if x and y are in the
same Y-orbit, and such that (9(l) on P x A A/In is the pull-back of O(1)on
Pn.

PROOF. First, let k ~ 1 be an integer such that under the action of the
subgroup kY c Y, no 2 points of any open set

are identified. Then we can form a quotient:

by the subgroup kY by the simple device of gluing these basic open sets
together on bigger overlaps. Observe that since Y acts on O(1) we get a
’descended’ form of O(1) on P’n.
Choose coset representatives y1, ···, y, E Y for the cosets of kY in Y.

Now notice that the restriction of 03C0’:

is surjective, hence so is the restriction:

But the scheme on the left is a finite union of schemes proper over A/I.
Therefore P’n is proper over AII". Moreover (9(1) on Pn pulls back to
O(1) on the left, and O(1) here is ample. Therefore O(1) on Pn is ample too
(for instance, by Nakai’s criterion, cf. S. Kleiman - A note on the Nakai-
Moisezon test for ampleness of a divisor; Amer. J. Math. 87 (1965), 221-
226).
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Finally, the finite group Y/kY acts freely on the projective scheme Pn
and on the ample sheaf O(1), so a quotient Pn = P’n(Y/kY) exists.
Moreover by descent, Pn carries an ample O(1) too, so Pn has all the
required properties. QED

These schemes Pn obviously fit together to form a formal scheme çg
proper over A. Moreover the sheaves (9(l) fit together into an ample
sheaf O(1) on B. We now apply the fundamental formal existence theorem
(EGA Ch. 3, (5.4.5)) of Grothendieck: this shows that B is the formal
completion of a unique scheme P, proper over A, and that O(1) on 13
comes by completion from an (9(l) on P relatively ample over A.
Now inside all of our schemes, we want to pick out a big open set:

Note that Gn ~ G x A A/In, so that ~ I-adic completion of G. To pick
out an open subset of P whose completion is , proceed as follows:

(L) Let B = P - U sy(G) and make B into a reduced closed sub-
yeY

scheme of P.

Then S is the formal completion of a reduced closed subscheme B c P.
Finally let G = P - B. Then, by construction the I-adic completion of G
is , i.e., the I-adic completions of G and of G are canonically isomorphic.

This G is our final goal. We will eventually prove that G is a semi-
abelian group scheme.

4. G is semi-abelian

We begin by proving that G is smooth over S. This is best proved in a
more general context:

(4.1) PROPOSITION. Given
(1) 2 schemes, locally of finite type over S:

with X2 proper over S.
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(2) an étale surjective morphism of their I-adic completions:

(3) closed reduced subschemes B1 ce Xl, B2 c X2, assume that the
following holds:

(4) Xl - B1 is smooth over S, of relative dimension r,
(5) if i = I-adic completion of Bi, then we have the inclusion of

formal subschemes (not just subsets)

then we conclude that X2-B2 is smooth over S, of relative dimension r.

PROOF. First, let’s check that X2-B2 is flat over S. Let M ~ N be
2 A-modules. Consider the 2 kernels:

Since X1-B1 is flat over S, Supp(H1) c B1, hence for all XEX1,
(H1)x· (IB1)nx = (0) for some n. Taking I-adic completions, we get
exact sequences:

and since n is flat, it follows that H1 ~ n*:f 2. Since for all x E H1,
(H1)x· (IB1)nx = (0) for some n, and since by (5), IB1 ~ n*(IB2)’ it

follows that (H2)03C0(x)· (IB2)n03C0(x) = (0). This means that in an open

neighborhood of f-12(S0), H2 is killed by IB2, hence Supp(H2) ~ B2.
Since X2 is proper over S, all closed points of X2 lie over So so that

Supp(H2) c B2 everywhere.
To show that X2-B2 is actually smooth over S, it suffices to show that

in addition to being flat, it is differentiably smooth: i.e., ai2ls is locally
free of rank r outside B2 , and Sn(03A91X2/S) ~ BnX2/S is an isomorphism
outside B2 (cf. EGA, IV4. 16). Since we know these are true for Xl/S,
we deduce, in particular, that at all points x of f-11(S0),

a) for all g ~ I(B1)x,  Ox,X1[1/g] is locally free of
rank r over O[1/g],

b) Ker and Coker of Sn(03A91X1/S)x ~ nX1/S,x are killed by powers of
I(B1)x.
These 2 facts imply the corresponding facts for the formal scheme H1.
Since n is étale, 03C0*(03A9) ~ 03A91H1/S and ~ nx1/S, so by
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assumption (5), we get the corresponding facts for X2. Finally, these
imply that (a) and (b) hold for X2/S at points x ~ f-12(S0). Since X2 is
proper over S, they hold everywhere on X2. Thus X2-B2 is differentiably
smooth over S. QED

(4.2) COROLLARY. G is smooth over S.

PROOF. Take X, = P, X2 = P, B1 - B, B2 = B, and use the fact that
G is smooth over S. QED
Our next step is to show that P and hence G is irreducible:

(4.3) PROPOSITION. P is irreducible.

PROOF. To prove this, we may assume that P is normal. In fact, we
can replace P by its normalization and then, since A is excellent, B is
normal, hence 13 and P are normal. Then to show that P is irreducible,
it suffices to show that P is connected. But we know that Pois connected.
Therefore Po = P o/Y is connected. But P is proper over S and so there-
fore P is connected too. QED

Next, we take up the key problem of proving that G is independent
of the choice of the polarization 4J and the model P.

(4,4) DEFINITION. A subtorus H ~ G is integrable if

The key step in our proof of independence is that an integrable subtorus
H c G defines a closed subscheme H c G in the following way:

a) let W1 be the closure of fi in P (considered as a reduced closed
subscheme of P). If Y* = Y n H(K), then W1 is Y*-invariant.

b) let B1 be the I-adic completion of Wl. It is also Y*-invariant. Then

turns out to be a locally finite union, so this defines B2 as a reduced
closed subscheme of B.

d) Let W3 c P be the reduced closed subscheme whose I-adic com-
pletion is BB3.

The finiteness assertion in (b) is the only non-trivial step where integrabil-
ity has to be used. It results from:
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(4.5) PROPOSITION. Let fI c G be an integrable subtorus and let

Y* = Y n H (K). Let W1 be the closure of H in a relatively complete
model P of G. Then there is a finite set S c Y such that

PROOF. Let X* ~ X be the group of characters that are identically 1

on H. Then &#x26;((1.(y) = 1 if a E X*, y E Y*. In particular, Y* n 4J-l(X*) =
(0) since if y ~ Y* ~ ~-1(X*), y ~ 0, then X~(y)(y) is in I and is 1. If

r = dim G, s = dim fi, then rank Y* = s and rank ~-1(X*) = rank
X* = r-s. Therefore Y*+~-1(X*) has finite index in Y. Let k ~ 1 be

an integer such that

Let Y** = {y E Ylny E Y*, some n ~ 1}. Then Y**/Y* is a finite group
killed by k and YIY** is torsion-free. Consider the quotient torus G1 -
G/H·Y* * . Its character group is the subgroup X** c X* of characters
which are 1 on all of Y**. Note that kX* c X**. In G1, consider the
group of periods Y1 = Y/Y**. Define a polarization 03C8: Y1 ~ X** as
follows:

If y0 is a second element of YB, and kyj = y*0 + wo as above, then

so that 1/1 is a bona fide polarization. We shall apply the basic lemma
(1.3) to this torus and this polarization.
To find the appropriate ny’s, recall that for all y E Y, X"(Y) is a regular

function on P outside of the locus ~(y)(y) = 0. In particular, since U is
of finite type over A,

is a regular function on all of U if n is large. Increasing n by one, we can
even make it a function that vanishes on Uo. Now if y E Y1 and y E Y
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lies over y with ky = y* + w as above, then

and

So choose an integer ny such that

Applying the lemma, we find a finite set y 1 , ..., Yk E Y and a finite
subset S c= Y such that

Now consider the function X03C8(yi) on Sz(U). Via the isomorphism Sz of
Sz(U) and U, it corresponds to the function

on U. Combining (*) and (**), it follows that this function is regular
on U and zero on Uo. Therefore !!£t/!(Yi) is regular on Sz( U) and zero
on Sz( U 0). But  ~ 1 on W1 so this shows that W1 n Sz(U0) = ~.
Since z was an arbitrary element of Y outside S + Y**, this proves the
Proposition. QED
We are now ready to prove:

(4.6) THEOREM. Let (Gi, Yi, 4Jb Pi), i = 1, 2 be 2 tori plus periods,
polarizations, and relatively complete models. Let Gi, i = 1, 2 be the 2
schemes constructed as above. Then for all S-homomorphisms 03B1: G1 ~ G2
such that 03B1(Y1) c Y2, there is a unique S-morphism a: G1 ~ G2 such
that under the canonical isomorphisms of the I-adic completions of Gi
and Gi, a and &#x26; are formally identical.

PROOF OF THEOREM. Consider the torus G 1 x s G2 ; Y1 x Y2 is a set of
periods for this torus, Xl x X2 is its character group and 4Jl x 4J2:
Y1 x Y2 ~ X1 x X2 is a polarization. Moreover Pi x S P2 is easily seen to
be a relatively complete model for G 1 x G2 relative to these periods and
this polarization. Now suppose 03B1: G1 -+ G2 is an S-homomorphism such
that &#x26;(Yi ) c Y2. Look at the graph

It is a subtorus of G1 x S G2, and because â(Yl ) c Y2, it is integrable.
As in the last Proposition, it induces a closed subscheme of G1 x S G2 as
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follows:

1 claim that H is the graph of a morphism from G1 to G2. First of all,
we prove that the projection

is smooth of relative dimension 0 outside B1 = P1 - G1. This follows
by essentially the same argument used in the proof of Proposition (4.1).
In fact, p1: W1 ~ B1 is smooth of rel. dim. 0 outside B = B1-G1.
Now locally at every point B2 is the formal completion of a finite
union Sy1(W1) ~···~ SYk( W1), yi ~ Fi x Y2, and since this is also

smooth of rel. dim. 0 outside B1, so is pi : BB2 ~ B1. Here by ’smooth
outside B1’, we do not mean merely smooth at points of B1-B1: instead
we mean smoothness in the sense of properties (a) and (b) in the proof
of the proposition, viz. smoothness after localizing by the ideal I(B1).
This property descends to smoothness for p1: B3 ~ B1, hence for
pi : W3 ~ P1. Secondly, we prove that W3 n (Pl X S B2) c B1 x S B2 .
This follows by the same method, by descending a stronger ideal-theoretic
property on the - -schemes. In fact, since for every finite set of y j’s:

it follows that on $1  B2,

for some N. This property descends, and on algebraizing, proves that
W3 n (Pi x s B2 ) c B1 x s B2. Since p l : W3 ~ Pi is a proper morphism,
this proves that the restriction pl : H ~ G1 is also proper. Combining
these 2 halves, it follows that pl : H ~ G1 is finite and étale. But finally
the formal I-adic completion of &#x26; is obviously the graph of the formal
morphism from G1 to G2 defined by H. Therefore pl : H - G1 has
degree 1 over So, hence because G1 is irreducible, it has degree 1 every-
where. This proves that there is an S-morphism a: G1 ~ G2 extending
the formal morphism defined by 8-. Finally, since G1 is irreducible, such
an a is clearly determined by its restriction to &#x26;1. QED

(4.7) COROLLARY. The scheme G depends only on the torus G and the
periods Y, and is independent of the polarization 0 and the relatively
complete model P.
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PROOF. Apply the theorem to 2 4-tuples (G, Y, 01, P1) and(G, Y, 4J2, P2 )
and to the identity 1G : G ~ G.

(4.8) COROLLARY. G is a group scheme over S.

PROOF. Apply the theorem to (G SG, Yx Y, 4J x 4J, P  sP) and
(G, Y, 4J, P) and the multiplication map from G x sG to G. This yields a
map /1: G x s G ~ G. Apply the theorem to the inverse from G to G.
This yields a map i : G - G. Since Jl and i make the formal completion 05
of G into a formal group scheme and since G is irreducible, y and i
satisfy the same identities on G on as &#x26; and therefore G is a group
scheme. QED

(4.9) COROLLARY. G~ is an abelian variety.
PROOF. Since G~ = P", the generic fibre Bn of B is empty. It follows

that the structure sheaf (9B is killed by some non-zero 03C4 E A. Therefore
the structure sheaf (9B is also killed by T. Therefore B~ = 4J, hence
G~ = P~ is proper over K. Since G is irreducible, Gn is also irreducible,
hence an abelian variety. QED

Before we can prove that G is, in fact, a semi-abelian group scheme,
we have to prove that every fibre of G over S is connected. This follows

from a description of the points of G of finite order:Start with G, Y, 4J, P
again.
Let G* = UyE Y Sy(G) c P.
Let 6y : S ~ G* be the section such that 03C3y(~) = y.
Let Z(n)y be the subscheme of points z such that nz = y, i.e., the fibre

product:

Note that Sz induces an isomorphism of Z(n)y with Z(n)y+nz.
(4.10) THEOREM. The kernel G(n) c G of multiplication by n is isomor-

phic over S to the disjoint union of the schemes Z(n)y as y runs over a set of
cosets of YlnY.

PROOF. First consider the closure Z(n)y of Z(n)y in P. By the valuation
property of the relatively complete model P, it follows that all valuations
of Z(n)y have centers on Z(n)y. By Lemma (3.4), it follows that Z(n)y is proper
over S. Let  be its I-adic completion. We have seen above that if

W(n) = closure in P x s P of the graph of x H nx
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then

is a locally finite union. Since Z(n)y x S (J y( S) c win), hence Z(n)y x s 03C30(S) ~
S(0,-y)(W(n)1), it follows that

is a locally finite union, and that

Taking quotients by Y and Y x Y, we obtain a formal closed subscheme

where (n)3 = (n)2/Y Y. It follows that 2(n) algebrizes to a subscheme
Z(n) c P such that

hence Z(n) = Z(n) n G = H(n) n (G x s 03C30(s)) where H(n) c G x S G is

the graph of the morphism x H nx. Thus Z(n) is the kernel in G of

multiplication by n. Now for every finite subset Yo c Y, we have a formal
morphism as follows: 

Since these formal schemes are the completions of the (algebraic) schemes
and Z(n), which are proper over S, this formal morphism

extends an (algebraic) morphism:

If B = P-G and B = P-G, recall that ? is the inverse image of Q3 in
the étale map $ - B. Therefore B~ Uy 3;n) is the inverse image of
Q3 n (n), hence B n is the inverse image of B n Z(n). There-
fore a restricts to a proper morphism:

Next, note that

is étale and surjective. It follows that for each fixed yo E Y, there is a
finite set Yo c Y such that a: UyEYo (n)y ~ 3(n) is étale at all points of
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, and is surjective. Therefore its algebraization has the same proper-
ties. On the other hand, when we intersect with G, the union U _ y
is disjoint, so it follows that

is étale for every Yo , and surjective for Yo big enough.
Now it is clear that the diagram:

commutes, so, in fact, if Yo is a set of coset representatives of Y/nY

is already surjective. More than that: identifying formally

we see that Z(n)y has a natural group scheme structure and it is

clear that res(a) is a homomorphism. Therefore res(a) has degree 1

everywhere if it has degree 1 over the points 03C30(S) c G, and this will
follow if res(03B1) has degree 1 over the points 03C30(S0) ~ Go. But it is easy
to see that over So , Z(n)y = ~ unless y e nY, Z(n)0 is the kernel of n in the
part of the torus G over So , and res(a) is just the restriction to the kernel
of n of the canonical isomorphism of G and G over S0, Thus res(a) has
degree 1. QED

(4.11) COROLLARY. Let s E S. Let

Then Yl is a subgroup of Y (in fact, it is a direct summand) and the kernel
of n in G, fits into an exact sequence:

As n increases, we obtain in the limit an exact sequence

PROOF. This follows immediately from the Theorem and the remark
that z;n) has a non-empty fibre over y if and only if y ~ Y1 + nY.
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(4.12) COROLLARY. GS is connected, hence G is semi-abelian.

PROOF. By Corollary 1, its torsion is p-divisible for every prime p,
hence GS is connected and without unipotent radical.

5. Examples-dim GIS = 1

Let’s look first at the 1-dimensional case G = Gm x S where r = 1.
Then X éé Z. Choose such an isomorphism. Then we have a distin-

guished generator 1 E X, and we denote the character !!£1 imply by XT,
so that

All possible l/J’s will be positive multiples of one basic 0 which is an
isomorphism of Y and X. We assume this isomorphism chosen as our 0.
All periods are multiples of the basic period yo = ~-1(1): letr = H(y0).
Note that ’L E I. Identifying G(K) with K*, Y becomes the set of powers

{03C4m}m~Z. The simplest possible 1 consists in the 3 elements {1 , 0, -1}.
Then 

with basic automorphism:

One checks easily that

Using the automorphism S, it follows that

In particular Ul, kyo = U -1, (k-l)yo. One checks immediately that the
the closed fibre of Proj(R~,03A3) is an infinite union of non-singular rational
curves, connected in a chain and crossing each other transversely.
We may visualize Proj(R~,03A3) like this (when A is a discrete valuation

ring): 
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Dividing by Y, we obtain a formal scheme çg whose closed fibre is an
irreducible rational curve with one ordinary double point. P has the same

property and looks like this:

The part S which is to be thrown out will be just the single point x if A
is a discrete valuation ring; in general, it will be a section of P through
x over the subscheme (r = 0) of Spec (A).
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6. Examples-dim S = 1

Next, 1 want to look at higher dimensional tori G, but in the case
where dim A = 1, i.e. A is a complete discrete valuation ring. Let r be
the dimension of G over S. In this case, we can describe the models P

very intuitively by a polyhedral decomposition of r-dimensional Euclidean
space and we can see in this way the degree of choice in P very clearly.
We shall limit ourselves to normal relative complete models P which
admit an affine open covering {Uj} such that each Ui is G-invariant. (It
seems to me likely that every P has such a covering; at least the

Proj(R~,03A3)’s do). Our method is this: for every finite algebraic extension
L :D K, let AL be the integral closure of A in L. AL is again a complete
discrete valuation ring. By the completeness property of P, every L-
valued point 03BE of G extends uniquely to an AL-valued point of P. We shall
describe various subsets Z of P o by describing those 03BE whose closure meets
1.

To begin with, the only thing that will really matter about a 03BE is the
rate of growth of the various characters of G on ç. This can be convenient-
ly measured as follows:

(a) let E = Hom(X, R), X = char. gp. of G (this is a covariant functor
of G),

(b) ~03B1 e X, let 1(1. : E ~ R be the linear functional given by evaluation
at a,

(c) fix, once and for all, an embedding of the value group of A in R.
This naturally extends to an embedding of the value groups of each
AL in R,

(d) Vj E G(L), define ~03BE~~E by ~03BE~(03B1) = ord !!£(1.(ç).
Note that for each L,  is a lattice in E; as L

becomes more and more ramified over K, NL gets denser and denser.
Inside NK, we have the smaller lattice E Y 1 induced by the periods.
We shall identify this with Y:

Now consider the finitely generated normal affine schemes U/S
(S = Spec A), such that U~ = G~ and such that G acts on U extending
the translation action of G~ on U". It is easy to check that all such U are
all of the type:

where (n) = maximal ideal of A
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Concerning such U, we have the following:

(6.1) PROPOSITION. There is a 1-1 correspondence between:

(1) normal affine schemes U, with U~ = 0, and invariant under the
action of G, and

(II) closed, bounded polyhedra L1 c E with vertices in Q· NK.

This is set up by the relation: ~L ~ K, ~03BE E G(L),

PROOF. In fact, if 0393(U, (9u) is generated by 03C0riH03B1i, then define L1 by

Conversely, given L1, define

with Yr,03B1 = 03C0rH03B1 for all (r, a) such that l03B1 + r· ord(n) is non-negative
on Li. We leave it to the reader to check that these set up inverse maps
between the sets (I) and (II) of the Proposition.

(6.2) DEFINITION. Let Ua - Spec(R0394) be the affine scheme associated
to Li by the Proposition.

By a closed face of a polyhedron Li, we mean L1 itself or a polyhedron
03941 = H n A, where H is a hyperplane, and L1 lies completely on side of
H. By an open face, we mean a closed face minus all properly smaller
subfaces. It is clear that every polyhedron Li is a finite disjoint union of
its open faces.

(6.3) PROPOSITION. There is a 1-1 correspondence between:

(I) orbits Z of G o on the closed fibre (U0394)0 of U0394, and

(II) open faces u c 0394.

This is set up by the relation: VL :D K, ~03BE E G(L),

Moreover dimZ+ dim03C3 = r.

PROOF. Since the union of the open faces is A, and the union of the
orbits is Ua x Spec (k) it will suffice to show that for all 03C3 there is an

orbit Z satisfying (*). Let R, = A[···, . Then
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where I1 u 12 = {1, ···, N}. Write 03C0riH03B1i = yi for simplicity. Then
for all L ~ K, and AL-valued points 03BE such that ~03BE~ c- A, we see that

where Z c (U0394)0 is defined by Yi ~ 0, i E Il (resp. = 0, i e I2). Now Z
is clearly Go-invariant. Moreover Z is easily checked to be the locus in
the affine Yi-space (i e Il) defined by:

If ÎÍ c G is the subtorus defined by !!£(1.i = 1, i E Il, then it follows
immediately that Z is isomorphic to Go/j7 0 if a point of Z with coordina-
tes Yi = ai is associated by a point of G0/H0 with coordinate H03B1i = ai.

(6.4) COROLLARY. (U0394)0 is a finite union of orbits, hence each compo-
nent contains a unique open orbit, and the set of components is in 1-1
correspondence with the vertices of 0394.

(6.5) COROLLARY. If 03941, 03942 are polyhedra, then U.dl is an open subset
of Ua2 if and only if 03941 is a closed face of d 2 .

PROOF. By the Prop., it is certainly necessary that 03941 be a closed face
of 03942. Conversely, if 03941 is a closed face of J 2, then 03941 = 03942 n H
where H is a hyperplane defined by l03B1(X) + r - ord 7r = 0 and

l03B1(x) + r· ord 03C0  0 on 03942. Then nr. H03B1 E r«(9A2) and UAl 1 is the affine

open subset of UA2 defined by 03C0r· G03B1~0.

(6.6) COROLLARY. There is a 1-1 correspondence between:

(I) normal schemes P locally of finite type over S such that

(a) P~ = G~,
(b) the translation action of G extends to P and P is covered by G-invari-

ant affine open sets, and

(c) for all valuations v on R(G) if v ~ 0 on A and if [Va E X, 3 n such that
n - v(03C0) ~ v(.¥(1.) ~ -nv(03C0)] hold, then v has a centre on P, and
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(II) Polyhedral decompositions of E, i.e. a set of polyhedron da c E
such that ~039403B1 = E, every closed face of a 039403B1 is a 039403B2, 039403B1 n 039403B2 ~ 0 ~
039403B1 n 039403B2 = 4y (some 03B3), all of whose vertices are in Q· NK .

PROOF. Clear

In the 1-1 correspondence of this last corollary, certain properties of
P carry over nicely to properties of {039403B1}:

(A) P ~ G if and only one of the A/s is the origin {0}.
(B) If Y c G(K) is a set of periods, the action of Y on G~ extends to P

if and only if the polyhedral decomposition is Y-invariant, i.e. ~03B1, y,
da+y = some 039403B2.

(C) P is smooth over A at all generic points of P o if and only if the
vertices of all da are points of NK.

(D) P is regular everywhere and smooth A at all generic points of P o
if and only if the vertices of all 039403B1 are in NK , each A(1. of dimension r is
an r-simplex with volume 1/r! in a coordinate system in E making NK
into the integral points.

Here (A), (B) and (C) are almost immediate, and we omit the proof
of (D), which is harder, because we do not need it. So far, there appears
to be tremendous choice in constructing a relatively complete model P.
However, the existence of an ample L corresponding to a polarization
4J: Y ~ X puts very strong restrictions on the polyhedral decomposition
{039403B1}. The exact conditions on {039403B1} for the existence of L are very messy,
so we will only state, without proof, one partial result. First we must
recall some constructions used in sphere packing problems. For all the
following, cf. Rogers, Packing and Covering, Camb. Univ. Press, Ch. 7,
§ 1 and Ch. 8, § 1. Assume given a Euclidean metric on E. Start with a
discrete set of points -Y ~ E such that for some r, E = union of balls
around points of Z with radius r. We may now construct 2 canonical
polyhedral decompositions E:

(A) the Voronoi decomposition: ~03C3 E I, let

These are the top dimensional polyhedra. We get their faces by looking,
for all 03C31, ···, 03C3k ~ 03A3, at:

(B) the Delaunay decomposition: For all 0’ l’ ..., 6k such that
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039403C31 ,...,03C3k ~ ~ and such that for y in its interior,

let L1 * = convex hull of 03C31, ···, 03C3k. These polyhedra d * form a decom-
position of E whose vertices are exactly the points of 1.
Now returning to our tori, let Y c G(K) be a set of periods and let

0: Y - X be a polarization. The quadratic form

extends rationally to a Euclidean norm ~~ on E. We find:

(6.7) PROPOSITION. Let G, Y and 0 be given as above. Let G c P be
given where P is a normal scheme locally of finite type over ,S’ such that

i) P~ = G,,
ii) G and Y act on P,

iii) P has the valuative completeness property of Corollary (6.6),
iv) P is covered by G-invariant affine open sets.

Let P correspond to the polydedral decomposition and let 1 be the
0-simplices in {039403B1}. If {039403B1} is the Delaunay decomposition of E associated
to 03A3, with the Euclidean norm 1111 defined by 4J, then there exists an ample
invertible sheaf L on P, plus an action of G and Y on L, making P into a
relatively complete model corresponding to the polarization n·~ (some
n ~ 1).

(Proof omitted)

7. A final example

1 want to give one final example which

(i) illustrates the situation where both the base and the fibre are
more than one dimensional, and

(ii) is literally the keystone in the compactification of the moduli
space of 2-dimensional abelian varieties.

This example was proposed by Deligne before we saw the general
theory. Take as the ground ring:

and take G to be 2-dimensional. To express the symmetry of the situation,
it is convenient not to introduce a basis of the character group X of G,
but rather 3 generators X, y, L for X, related by one identity:



269

The group of periods Y will similarly be generated by the 3 periods r, s, t
with r + s + t = 0, given by

The polarization ~ will be defined by

and E will consist in the seven characters:

The resulting ring R~,03A3 will have some automorphisms, in addition to
those given by translation with respect to Y:

a) an automorphism J such that 63 - id,

b) an involution 03C4(03C42 = id),

Now Proj (Rf/’, I) is covered by the U(1.,y’s with oc * 0 and these are
all isomorphic under these various automorphisms. We must calculate
the ring of one of them. Look at Uz, o ; its ring is generated by:

One then checks easily that:

In particular, this is regular, so Proj(R~,03A3), B and P are all regular
5-dimensional schemes. Moreover, (Ux, 0)0 has 4 components which are
the orbits of Go containing the 4 sections:
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Applying the automorphisms o-, 03C4 and translation periods, it is not hard
to construct the whole closed fibre of Proj(RO, 1). We give the result in
the following diagram (strangely isometric to the root diagram of G2).
Each triple stands for the component which is the G o-orbit of the closed
point on the section defined by that triple; 2 components meet along a
curve if they are joined by a line. For each diamond, there is one point
at which the 4 components corresponding to its 4 vertices meet. The

components indicated by triples in square brackets are projective planes.
each of them meets 3 other components along the three lines of a triangle,
The components indicated by triples in round brackets are projective
planes with 3 non-collinear points blown up; the 3 exceptional lines, plus
the 3 lines joining pairs of blown-up points, form a hexagon along which
these components meet 6 neighbouring components.
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To find the structure of the closed fibre of P, we must divide by the
action of Y. All the components of Proj(R~,03A3)0 collapse to 3 components:
one isomorphic to the three times blown-up projective plane, which is
the image of (1, 1, 1); two isomorphic to projective planes which are the
images, for example, of [1, a-1, a] and [1, a, a-1] respectively. They are
glued as indicated below (1).

The other fibres of P over Spec (A) have the following structure:
over any point x where a - b - c ~ 0, the fibre is a 2-dimensional abelian
variety. Over a point where only one of the 3 coordinates a, b, c is 0, the
fibre is a P’-bundle over an elliptic curve glued to itself along 2 disjoint
sections of this fibration but with a shift (cf. illustration III). Over a
point where exactly two of the coordinates a, b, c are 0, the fibre is

Pl  P1 glued to itself along 2 pairs of lines (cf. illustration II).
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