Compositio Mathematica

P. J. EENIGENBURG

A class of starlike mappings of the unit disk

Compositio Mathematica, tome 24, no 2 (1972), p. 235-238
http://www.numdam.org/item?id=CM_1972__24_2_235_0
© Foundation Compositio Mathematica, 1972, tous droits réservés.
L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

A CLASS OF STARLIKE MAPPINGS OF THE UNIT DISK

by

P. J. Eenigenburg

Definition. Let $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$ be univalent in the open unit disk D. We say $f \in S_{\alpha}(0<\alpha \leqq 1)$ if

$$
\begin{equation*}
\left|\frac{z f^{\prime}(z)}{f(z)}-1\right|<\alpha, z \in D \tag{1}
\end{equation*}
$$

Note that if $f \in S_{\alpha}$ then $\operatorname{Re}\left(z f^{\prime}(z) / f(z)\right)>0$ on D; hence f is a starlike function. Singh [4] and Wright [5] have derived certain properties of the class S_{α}. In this paper we extend their results as follows. First, the boundary behavior of $f \in S_{\alpha}$ is discussed. We then give the radius of convexity for the class S_{α}; for $\alpha=1$ the radius has been given by Wright [5]. Finally, we give an invariance property for the class S_{α}.

Theorem 1. Let $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \in S_{\alpha}$. Then f maps D onto a domain whose boundary is a rectifiable Jordan curve. Furthermore, $a_{n}=o(1 / n)$, and this order is best possible.

Proof. It follows immediately from (1) that f^{\prime} is bounded in D; hence $\partial f[D]$ is a rectifiable closed curve [3], and $a_{n}=o(1 / n)$. Univalency of f on \bar{D} is easily verified by a contradiction argument. Finally, let $\{k(n)\}$ be any sequence of positive numbers which converges to 0 as $n \rightarrow \infty$. Then there exists a subsequence $\left\{k\left(n_{j}\right)\right\}, n_{1} \geqq 2$, such that $\sum_{j=1}^{\infty} k\left(n_{j}\right) \leqq \alpha$. Define

$$
a_{n}= \begin{cases}\frac{k\left(n_{j}\right)}{n_{j}} & n=n_{j}, j=1,2, \cdots \\ 0 & \text { otherwise }\end{cases}
$$

Then,

$$
\sum_{n=2}^{\infty}(n+\alpha-1)\left|a_{n}\right| \leqq \sum_{n=2}^{\infty} n\left|a_{n}\right|=\sum_{j=1}^{\infty} n_{j} \frac{k\left(n_{j}\right)}{n_{j}} \leqq \alpha
$$

By a theorem of Merkes, Scott, and Robertson [1], $f(z) \equiv z+\sum_{n=2}^{\infty} a_{n} z^{n} \in$ S_{α}. Since $n a_{n}=k(n)$ for infinitely many n, the proof is complete.

Theorem 2. Iff $\in S_{\alpha}$ then f maps $|z|<r(\alpha)$ onto a convex domain, where

$$
r(\alpha)= \begin{cases}\frac{3-\sqrt{5}}{2 \alpha} & \text { if } \alpha_{0} \leqq \alpha \leqq 1 \tag{2}\\ {\left[\frac{2\left(1+\alpha^{2}\right)-3 \alpha-2(1-\alpha) \sqrt{\alpha^{2}+4 \alpha+1}}{\alpha(4 \alpha-5)}\right]^{\frac{1}{2}}} & \text { if } 0<\alpha \leqq \alpha_{0}\end{cases}
$$

and

$$
\begin{equation*}
\alpha_{0}=\frac{3-\sqrt{5}+2 \sqrt{3(7-3 \sqrt{ } 5)}}{2 \sqrt{ } 5} \approx .589 \tag{3}
\end{equation*}
$$

Proof. Since $f \in S_{\alpha}$ there exists $\phi,|\phi| \leqq \alpha$ in D, such that $z f^{\prime}(z) / f(z)=$ $1+z \phi(z)$. Differentiation yields

$$
\begin{equation*}
1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}=1+z \phi(z)+z\left(\frac{z \phi^{\prime}(z)+\phi(z)}{1+z \phi(z)}\right) \tag{4}
\end{equation*}
$$

It is known [2] that

$$
\begin{equation*}
\left|\frac{z \phi^{\prime}(z)+\phi(z)}{1+z \phi(z)}\right| \leqq \frac{\left(|z|+\frac{|\phi(z)|}{\alpha}\right)(\alpha-|z \phi(z)|)}{(1-|z \phi(z)|)\left(1-|z|^{2}\right)} \tag{5}
\end{equation*}
$$

From (4) and (5) it follows that $\operatorname{Re}\left(1+z f^{\prime \prime}(z) / f^{\prime}(z)\right) \geqq 0$ provided

$$
\begin{equation*}
1-|z \phi(z)|-|z| \frac{\left(|z|+\frac{|\phi(z)|}{\alpha}\right)(\alpha-|z \phi(z)|)}{(1-|z \phi(z)|)\left(1-|z|^{2}\right)} \geqq 0 \tag{6}
\end{equation*}
$$

We write $|z|=a,|\phi(z)|=x, t=a x$ and define $G(t) \equiv t^{2}\left(1-a^{2}+1 / \alpha\right)-$ $3 t\left(1-a^{2}\right)+1-a^{2}-a^{2} \alpha$. Since (6) holds if and only if $G(t) \geqq 0$, we must determine the largest value of a for which $G(t) \geqq 0$ on $[0, a \alpha]$. Then f will map $|z|<a$ onto a convex domain. Note that $G(t)$ has its minimum where $t=t^{*} \equiv \frac{3}{2}\left(1-a^{2}\right)\left(1-a^{2}+1 / \alpha\right)^{-1}$.

CASE A $\left(a \alpha \leqq t^{*}\right) . G(a \alpha)=\left(1-a^{2}\right)\left(a^{2} \alpha^{2}-3 a \alpha+1\right) \geqq 0$ provided $a \leqq$ $(3-\sqrt{ } 5) / 2 \alpha$. Since $G(t)$ is decreasing on $[0, a \alpha], f$ maps $|z|<(3-\sqrt{ } 5) / 2 \alpha$ onto a convex domain provided $a \alpha=(3-\sqrt{ } 5) / 2 \leqq t^{*}$. This restraint requires that $\alpha \in\left[\alpha_{0}, 1\right]$ where α_{0} is given by (3). The function $f_{\alpha}(z)=$ $z e^{\alpha z}, \alpha_{0} \leqq \alpha \leqq 1$, shows that the number $r(\alpha)=(3-\sqrt{ } 5) / 2 \alpha$ is sharp.

Case $\mathrm{B}\left(t^{*} \leqq a \alpha\right)$. We assume $0<\alpha<\alpha_{0}$. The minimum value of $G(t)$ on $[0, a \alpha]$ is $G\left(t^{*}\right)$; and $G\left(t^{*}\right) \geqq 0$ if

$$
\begin{equation*}
a^{4}(-5+4 \alpha)+a^{2}\left(6-\frac{4}{\alpha}-4 \alpha\right)-5+\frac{4}{\alpha} \geqq 0 \tag{7}
\end{equation*}
$$

Since (7) holds for $0 \leqq a \leqq r(\alpha)$, where $r(\alpha)$ is given by (2), it follows that f maps $|z|<r(\alpha)$ onto a convex domain if $t^{*} \leqq \alpha r(\alpha)$. A tedious calculation shows this restraint to be satisfied for $0<\alpha<\alpha_{0}$. We now construct a function to show that $r(\alpha)$ is best possible. Fix α in $\left(0, \alpha_{0}\right)$ and let $a=r(\alpha)$. Set $\beta \equiv\left[2-3 \alpha-\alpha a^{2}(3-2 \alpha)\right]\left[2 a(\alpha-1)^{2}\right]^{-1}$. Define f by $f(z) \equiv z \exp \left[\alpha \int_{0}^{z}(\beta-t) /(1-\beta t) d t\right]$. By a theorem of Wright [5] $f \in S_{\alpha}$ provided $-1 \leqq \beta \leqq 1$. For the present suppose this has been done. Now, f will not be convex in $|z|<r, r>a$, if $1+z f^{\prime \prime}(z) / f^{\prime}(z)=0$ at $z=a$, or, equivalently, if β is a root of $P(s)$, where

$$
P(s)=s^{2}\left[a^{2}(\alpha-1)^{2}\right]+s\left[a(3 \alpha-2)-\alpha a^{3}(3-2 \alpha)\right]+1-4 \alpha a^{2}+\alpha^{2} a^{4} .
$$

Since $a=r(\alpha)$ is a root of the left-hand side of (7), the definition of β implies that $P(\beta)=0$. In fact $P(s)$ has a double root at $s=\beta$. It follows that $\beta^{2} \leqq 1$ provided

$$
\begin{equation*}
a^{2} \geqq \frac{(1+\alpha)^{2}-\sqrt{(1+\alpha)^{4}-4 \alpha^{2}}}{2 \alpha^{2}} \tag{8}
\end{equation*}
$$

Now, $a=r(\alpha)$ is the only root of the left-hand side of (7) which lies in [0,1]. Thus, (8) holds since substitution of its right-hand side for a^{2} in the left-hand side of (7) preserves the inequality in (7). Hence, $-1 \leqq \beta \leqq 1$, and the proof is complete.

Theorem 3. If $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \in S_{\alpha}$ then for each $\lambda, 0<\lambda<1$, $h_{\lambda}(z) \equiv z+\sum_{n=2}^{\infty} \lambda a_{n} z^{n} \in S_{\alpha}$.

Proof Since $h_{\lambda}(z)=\lambda f(z)+(1-\lambda) z$, we have

$$
\begin{equation*}
\frac{z h_{\lambda}^{\prime}(z)}{h_{\lambda}(z)}-1=\left[\frac{z f^{\prime}(z)}{f(z)}-1\right]\left[1+\frac{1-\lambda}{\lambda} \frac{z}{f(z)}\right]^{-1} \tag{9}
\end{equation*}
$$

By a theorem of Wright [5], there exists $\phi,|\phi| \leqq 1$ in D, such that $f(z)=z \exp \left[\alpha \int_{0}^{z} \phi(t) d t\right]$. Thus $\operatorname{Re}(f(z) / z)>0$ and so
$\left|1+z(1-\lambda)(\lambda f(z))^{-1}\right|>1$ for $z \in D$. It follows from (9) that $h_{\lambda} \in S_{\alpha}$.

REFERENCES

E. P. Merkes, M. S. Robertson and W. T. Scott
[1] On products of starlike functions, Proc. Amer. Math. Soc. 13 (1962), 960-964.
K. S. Padmanabhan
[2] On the radius of univalence and starlikeness for certain analytic functions, J. Indian Math Soc., 29 (1965), 71-80.
W. Seidel
[3] Über die Ränderzuordnung bei konformen Abbildungen, Math. Ann., 104 (1931), 182-213.
R. Singh
[4] On a class of starlike functions, Compositio Mathematica, 19 (1968), 78-82.
D. J. Wright
[5] On a class of starlike functions, Compositio Mathematica, 21 (1969), 122-124.
(Oblatum 14-V-1971)
/

Department of Mathematics Western Michigan University Kalamazoo, Michigan 49001 U.S.A.

