
COMPOSITIO MATHEMATICA

L. S. HUSCH
A homotopy theoretic characterization of
the translation in En

Compositio Mathematica, tome 24, no 1 (1972), p. 55-61
<http://www.numdam.org/item?id=CM_1972__24_1_55_0>

© Foundation Compositio Mathematica, 1972, tous droits réservés.

L’accès aux archives de la revue « Compositio Mathematica » (http:
//http://www.compositio.nl/) implique l’accord avec les conditions géné-
rales d’utilisation (http://www.numdam.org/conditions). Toute utilisation
commerciale ou impression systématique est constitutive d’une infrac-
tion pénale. Toute copie ou impression de ce fichier doit contenir la
présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=CM_1972__24_1_55_0
http://http://www.compositio.nl/
http://http://www.compositio.nl/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


55

A HOMOTOPY THEORETIC CHARACTERIZATION

OF THE TRANSLATION IN En

by

L. S. Husch 1

COMPOSITIO MATHEMATICA, Vol. 24, Fasc. 1, 1972, pag. 55-61
Wolters-Noordhoff Publishing
Printed in the Netherlands

Let h be an orientation preserving homeomorphism of Euclidean
n-space, En, onto itself and let h’ be the unique extension of h to the
n-sphere, Sn = En ~ {~}. Let d be a metric for S"n. Kinoshita [11] [12] 
has shown that the following four conditions are equivalent.

1. Sperner’s condition [22]: for each compact subset C of En, there
exists a positive integer N such that for each Iml &#x3E; N, hmC n C = 0.

2. Terasaka’s condition [24]: for each compact subset C of En,
limm~±~ hmC = ~.

3. Kerékjàrtô’s condition [10]: h’ is regular at each point of En but not
at oo ; i.e. if x E En, for each a &#x3E; 0 there exists ô &#x3E; 0 such that d(x, y)  ô
implies d(hmx, hmy)  e fcr each integer m. (Note that d is the metric of
Sn, not En ! ).

4. The orbit space is Hausdorff and the natural projection of E" onto
the orbit space is a covering map.

If h satisfies these conditions, h is called quasi-translation [24]. Sperner
and Kerékjârtô showed that for n = 2, their conditions implied that h is
a topological translation; i.e. if t(x) = x + 1, then there exists a homeo-
morphism k of E2 such that h = k-ltk (h has the same topological type
as t). Clearly a topological translation is a quasi-translation.
THEOREM: (Sperner, Kerékjàrtô). If h is a homeomorphism of E2 onto

itself, h is a topological translation if and only if h is a quasi-translation.
Kinoshita [11] has given an example of a quasi-translation in E3

which is not a topological translation. In fact, it has been shown by
Sikkema, Kinoshita and Lomonaco [20] that there exists uncountably
many distinct topological types of quasi-translations of E3.

In this paper, we prove the following.

THEOREM 1: For each n ~ 4, there exists a quasi-translation of En
which is not a topological translation.

THEOREM 2: A necessary and sufficient condition that a quasi-translation
h of En, n &#x3E; 4, be a topological translation is that for each compact subset
1 Research supported in part by N. S. F. Grant GP-15357
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C of E" there exists a compact set D containing C such that each loop in
En - D is contractible in En-ê, where 1 U+~-~ hi(X).

If h is a diffeomorphism (a piecewise linear homeomorphism) which
satisfies the hypotheses of Theorem 2, then it is possible to find a dif-
feomorphism (a piecewise linear homeomorphism) k such that khk-1 = t
by a slight modification of the proof below. We should also note that
the homeomorphism given by Theorem 1 can be chosen so that it is

either a diffeomorphism or a piecewise linear homeomorphism.
The author expresses his deepest gratitude to L. Siebenmann who,

after reading an earlier version of this paper, made suggestions which
included the strengthening of Theorem 2 and the shortening of the proof
of Proposition 1.3 of which the author proved a special case.

1. Proof of Theorem 1

Recall that a map f : X ~ Y is proper if for each compact set C ~ Y,
f-1(C) is compact. A homotopy ft : X ~ Y, tEl = [0, 1], is a proper

homotopy if the induced map F : X x I ~ Y is proper. f : X ~ Y is a
proper homotopy equivalence if there exists a proper map g : Y ~ X

such that fg and gf are properly homotopic to the identity maps of Y
and X, respectively.

PROPOSITION 1.1. Let f : X ~ Y be a proper map of Hausdorff spaces
and let i : C - C be the identity map of a compactum C. If i x f : C x Y ~
C x Y is a proper homotopy equivalence, then f is a proper homotopy
equivalence.

PROOF. Let g : C  Y ~ C x X be a proper map such that (i f)g and
g(i x f ) are properly homotopic to the identity maps of Y and X, respec-
tively. Let F : C X I ~ C X be a proper homotopy such that

F(c, x, 0) = g(i f)(c, x) and F(c, x, 1) = (c, x). Let co E C and define
j : Y - C x Y and p : C X ~ X by j(x) - (co, x) and p(c, x) = x.

Define g’ = pgj and note that the homotopy F’ : X x I ~ X defined by
F’(x, t) = pF(so, x, t) is a proper map such that F’(x, 0) = g’f(x) and
F’(x, 1) = x. Similarly, one can show that fg’ is properly homotopic to
the identity of Y.

COROLLARY 1.2. Let f, X, Y and C be as in Proposition 1.1. If r : C ~ C
is a homotopy equivalence and if r x f : C x X ~ C x Y is a proper homotopy
equivalence, then f is a proper homotopy equivalence.

Let [X, Y] be the homotopy classes of mapping of X into Y.

PROPOSITION 1.3. Let C be a compact Eilenberg-MacLane space K(G, 1)
[21; p. 424] where G is a finitely generated Abelian group and let X and Y
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be Hausdorff spaces such that [X, C] and [Y, C ] are trivial. If there exists
a proper homotopy equivalence from C x X to C x Y, then there exists a

proper homotopy equivalence from X to Y.

PROOF. Let pl : C X ~ C and p2 : C x Y - C be the natural projec-
tions and let f : C x X - C x Y be a proper homotopy equivalence. Since
[X, C] = H1(X; G) = 0 = [Y, C ] = H1(Y; G) = 0, by the Kunneth

formula it follows that p*1 : H1(C; G) ~ H1(C X; G) and p2 : H1(C; G)
~ H1(C  Y; G) are isomorphisms. Let [i] ~ H1(C; G) = [C, C ] be the
class of the identity map. Since f * : H1(C  Y; G) - H1(C  X; G) is

an isomorphism, there exists a homotopy equivalence k : C ~ C such
that p*1([k]) = f*p*2([i]). Hence there exists a homotopy kt : C x X - C,
t E I, such that ko = p2 f and ki = kp1.

Define ht : C  X ~ C x Y by

where q : C x Y - Y is the natural projection. Note that ht is a proper
homotopy such that ho = f and h1 = k x (qf). Since q f is a proper map,
we can apply Corollary 1.2.

PROOF oF THEOREM 1. If n = 4, let Wn-l be Whitehead’s example of
a contractible 3-manifold which is not homeomorphic to E3 [25] and if
n &#x3E; 4, let Wn-l be the interior of contractible (n -1 )-manifold Wn-1
such that bdry Wn-l is not simply-connected [14] [16] [4]. By [15],
E1  W3 is homeomorphic to E4 and since 1 x Wn-1 is homeomorphic
to In, n &#x3E; 4, E1  Wn-1 is homeomorphic to En.

Consider S1  Wn-1. If S1  En-1 were homeomorphic to S1  Wn-1,
then by proposition 1.3, Wn-l is proper homotopy equivalent to En -1.
For n ~ 6, then Wn-1 is homeomorphic to En-1 by Siebenmann [17].
A step in Siebenmann’s proof of this fact is Lemma 2.10 of [18] which
says that 1Cl (end of Wn-1) is trivial. This proof does not depend upon
the dimension. If n = 5, 7r,(end of Wn-1) = 03C01(bdry Wn-1) ~ 1. If

n = 4, the fact that W3 ~ E3 and 1tl(end of W3) = 1 implies that W3
is homeomorphic to E3 [9]. These contradictions imply that S1 x Wn-1
is not homeomorphic to S1  En-1. Let p : En = E1  Wn-1 ~ S1 
Wn -1 be the universal covering and let h be a generator of the covering
transformation group. Clearly h satisfies Sperner’s condition (cf [12])
and hence is a quasi-translation of En but the orbit space of h is S1  Wn-1
and hence h is not a topological translation.

2. Proof of Theorem 2

Let ’W be the orbit space and let p : En ~ Gl be the natural projection.
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By Kinoshita [12], p is a covering map. Hence e is a manifold which
has the homotopy type of S1.

PROPOSITION. 0/1 is homeomorphic to S1  En-1.

PROOF. We shall show first that 0/1 is the interior of a compact manifold.
We assume familiarity with [18] (Note the remark on p. 224 of [18]
which allows us to work in the topological category). We shall show that
U has one end and that 03C01 is essentially constant at this end.

It follows from Theorem 12 of [6] that 0/1 is not compact and hence
U has at least one end. By duality, H1c(U) = Hn-1(U) = 0 and by
[18; p. 204], U has one end, say 8.
Let K1 c K2 ~ ··· be a sequence of compacta in 0/1 such that

U = U Ki. There exists a compact set L1 in En such that p(L1) = K1.
By hypothesis, there exists a compact set Ci in En such that L1 ~ C1
and each loop in En - Cl is contractible in En - L1. Note that p(1) is
compact; for suppose {xi} is a sequence of points in p(el). Pick
{yi} ~ Ci such that p(yJ = xi. {yi} has a convergent subsequence;
therefore, so does {xi}.

Note that p-1p(1) = 1. Let L2 be a compact set in En such that
p(L2) = K2 ~ p(1). Find C2, compact, containing L2 such that each
loop in En-2 is contractible in En-2. By induction, we can find a
sequence of compacta {Ci} in En such that Ki ~ p(i) ~ p(i+1),
m, = U~j=1p(i), p-1p(j) = j and each loop in En-i+1 is contract-
ible in E" - Ci .

Consider the following commutative diagram, where fi, gi and hi are
induced by inclusions.

The rows are exact by the exact homotopy sequence of a covering space;
clearly, hi is an isomorphism. Suppose f : S1 ~ U-p(i+ 1) represents
[f] ~ 03C01(U-p(i+1)). If f can be lifted to En-i+1, then, by construc-
tion of i+1, qi[f] = 1. If f cannot be lifted to En-i+1, then
q[f] ~ 1. Hence image g, n image p* = {1} and q|image gi is an

isomorphism onto Z.
Since q|image gi+1 is also an isomorphism onto Z, it follows that

gi|image gi+1 is an isomorphism of image gi+1 onto image gi. Therefore
03C01 is essentially constant at E and xi (8) = Z. Note that this implies that
H1e(X) = Z. From the exact sequence
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and duality, H1c(X) = Hn-1(X), we have an isomorphism induced by
inclusion, H1(X) ~ H1e(X). This implies that inclusion induces iso-

morphisms H1(03B5) ~ H1(X) and 03C01(03B5) ~ 03C01(X).
Let oc : S1 ~ e be a locally flat embedding which is a homotopy

equivalence [5]. Since an orientable manifold supports a stable structure
[3], [8], there exists [3] an embedding OC, : S1  In-1 ~ Olt such that

ocibdry (S1  In-1) is locally flat and 03B1’(S1  1 2, 1 2, ···, 1 2) = 03B1(S1). Let
V = Cl (U-image 03B1’). By using universal coverings, relative Hurewicz
theorem and excision theorem, one easily sees that 03C01(V, ~V) = 0 for
all i. The proposition now follows from [18].

PROOF OF THEOREM 2. (Continued). Consider p-1({x} En-1) for
some XES1. Since p|p-1({x} En-1) is a covering map, p-1({x}
En-1) is a countable collection of disjoint (n-1)-planes {E03C3} such that
p|E03C3 is a homeomorphism for each 6. Note that hE03C3 n E03C3 = ~ for each 6.
We now proceed as in [7] to complete the proof; we include the proof
for completeness.

There is a homeomorphism y of En onto itself such that 03B3(E03C3) =
En-1  {0} ~ En-1  E = En and 03B3(hE03C3) = En-1  {1}. Define 03B4 : En-1
~ En-1 by 03B3-1h03B3(x, 0) = (03B4(x), 1). Since b is orientation-preserving,
it follows from [8 ] [13 ] that there is an isotopy 03B4t of En-1, t ~ I, such that
03B40 = identity and 03B41 = 03B4.

Define Fo : p(En-1 x [0, 1]) - En by Fo(x, t) = (bt(X), t). Extend Fo
to F, a homeomorphism of En, by F(x, r) = 03B3-1hq03B3F0(x, z) where
r = q + z, z E (0, 1]. Note that if r = q + z, z E (o, 1 ],

COROLLARY. The n-th suspension of a quasi-translation of E’ is a topo-
logical translation provided either n ~ 2 and n + r ~ 5 or n + r ~ 3; i.e.,
if h is a quasi-translation of Er, then h’ : Er x En ~ Er  En, defined by
h’(x, y) = (h(x), y) is a topological translation.

PROOF. Let us suppose n + r ~ 5, the other case is trivial. If U is the
orbit space of h, then U x E n is the orbit space of h’. By Theorem 6.12
and the Main Theorem of [19 ], U x En is homeomorphic to the interior
of a compact manifold which has the homotopy type of S1. We proceed
now as in the proof of Theorem 2 to show that U x En is homeomorphic
to S1  Er+n-1 and to show h’ is a topological translation.
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