COMPOSITIO MATHEMATICA

L.S.HUSCH

A homotopy theoretic characterization of the translation in E^n

Compositio Mathematica, tome 24, nº 1 (1972), p. 55-61 <http://www.numdam.org/item?id=CM_1972__24_1_55_0>

© Foundation Compositio Mathematica, 1972, tous droits réservés.

L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

A HOMOTOPY THEORETIC CHARACTERIZATION OF THE TRANSLATION IN E^{*}

by

L. S. Husch¹

Let *h* be an orientation preserving homeomorphism of Euclidean *n*-space, E^n , onto itself and let *h'* be the unique extension of *h* to the *n*-sphere, $S^n = E^n \cup \{\infty\}$. Let *d* be a metric for S^n . Kinoshita [11] [12] has shown that the following four conditions are equivalent.

1. Sperner's condition [22]: for each compact subset C of E^n , there exists a positive integer N such that for each |m| > N, $h^m C \cap C = \phi$.

2. Terasaka's condition [24]: for each compact subset C of E^n , $\lim_{m \to \pm \infty} h^m C = \infty$.

3. Kerékjártó's condition [10]: h' is regular at each point of E^n but not at ∞ ; i.e. if $x \in E^n$, for each $\varepsilon > 0$ there exists $\delta > 0$ such that $d(x, y) < \delta$ implies $d(h^m x, h^m y) < \varepsilon$ for each integer m. (Note that d is the metric of S^n , not E^n !).

4. The orbit space is Hausdorff and the natural projection of E^n onto the orbit space is a covering map.

If h satisfies these conditions, h is called quasi-translation [24]. Sperner and Kerékjártó showed that for n = 2, their conditions implied that h is a topological translation; i.e. if t(x) = x+1, then there exists a homeomorphism k of E^2 such that $h = k^{-1}tk$ (h has the same topological type as t). Clearly a topological translation is a quasi-translation.

THEOREM: (Sperner, Kerékjártó). If h is a homeomorphism of E^2 onto itself, h is a topological translation if and only if h is a quasi-translation.

Kinoshita [11] has given an example of a quasi-translation in E^3 which is not a topological translation. In fact, it has been shown by Sikkema, Kinoshita and Lomonaco [20] that there exists uncountably many distinct topological types of quasi-translations of E^3 .

In this paper, we prove the following.

THEOREM 1: For each $n \ge 4$, there exists a quasi-translation of E^n which is not a topological translation.

THEOREM 2: A necessary and sufficient condition that a quasi-translation h of E^n , n > 4, be a topological translation is that for each compact subset

¹ Research supported in part by N. S. F. Grant GP-15357

C of E^n there exists a compact set *D* containing *C* such that each loop in $E^n - \hat{D}$ is contractible in $E^n - \hat{C}$, where $\hat{X} = \bigcup_{n=\infty}^{+\infty} h^i(X)$.

If h is a diffeomorphism (a piecewise linear homeomorphism) which satisfies the hypotheses of Theorem 2, then it is possible to find a diffeomorphism (a piecewise linear homeomorphism) k such that $khk^{-1} = t$ by a slight modification of the proof below. We should also note that the homeomorphism given by Theorem 1 can be chosen so that it is either a diffeomorphism or a piecewise linear homeomorphism.

The author expresses his deepest gratitude to L. Siebenmann who, after reading an earlier version of this paper, made suggestions which included the strengthening of Theorem 2 and the shortening of the proof of Proposition 1.3 of which the author proved a special case.

1. Proof of Theorem 1

Recall that a map $f: X \to Y$ is proper if for each compact set $C \subseteq Y$, $f^{-1}(C)$ is compact. A homotopy $f_t: X \to Y$, $t \in I = [0, 1]$, is a proper homotopy if the induced map $F: X \times I \to Y$ is proper. $f: X \to Y$ is a proper homotopy equivalence if there exists a proper map $g: Y \to X$ such that fg and gf are properly homotopic to the identity maps of Y and X, respectively.

PROPOSITION 1.1. Let $f: X \to Y$ be a proper map of Hausdorff spaces and let $i: C \to C$ be the identity map of a compactum C. If $i \times f: C \times Y \to C \times Y$ is a proper homotopy equivalence, then f is a proper homotopy equivalence.

PROOF. Let $g: C \times Y \to C \times X$ be a proper map such that $(i \times f)g$ and $g(i \times f)$ are properly homotopic to the identity maps of Y and X, respectively. Let $F: C \times X \times I \to C \times X$ be a proper homotopy such that $F(c, x, 0) = g(i \times f)(c, x)$ and F(c, x, 1) = (c, x). Let $c_0 \in C$ and define $j: Y \to C \times Y$ and $p: C \times X \to X$ by $j(x) = (c_0, x)$ and p(c, x) = x.

Define g' = pgj and note that the homotopy $F' : X \times I \to X$ defined by $F'(x, t) = pF(s_0, x, t)$ is a proper map such that F'(x, 0) = g'f(x) and F'(x, 1) = x. Similarly, one can show that fg' is properly homotopic to the identity of Y.

COROLLARY 1.2. Let f, X, Y and C be as in Proposition 1.1. If $r : C \to C$ is a homotopy equivalence and if $r \times f : C \times X \to C \times Y$ is a proper homotopy equivalence, then f is a proper homotopy equivalence.

Let [X, Y] be the homotopy classes of mapping of X into Y.

PROPOSITION 1.3. Let C be a compact Eilenberg-MacLane space K(G, 1)[21; p. 424] where G is a finitely generated Abelian group and let X and Y be Hausdorff spaces such that [X, C] and [Y, C] are trivial. If there exists a proper homotopy equivalence from $C \times X$ to $C \times Y$, then there exists a proper homotopy equivalence from X to Y.

PROOF. Let $p_1: C \times X \to C$ and $p_2: C \times Y \to C$ be the natural projections and let $f: C \times X \to C \times Y$ be a proper homotopy equivalence. Since $[X, C] = H^1(X; G) = 0 = [Y, C] = H^1(Y; G) = 0$, by the Kunneth formula it follows that $p_1^*: H^1(C; G) \to H^1(C \times X; G)$ and $p_2^*: H^1(C; G) \to H^1(C \times Y; G)$ are isomorphisms. Let $[i] \in H^1(C; G) = [C, C]$ be the class of the identity map. Since $f^*: H^1(C \times Y; G) \to H^1(C \times X; G)$ is an isomorphism, there exists a homotopy equivalence $k: C \to C$ such that $p_1^*([k]) = f^*p_2^*([i])$. Hence there exists a homotopy $k_t: C \times X \to C$, $t \in I$, such that $k_0 = p_2 f$ and $k_1 = kp_1$.

Define $h_t : C \times X \to C \times Y$ by

$$h_t(z, x) = (k_t(z, x), qf(z, x)) \qquad t \in I$$

where $q: C \times Y \to Y$ is the natural projection. Note that h_t is a proper homotopy such that $h_0 = f$ and $h_1 = k \times (qf)$. Since qf is a proper map, we can apply Corollary 1.2.

PROOF OF THEOREM 1. If n = 4, let W^{n-1} be Whitehead's example of a contractible 3-manifold which is not homeomorphic to E^3 [25] and if n > 4, let W^{n-1} be the interior of contractible (n-1)-manifold \overline{W}^{n-1} such that $bdry \overline{W}^{n-1}$ is not simply-connected [14] [16] [4]. By [15], $E^1 \times W^3$ is homeomorphic to E^4 and since $I \times W^{n-1}$ is homeomorphic to I^n , n > 4, $E^1 \times W^{n-1}$ is homeomorphic to E^n .

Consider $S^1 \times W^{n-1}$. If $S^1 \times E^{n-1}$ were homeomorphic to $S^1 \times W^{n-1}$, then by proposition 1.3, W^{n-1} is proper homotopy equivalent to E^{n-1} . For $n \ge 6$, then W^{n-1} is homeomorphic to E^{n-1} by Siebenmann [17]. A step in Siebenmann's proof of this fact is Lemma 2.10 of [18] which says that $\pi_1(\text{end of } W^{n-1})$ is trivial. This proof does not depend upon the dimension. If n = 5, $\pi_1(\text{end of } W^{n-1}) = \pi_1(\text{bdry } \overline{W}^{n-1}) \neq 1$. If n = 4, the fact that $W^3 \subseteq E^3$ and $\pi_1(\text{end of } W^3) = 1$ implies that W^3 is homeomorphic to E^3 [9]. These contradictions imply that $S^1 \times W^{n-1}$ is not homeomorphic to $S^1 \times E^{n-1}$. Let $p : E^n = E^1 \times W^{n-1} \to S^1 \times$ W^{n-1} be the universal covering and let h be a generator of the covering transformation group. Clearly h satisfies Sperner's condition (cf [12]) and hence is a quasi-translation of E^n but the orbit space of h is $S^1 \times W^{n-1}$

2. Proof of Theorem 2

Let \mathscr{U} be the orbit space and let $p: E^n \to \mathscr{U}$ be the natural projection.

By Kinoshita [12], p is a covering map. Hence \mathscr{U} is a manifold which has the homotopy type of S^1 .

```
PROPOSITION. \mathscr{U} is homeomorphic to S^1 \times E^{n-1}.
```

PROOF. We shall show first that \mathscr{U} is the interior of a compact manifold. We assume familiarity with [18] (Note the remark on p. 224 of [18] which allows us to work in the topological category). We shall show that \mathscr{U} has one end and that π_1 is essentially constant at this end.

It follows from Theorem 12 of [6] that \mathscr{U} is not compact and hence \mathscr{U} has at least one end. By duality, $H_c^1(\mathscr{U}) = H_{n-1}(\mathscr{U}) = 0$ and by [18; p. 204], \mathscr{U} has one end, say ε .

Let $K_1 \subset K_2 \subset \cdots$ be a sequence of compact in \mathscr{U} such that $\mathscr{U} = \bigcup K_i$. There exists a compact set L_1 in E^n such that $p(L_1) = K_1$. By hypothesis, there exists a compact set C_1 in E^n such that $L_1 \subset C_1$ and each loop in $E^n - C_1$ is contractible in $E^n - \hat{L}_1$. Note that $p(\hat{C}_1)$ is compact; for suppose $\{x_i\}$ is a sequence of points in $p(\hat{C}_1)$. Pick $\{y_i\} \subseteq C_1$ such that $p(y_i) = x_i$. $\{y_i\}$ has a convergent subsequence; therefore, so does $\{x_i\}$.

Note that $p^{-1}p(\hat{C}_1) = \hat{C}_1$. Let L_2 be a compact set in E^n such that $p(L_2) = K_2 \cup p(\hat{C}_1)$. Find C_2 , compact, containing L_2 such that each loop in $E^n - \hat{C}_2$ is contractible in $E^n - \hat{L}_2$. By induction, we can find a sequence of compacta $\{C_i\}$ in E^n such that $K_i \subseteq p(\hat{C}_i) \subseteq p(\hat{C}_{i+1})$, $\mathscr{U} = \bigcup_{j=1}^{\infty} p(\hat{C}_i), p^{-1}p(\hat{C}_j) = \hat{C}_j$ and each loop in $E^n - \hat{C}_{i+1}$ is contractible in $E^n - \hat{C}_i$.

Consider the following commutative diagram, where f_i , g_i and h_i are induced by inclusions.

The rows are exact by the exact homotopy sequence of a covering space; clearly, h_i is an isomorphism. Suppose $f: S^1 \to \mathscr{U} - p(\hat{C}_{i+1})$ represents $[f] \in \pi_1(\mathscr{U} - p(\hat{C}_{i+1}))$. If f can be lifted to $E^n - \hat{C}_{i+1}$, then, by construction of \hat{C}_{i+1} , $q_i[f] = 1$. If f cannot be lifted to $E^n - \hat{C}_{i+1}$, then $q[f] \neq 1$. Hence image $g_i \cap \text{image } p_* = \{1\}$ and $q \mid \text{image } g_i$ is an isomorphism onto Z.

Since $q|\text{image } g_{i+1}$ is also an isomorphism onto Z, it follows that $g_i|\text{image } g_{i+1}$ is an isomorphism of image g_{i+1} onto image g_i . Therefore π_1 is essentially constant at ε and $\pi_1(\varepsilon) = Z$. Note that this implies that $H^1_e(X) = Z$. From the exact sequence

$$\cdots \to H^1_c(X) \to H^1(X) \to H^1_e(X) \to H^2_c(X) \to \cdots$$

58

and duality, $H_c^1(X) = H_{n-1}(X)$, we have an isomorphism induced by inclusion, $H^1(X) \to H_e^1(X)$. This implies that inclusion induces isomorphisms $H_1(\varepsilon) \to H_1(X)$ and $\pi_1(\varepsilon) \to \pi_1(X)$.

Let $\alpha: S^1 \to \mathscr{U}$ be a locally flat embedding which is a homotopy equivalence [5]. Since an orientable manifold supports a stable structure [3], [8], there exists [3] an embedding $\alpha': S^1 \times I^{n-1} \to \mathscr{U}$ such that $\alpha'|$ bdry $(S^1 \times I^{n-1})$ is locally flat and $\alpha'(S^1 \times \frac{1}{2}, \frac{1}{2}, \dots, \frac{1}{2}) = \alpha(S^1)$. Let V = Cl (U-image α'). By using universal coverings, relative Hurewicz theorem and excision theorem, one easily sees that $\pi_1(V, \partial V) = 0$ for all *i*. The proposition now follows from [18].

PROOF OF THEOREM 2. (Continued). Consider $p^{-1}({x} \times E^{n-1})$ for some $x \in s^1$. Since $p | p^{-1}({x} \times E^{n-1})$ is a covering map, $p^{-1}({x} \times E^{n-1})$ is a countable collection of disjoint (n-1)-planes ${E_{\sigma}}$ such that $p | E_{\sigma}$ is a homeomorphism for each σ . Note that $hE_{\sigma} \cap E_{\sigma} = \phi$ for each σ . We now proceed as in [7] to complete the proof; we include the proof for completeness.

There is a homeomorphism γ of E^n onto itself such that $\gamma(E_{\sigma}) = E^{n-1} \times \{0\} \subseteq E^{n-1} \times E = E^n$ and $\gamma(hE_{\sigma}) = E^{n-1} \times \{1\}$. Define $\delta : E^{n-1} \rightarrow E^{n-1}$ by $\gamma^{-1}h\gamma(x, 0) = (\delta(x), 1)$. Since δ is orientation-preserving, it follows from [8] [13] that there is an isotopy δ_t of E^{n-1} , $t \in I$, such that $\delta_0 =$ identity and $\delta_1 = \delta$.

Define $F_0: \beta(E^{n-1} \times [0, 1]) \to E^n$ by $F_0(x, t) = (\delta_t(x), t)$. Extend F_0 to F, a homeomorphism of E^n , by $F(x, r) = \gamma^{-1} h^q \gamma F_0(x, z)$ where $r = q+z, z \in (0, 1]$. Note that if $r = q+z, z \in (0, 1]$,

$$F^{-1}\gamma^{-1}h\gamma F(x, r) = F^{-1}\gamma^{-1}h\gamma^{-1}h^{q}\gamma F_{0}(x, z)$$

= $F^{-1}\gamma^{-1}h^{q+1}\gamma F_{0}(x, z)$
= $F^{-1}F(x, z+q+1)$
= $(x, r+1).$

COROLLARY. The n-th suspension of a quasi-translation of E^r is a topological translation provided either $n \ge 2$ and $n+r \ge 5$ or $n+r \le 3$; i.e., if h is a quasi-translation of E^r , then $h': E^r \times E^n \to E^r \times E^n$, defined by h'(x, y) = (h(x), y) is a topological translation.

PROOF. Let us suppose $n+r \ge 5$, the other case is trivial. If U is the orbit space of h, then $U \times E^n$ is the orbit space of h'. By Theorem 6.12 and the Main Theorem of [19], $U \times E^n$ is homeomorphic to the interior of a compact manifold which has the homotopy type of S^1 . We proceed now as in the proof of Theorem 2 to show that $U \times E^n$ is homeomorphic to $S^1 \times E^{r+n-1}$ and to show h' is a topological translation.

REFERENCES

[1] Unknotting in $M^2 \times I$. Trans. Amer. Math. Soc. 123 (1966), 480–505.

M. BROWN

- [2] Locally flat imbeddings of topological manifolds. Ann. of Math. (2) 75 (1962), 331-341.
- M. BROWN AND H. GLUCK
- [3] Stable structures on manifolds: I-III. Ann. of Math. (2) 79 (1964), 1-58.
- M. L. CURTIS AND K. W. KWUN
- [4] Infinite sums of manifolds. Topology 3 (1965), 31-42.
- J. DANCIS
 - [5] Topological analogues of combinatorial techniques. Conference on the Topology of Manifolds, Prindle, Weber & Schmidt, Inc., Boston, Mass., (1968), 31–46.
- D. B. A. EPSTEIN
- [6] Ends. Topology of 3-manifolds, Prentice-Hall, Inc., Englewood Cliffs, N. J., (1962), 110–117.
- T. HOMMA AND S. KINOSHITA
- [7] On a topological characterization of the dilatation in E³. Osaka Math. J. 6 (1954), 135–144.
- W. C. HSIANG AND J. L. SHANESON
- [8] Fake tori, the annulus conjecture, and the conjectures of Kirby. Proc. National Acad. Sci. U.S.A. 62 (1969), 687–691.
- L. S. HUSCH AND T. M. PRICE
- [9] Finding a boundary for a 3-manifold: Ann. of Math. (2) 91 (1970), 223-235.
- B. v. Kerékjártó
- [10] Topologische Characterisierungen der linearen Abbildungen. Acta Litt. ac. Sci. Szeged 6 (1934), 235–262.
- S. KINOSHITA
- [11] On quasi-translations in 3-space. Fund. Math. 56 (1964), 69-79.
- S. KINOSHITA
- [12] Notes on covering transformation groups. Proc. Amer. Soc. 19 [1968), 421-424.
- R. C. Kirby
- [13] Stable homeomorphisms and the annulus conjecture. Ann. Math. 89 (1969), 575-582.

B. MAZUR

- [14] A note on some contractible 4-manifolds. Ann. of Math. (2) 73 (1961), 221-228.
- D. R. MCMILLAN, JR.
- [15] Cartesian products of contractible open manifolds. Bull. Amer. Math. Soc. 67 (1961) 510-514.

V. Poénaru

- [16] Les decompositions de l'hypercube en produit topologique. Bull. Soc. Math. France 88 (1960), 113-129.
- L. C. SIEBENMANN
- [17] On detecting Euclidean space homotopically among topological manifolds. Inventiones math. 6 (1968), 245-261.
- L. C. SIEBENMANN
- [18] On detecting open collars. Trans. Amer. Math. Soc. 142 (1969), 201-227.
- L. C. SIEBENMANN
- [19] The obstruction to finding a boundary for an open manifold of dimension greater than five. Thesis (1965) Princeton University.

E. M. BROWN.

- C. D. SIKKEMA, S. KINOSHITA AND S. J. LOMONACO, JR.
- [20] Uncountably many quasi-translations of S^3 . (to appear).
- E. Spanier

[7]

- [21] Algebraic Topology. Mc-Graw-Hill Book Co., New York (1966).
- E. Sperner
- [22] Ueber die fixpunktfreien Abbildungen der Ebene. Abh. Math. Sem. Hamburg 10 (1934), 1–47.
- J. R. STALLINGS
- [23] On infinite processes leading to differentiability in the complement of a point. Differential and Combinatorial Topology. Princeton University Press, Princeton, New Jersey (1965), 245-254.

H. TERASAKA

- [24] On quasi-translations in Eⁿ. Proc. Japan Acad. 30 (1954), 80-84.
- J. H. C. WHITEHEAD
- [25] A certain open manifold whose group is unity. Quart. J. Math. Oxford Ser. (2) 6 (1935), 364–366.

(Oblatum 11-IX-1970)

Virginia Polytechnic Institute and State University Blacksburg, Virginia, U.S.A.