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Let f : X - Y be a quasi-finite morphism of schemes and U the open
subset of X where f is étale. The various theorems about the purity of
the branch locus give conditions for U to be all of X. We offer a simple
elementary proof that U = X i n the rather useful case when Y is smooth
over a locally noetherian scheme S and U contains every point of depth
~ 1 and is dense in the fibers over S. The proof is inspired by Zariski’s
original method [5] for characteristic 0. After the usual sort of reduc-
tions, Y becomes the spectrum of the ring of formal power series in a
vector T of variables. Zariski proved that the functions on X also form
a power series ring by expanding them in Taylor series in T. The ap-
propriate differential operators (1/i!)(~ig/~Ti) first lift canonically over
U and then extend over all of X because of the depth condition. However,
lifting these operators amounts to constructing formal descent data for
X (cf. [2] and [4]) and we present the proof from this point of view
without mentioning differential operators, characteristics, or descent (and
without using deeper results from formal geometry 1). The various
standard results we need have been collected in [1 ] and all our references
below are to this source.

THEOREM (Purity of the branch locus; cf. VI, 6.8). Let S be a locally
noetherian scheme, g : Y - S a smooth morphism and f : X ~ Y a quasi-
finite morphism. Let U be the open subset of X where f is etale. Assume U
contains every point x where depth(Ox) ~ 1 and that (U n X(s)) is dense
in the fiber X(s) for all s in S. Then U = X.

NOTE. (i) If g(Y) = S and f(U) contains every point y cf Y where
dim(Oy) ~ dim(S), then automatically (U n X(s)) is dense in X(s) for
all s in S.

(ii) If (g of)(U) = S, the following conditions are equivalent:
(a) X satisfies S2 (resp. X is normal) and U contains every point x

where dim(Ox) ~ 1.

1 However, using such results, Grothendieck [3 ] has also proved that U = X when
Y is locally a complete intersection and U contains every point of dimension ~ 2.
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(b) U satisfies s2 (resp. U is normal) and U contains every point x
where depth(Ox) ~ 1.

(c) s satisfies S2 (resp. S is normal) and U contains every point x
where depth(Ox) ~ 1.

Indeed, the equivalence of (a) and (b) results directly from the defini-
tions (resp. and Serre’s criterion). The equivalence of (b) and (c) holds
by (VII, 4.9) because U ~ S is smooth and surjective.

(iii) In view of (i) and (ii), the theorem (applied to X minus the
components of codimension one of the branch locus) implies that if X
satisfies S2 (e.g., X normal) and dim(S) ~ 1, then the branch locus of

f has pure codimension 1.

PROOF. By way of contradiction, assume U ~ X. Let x be a generic
point of an irreducible component of (X- U). We shall prove f is étale
at x.

Let y = f(x) and s = g(y). Consider the flat base change Spec(k) - S
where k = Oy . The hypotheses clearly hold for f Q k and g Q k; by
(VII, 5.11), U (8) k is the open set on which f Q9 k is etale; the depth
condition holds by virtue of (VII, 4.2); and clearly U Q k is dense in
the fibers over Spec(k). Thus we may assume that S is the spectrum of
a local ring k and that there exists a section h : S ~ Y such that h(s) = y.
Note that 0 /Oy is étale if (and only if) 6xl6y is, that Y is an étale

extension of a polynomial ring k[T1, ···, Tn] with y lying over (T),
that depth(Ôx) = depth(Ox) by (VII, 4.2) and that Ôx is a localization of
Ox~Oy Ôy. Replace X by Spec( 6 x), y by Spec(Ôy) and k by k. While g is
no longer of finite type, now Oy ~ k[[T1, ···, Tn]], f is finite and U =
X-{x}. Furthermore, clearly U contains every point of depth ~ 1 and

(g o f)(U) = s. Let V = (Y-{y}). Then f is étale over and since
depthOy(B) = depthB(B ) where B = Ox by (III, 3.16), the open set V
contains every point z E Y such that depthOz(Bz) ~ 1.

Finally, it suffices to construct an isomorphism Xo x s Y  X where
X0 = X x y s. For then, by (VII, 5.11), Xo/S is étale because U = Xo x s V
is étale over and V ~ S is surjective and flat; whence X/Y is etale
because Y - S is surjective and flat. Thus it suffices to prove the follow-
ing theorem (whose proof will be presented after several preliminary
lemmas).

THEOREM. Let k be a noetherian ring and A = k[[T1, ···, Tn]] a formal
power series ring. Let B be a finite A-algebra which is étale over every
prime p of A where depth(Bp) ~ 1. Then there exists a (canonical) iso-
morphism A 0k B0  B where Bo = k QA B.

DEFINITION. Let k be a ring, R a k-algebra. The module of mth principal
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parts of R over k, denoted P’(R), is defined as (R Q9k R)/Im+1 where I
is the diagonal ideal. It is naturally filtered by the powers of 1.

LEMMA 1. Let k be a ring, R a noetherian k-algebra and S an étale
extension of R.

(i) The natural (R Q9k R)-algebra homomorphism Vm : P’(R) (8)R S ~
Pm(S) sending (al Q9 a2 ) (D s to al O sa2 (resp. to sal Q9 a2 ) is an

isomorphism (where Pm(R) is regarded as an R-module from the right
(resp. left)).

(ii) The induced map gri(Pm(R)) (8)R S ~ gr’(Pm(S» is an isomorphism.
PROOF. In (i), both filtered modules are separated and complete; so it

suffices to show that the gri(vm) are isomorphisms. Since SIR is flat,
gri(Pm(R) QR S) is isomorphic to gri(Pm(R)) OR S. Thus (i) follows
from (ii).

Let I (resp. J) be the diagonal ideal of (R/k) (resp. (S/k)), and set
K = ker(S Qk S - S OR S). As in (VI, 4.9 and 4.10), X ~ I ~(R~03BAR)
(S (8)k S) since S/R is flat. Hence (Ki/ki+1) ~ (Ii/Ii+1) Q9(RQ9kR) (S Q9k S).
Also, (Ki/Ki+1) Q9(SQ9kS) S gé (Ji/Ji+1) sil1ce SIR is unramified. There-
fore, (IiiIi + 1) Q9(RQ9kR) S ~ (Ji/Ji+ 1). Since the (R Qk R)-module
structure of (Ii/Ii+1) coincides with the left (resp. right) R-module
structure of (Ii/Ii+1), this isomorphism coincides with the induced map.
LEMMA 2. Let R be a noetherian local ring; P, N two finite R-modules.

If depth(N) ~ 2, then depth (HornR(P’ N)) ~ 2.

PROOF. An N-regular sequence (x1, x2) is easily seen to be

HomR(P, N)-regular.
LEMMA 3 (cf. VII, 2.10). Let R be a noetherian ring, M a finite R-module

and V an open subset of Spec(R).
(i) Suppose V contains every point p where depth(Mp) = 0; (e.g., V

contains every generic point of Supp(M) and M satisfies Sl). Then the
restriction M - F(V, M ) is injective.

(ii) Suppose V contains every point p where depth(Mp) ~ 1 ; (e.g., V
contains every point of codimension ~ 1 in Supp(M) and M satisfies S2).
Then M ~ F(V, M) is bijective.
PROOF. To prove (i), let x ~ M go to zero in 0393(V, M). Assume x :0 0.

Then there exists a prime p in Ass(Ax). Then pAp E Ass(Apx) c Ass(Mp),
so depth(Mp) = 0. Hence p E Tl, so Apx = 0; this contradicts

pAp E Ass(Ap x).
To prove (ii), let f E 0393(V, M). Let E be the ideal of elements s E A

such that sf extends to an element x of M. For every prime p in V the
image of f in Mp is a fraction xls, and it follows that E t- p. By (III, 1.5),
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there exists therefore an element s of E not in any prime p where

depth(Mp) = 0. Let x be an element of M extending sf.
Since s is M-regular, V contains every prime p where depth((M/sM)p)

= 0. Since the image of x in (M/sM) is zero on V, it is zero by (i). Thus
there exists a g in M such that x = sg. Then s(g -ff) is zero over V.
Since s is M-regular, g = f on V, and the proof is complete.

PROOF oF THEOREM. Let P = lim(Pm(A)). It will suffice to construct
a P-isomorphism u : P ~A B - B QA P where in P QA B (resp. B OA P),
P is regarded as an A-module via the second (resp. first) factor. Namely,
define w : A ~k A ~ A by w(al Q a2) = a2(o)al where a2(0) denotes the
constant term of a2. Then w(I) is contained in m = T1A+ ··· + TnA,
so w defines an A-homomorphism w : P ~ A. Since the diagram

is commutative, A O p ( P Q9A B ) = A ~k ( k ~A B). Hence, (A Q9p u) :
(A Ok Bo)  B is the required isomorphism.

Since A = k[[T1, ···, Tn]], the (A ~k A)-module Pm(A), regarded as
an A-module on the left (resp. right) is isomorphic to A~r for some r.
Therefore (B QA Pm(A)) ~ B~r. Thus, the open set V of Spec(A) over
which B is étale, contains all p where depth((B QA Pm(A))p) ~ 1.

Regarding the two (A Q9kA)-modules pm(A) Q9AB and B QAPm(A) as
A-modules on the left, consider M = HomA(Pm(A) OA B, BQ9Apm(A».
By lemma 1, M has a natural section over V. By lemma 2, V con-
tains every point p where depth(Mp) ~ 1. So by lemma 3, this section
extends to an A-homomorphism um : Pm(A) Q9A B ~ B QA Pm(A). In
fact, um is an (A Qk A)-homomorphism since it is on V and we may

apply 3(i). Similarly, we obtain an (A Q k A)-homomorphism B Q9 A Pm(A )
- Pm(A) QA B which is an inverse to um on V; hence, it is a global
inverse. The isomorphisms um clearly form a compatible system of
maps, inducing the required P-isomorphism u : P ~A B ~ B OA P.
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