
COMPOSITIO MATHEMATICA

STEVEN L. KLEIMAN

JOHN LANDOLFI
Geometry and deformation of special Schubert varieties
Compositio Mathematica, tome 23, no 4 (1971), p. 407-434
<http://www.numdam.org/item?id=CM_1971__23_4_407_0>

© Foundation Compositio Mathematica, 1971, tous droits réservés.

L’accès aux archives de la revue « Compositio Mathematica » (http:
//http://www.compositio.nl/) implique l’accord avec les conditions géné-
rales d’utilisation (http://www.numdam.org/conditions). Toute utilisation
commerciale ou impression systématique est constitutive d’une infrac-
tion pénale. Toute copie ou impression de ce fichier doit contenir la
présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=CM_1971__23_4_407_0
http://http://www.compositio.nl/
http://http://www.compositio.nl/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


407

GEOMETRY AND DEFORMATION OF SPECIAL SCHUBERT

VARIETIES

by

Steven L. Kleiman and John Landolfi

5th Nordic Summerschool in Mathematics

Oslo, August 5-25, 1970

COMPOSITIO MATHEMATICA, Vol. 23, Fasc. 4, 1971, pag. 407-434
Wolters-Noordhoff Publishing
Printed in the Netherlands

Contents

Introduction
1 Extensions and deformations ................ 409

2 Rigidity ......................... 413
3 Monoidal transformations ................ 418

4 Fundamentals ...................... 421

5 The monoidal transformation of O’p(A) with center 03C3(p+ 1)(A). . 425

6 Standard modifications .................. 428

7 Geometry of twisted subvarieties .............. 431
Bibliography ........................ 434

Introduction

The problems of splitting bundles and smoothing cycles, as presented
in [1 ], lead to the general study of a bundle N of rank n on a quasi-pro-
jective, nonsingular variety X over an algebraically closed field k, such
that N(-1) is generated by its global sections. In particular, ([1], (5.6)
and (5.8)), the Chern classes ci(N) are represented by subvarieties Zi,
which are nonsingular if i = 1 or i &#x3E; 1 2(dim X - 2). This is obtained by
choosing an appropriate k-vector subspace E of 0393(X, N), and embedding
X as a ’twisted’ subvariety of Grassn(E), the Grassmannian of n-quotients
of E. Then, for a general subspace A of E, of dimension a = (n-i+1),
ci(N) is represented by the subvariety Zi = 03C31(A) n X, where 03C31(A)
is the first Special Schubert subvariety of Grassn(E) defined by A.
The sets Sp = 6p(A) n X, for p = 1,···, (n - i + 2), stratify 6’i = Zi; in
particular, ,S’p = 0 for i = 1 or i &#x3E; 1 2(dim X - 2).
Our principal aim is to carry out an analysis of this stratification and of

the ’generic’ singularities of the subvarieties Zi. A natural approach is
to study the Special Schubert varieties, and ’induce’ their properties in
the 5’ps; thus we carry out an extension and elaboration of the results
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in [1 ]. Proceeding thus, one shows that Sp is irreducible if p 1; and that
the monoidal transformation f : 03A3 ~ Sp of Sp with center S(p+1) restricts
over U = (S(p+r) - S(p+r+1)) to an algebraic fiber bundle of the form
Grasse) x Grass(n-a+p)(C), where B is a (p + r)-bundle, and C is an
(n - a +p + r)-bundle. Moreover, 03A3 is nonsingular. (See § 7).
A further analysis is made possible by Theorem (2.3.2). Modelled

after [2], Section 2, Corollary 2, our result differs in that here gr(A)
is assumed rigid in the category of all k-algebras, not in that of filtered
k-algebras. In geometric terms, the theorem asserts that if the normal cone
of a scheme X along a subscheme Y is rigid, then the completion of X
along Y is isomorphic to the completion of the normal cone at the vertex.
In our context, (03C3p(A)-03C3(p+z)(A)) is locally (in the canonical affine open
covering of Grassn(E)) isomorphic to the product of a linear space and
a certain determinantal variety Dz; hence the normal cone of (Sp - S(p+z))
along (S(p+z-1)-S(p+z)) is an algebraic fiber bundle with fiber Dz.
However, D2 is the projecting cone C over p(a - 1) X p(n - 1) in the Segre
embedding, whose vertex is the rigid singularity of Thom-Grauert-Kerner-
Schlessinger ; hence the normal cone of (Sp-S(p+2)) along (S(p+1)-
S(p+2)) is rigid. Thus the completion of (Sp-S(p+2)) along (S(p+1)-
S(p+2)) is locally isomorphic to the product of (S(p+1)-S(p+2)) and the
completion of C at the vertex.
A general theory of algebraic deformations, including the criterion for

rigidity employed above, was developped by Schlessinger in his (partly
published) dissertation; § 1 and § 2, (2.1) and (2.2), contain some of the
definitions and basic results. Since the wider scope of Schlessinger’s
theory is not needed in our context, we found it possible to make our
distillation of it self-contained by providing some unpublished proofs;
in particular, we present his beautiful approach to the verification of the
rigidity of the vertex of the projecting cone over P" x Pm for n + m ~ 3.

Definitions and basic facts on monoidal transformations are recalled

in § 3, which also contains proofs of two technical lemmas on the func-
toriality of normal cones. The definitions and some fundamental pro-
perties of Grassmannians can be found in § 4, which is a sequel to § 1 and
§ 2 of [1 ]. Here the properties of duality are especially emphasized, and
the connection of determinantal varieties with Special Schubert varieties
is made explicit.

In particular, the determinantal varieties Dz(n, a) are shown to be non-
singular in codimension one and irreducible. Since, as shown by Hochster
and Eagon in [5], Dz(n, a) is Cohen-Macaulay for all z, then Dz(n, a) is
normal for z &#x3E; 1; and it follows that the subvarieties Zi representing the
Chern classes ci(N) (see above) are all normal and Cohen-Macaulay.
Moreover, one finds that D2 (n, a) is the projecting cone over P(n-1) x
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P(a-1 ), hence it is rigid for n + m ~ 5; and we believe Dz(n, a) to be rigid
for all z ~ 1, unless z = n = a. The 2-codimensional Schubert subvarie-
ties of the 9-dimensional Grassmannian (~ P9) are, locally along their
singular locus, of the form V  D2(3, 2), where V is a linear space of
dimension 3; we conjecture that they cannot be deformed into a smooth
cycle by rational equivalence.
The monoidal transformation of (J p(A) with center 03C3(p+ 1)(A) is studied

in § 5. In § 6, the concept of a standard modification is developed, and it
is shown that the monoidal transformation of 03C3p(A) with center 03C3(p+1)(A)
can be written as the composition of a standard modification and a ’dual’
standard modification. The analysis of the stratification {Sp} can be
found in § 7; in particular, the proof of the irreducibility of sp for p ~ 1

referred to in the introduction of [1 ] is presented.
Some of the above results are contained in Landolfi’s doctoral disser-

tation at Brandeis University, and have appeared with an outline of their
proof in [8].
We would like to extend our thanks to David Lieberman and Heisuke

Hironaka for their kindness in reading a preliminary version of this work,
and for their several apposite remarks.

1. Extensions and deformations

Let A be a ring, B an A-algebra, and M a B-module.

(1.1) A (one term) extension of BIA by M is an exact sequence

where E is an A-algebra, j is a surjective homomorphism of A-algebras,
i(M) is a square-zero ideal of E, and the B-module structure on M
induced by i coincides with the given one.
Two extensions E and E’ of B/A by M are said to be equivalent if there

exists an A-algebra homomorphism u : E ~ E’, inducing a commutative
diagram

(u must then be an isomorphism). The set of equivalence classes of ex-
tensions of BIA by M is denoted Ex1(B/A, M).

(1.2.1) Express B as a quotient B = P/I of a polynomial ring over A by
an ideal I ; the exact sequence 0 ~ 1 ~ P ~ B ~ 0 is called a presentation
of B. Consider the usual exact sequence of B-modules involving the Kâhler
differentials



410

Define T1(B/A, M) as the cokernel making the following sequence exact

EXAMPLE (1.2.2). Assume A is noetherian, and B is of finite type.
Then B is smooth over A if and only if T1(B/A, M) = 0 for all B-modules
M.

Indeed, B is smooth over A if and only if (a) is split, and (a) is split
if and only if T1(B/A, M) = 0 for all B-modules M by a general lemma of
commutative algebra.

PROPOSITION (1.2.3). There is a bijection a : Ex1(B/A, M) - T1(B/A, M).
Indeed, consider an extension 0 ~ M ~ E ~ B ~ 0. Since P is a

polynomial ring, the canonical surjection g : P - B factors through a
ring homomorphism-f : P ~ E. Since g(I) = 0, then f(I) ~ M. However,
M is a square-zero ideal in E; hence f induces a homomorphism
h : IiI’ ~ M, and thus an element of T (B/A, M). If f’ : P - E is a second
choice of lifting of g, then i-1(f-f’) : P ~ M is an A-derivation; thus
a is well defined.

Conversely, given an element of T1(B/A, M), choose a representative
homomorphism h : I ~ M. Let E = P (B M/{x-h(x)|x c- Il. Then the
composition P (B M ~ P - B gives a surjection of A-algebras E ~ B,
and the sequence 0 ~ M ~ E ~ B ~ 0 is exact. If d : P - M is the A-

derivation giving rise to a second choice h’ - (h+d) : I - M, then the
automorphism of P ~ M given by 0 (x -m) = x-(m+d(x)) induces an
equivalence between the extensions E and E’ defined by h and h’; thus
a has a well-defined inverse.

COROLLARY (1.2.4). T1(B/A, M) is independent of the choice of pre-
sentation 0 - 1 -:J; P ~ B - 0.

(1.3) Let A’ be a ring, and J an ideal of A’ such that A ~ A’/J.

(1.3.1 ) A deformation of B/A to A’ is an A’-algebra B’, with a homo-
morphism B’ - B, inducing an isomorphism B’/JB’  B. If J is a nilpo-
tent ideal (resp., square-zero), then the deformation is said to be in-

finitesimal (resp., square-zero). If J Q9 A’ B’ ~ JB’ is an isomorphism
(resp., B’ is A’-flat), the deformation is said to be admissible (resp., flat);
in view of the local criterion of flatness, ([4], V, 3.2), a deformation is
flat if and only if it is admissible and B is A-flat.
Two deformations B’ and B" of B/A to A’ are said to be equivalent if
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there is a homomorphism of A’-algebras B’ - B", inducing a commuta-
tive diagram

The set of equivalence classes of admissible infinitesimal deformations
of B/A to A’ is denoted Def (B/A, A’).
Suppose B’ is an admissible square-zero deformation of B/A to A’.

Then J ~A B ~ J ~A’ B’, and there is an exact sequence

Thus there is a natural map

which is clearly injective. It fails to be surjective when there is an exten-
sion B’ of BfA’ by J QA B not satisfying J (8) A B  JB’.

PROPOSITION (1.3.2). Assume J = Ker (A’ ~ A) is square-zero. If
T1(B/A, J Q9AB) = 0, then Def (B/A, A’) consists of at most one class.1

Indeed, fix a presentation 0 ~ I ~ P ~ B ~ 0, and let P’ = A’ ~AP.
Then the sequence 0 ~ JP’ ~ P’ ~ P ~ 0 is exact, and by composition,
there is a surjection g : P’ ~ B. Let K = Ker (g). Then 0 - K - P’ -
B ~ 0 is a presentation of B as an A’-algebra.

Let B’ and B2’ be any two extensions of B/A’ by J (8)A B. Since P’ is
a polynomial ring, g lifts to homomorphisms fi : P’ ~ B’i, whose restric-
tion to K induces homomorphisms hi : K ~ J (8) AB. Hence there are com-
mutative diagrams

Suppose both extensions arise from deformations. Then fi(j · p’) =
,xi(j Q g(p’)), for j ~ J, p’ E P’, and for i = 1, 2. Set h = hl - h2; then

1 THEOREM ([6], 4.3.3). Assume J is square-zero. If Def(B/A, A’) ~ ~, then

Def(B/A, A’) is a principal homogeneous space under Ex1(BjA, A’).
Indeed, continuing the lines of reasoning of (1.3.2) establishes this stronger asser-

tion, which, however, will not be needed in the sequel.
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h(j . p’) = 0. By construction, there is an exact sequence 0 ~ JP’ ~

K ~ 1 ~ 0. Hence h induces a homomorphism h : I ~ J QA B. Since
J (8) AB is a square-zero ideal in B’I, then h induces a homomorphism
k : III’ ~ J ~AB. Let k be the image of k in T1(B/A, J ~AB).

Suppose k = 0. Then k is the image of a homomorphism d : 03A9P/A ~PB
~ J (8) A B. By composition, d gives rise naturally to a homomorphism
d’ : ap’/A’ Q9p’ B’ - J (8)AB, whose image in HomB’(K/K2, J QAB) is

clearly h. Hence the image of h in T1(B/A, J ~AB) is zero. It follows
that B1 and B2 are equivalent extensions.

In particular, if T1(B/A, J (8)AB) = 0, then any two deformations of
B/A to A’ are equivalent, and (1.3.2) is proved.

(1.4) Some general lemmas
LEMMA (1.4.1). Let C be an A-algebra, D = B Q9A C, and N a D-

module. Assume one of the following conditions holds:
(i) B is A-flat
(ii) C is A-flat
(iii) There exists a homomorphism C - A inducing an isomorphism

N ~ NODB.
Then T1(D/C, N) - T1(B/A, N).
Indeed, let 0 ~ 1 ~ P ~ B ~ 0 be a presentation. Tensoring it with

C over A yields a presentation 0 ~ J ~ P ~A C ~ D ~ 0 and a surjec-
tive homomorphism u : I (8) A C ~ J.

If (i) or (ii) holds, then u is bijective and induces a bijection (1/12) QA C
~ J/J2. If (iii) holds, then tensoring the presentation of B with A over C
yields a surjection v : J (8) C A - I, and the composition v o (u Q C) is
the identity; since (u Q C) is surjective, v is bijective and induces a bijec-
tion (jîj2) Qc A ~ I/I2. Since 03A9(P~C/C) = 03A9P/A Q9 A C, the assertion fol-
lows directly from the definition (1.2.1).

LEMMA (1.4*2). For 1 = 1, 2, let Bi be an A-algebra, and Mi a Bral-
gebra. Then

T1(B1 Q9 B2/A, Ml (8) M2) (T1(B1/A, Ml) Q9 B2) EB(B1 Q9 T1(B2/A, M2)-
A A A A

Indeed, let 0 ~ h - Pi ~ Bi ~ 0 be presentations, let P = P1 ~A P2,
and I = (I1 ~A P2)+(P1 QA I2). Then 0 ~ I ~ P ~ B1 Q9A B2 0
is a presentation, °p/A = (QP11A QA P2) Q9 (Pl (DA 03A9P2/A) and (I/I2) =
((I1/I21) (8)A B2) 0 (Bl Q9A (I2/I32)). The assertion now follows directly
from the definition (1.2.1).

LEMMA (1.4.3). Assume Spec (B) is A-smooth at each of its generic
points, and M has no embedded primes. Then T1 (B/A, M) = Extl (QBIA, M).
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Indeed, let 0 ~ 1 ~ P ~ B ~ 0 be a presentation, and consider the
exact sequences

in which u o v is the natural map. By ([7], 0;y, 20. 5.14), there is an open
dense subset U of Spec (B) such that KI U = 0. Since M has no embedded
primes, then HomB(K, M) = 0. Hence v induces an isomorphism
HomB(H, M)  HomB(I/I2, M). Since 03A9P/A is a free module, there is an
exact sequence

The assertion now follows directly from the definition (1.2.1).

2. Rigidity

(2.1) DEFINITION (2.1.1). Let A be a ring, and B an A-algebra. If any
admissible infinitesimal deformation B’ of BjA to an A-algebra A’ is

necessarily equivalent to the product, family B QA A’, then B (resp., Spec
(B)) is said to be rigid over A.

THEOREM (2.1.2) (Schlessinger). Let A be an Artin local ring, and B
a flat A-algebra, and let k be the residue class field of A. Then B is rigid
over A if and only if T1(B/A, k QA B) = 0.

Indeed, let B’ be a flat infinitesimal deformation of B/A to an A-al-
gebra A’. Then A’ is an Artin ring, and we may clearly assume it is local.
Set J = Ker (A’ ~ A ), let M be the maximal ideal of A’, and n the largest
integer such that J’ = MnJ is nonzero. Set A" = A’/J’, and B" =
B’ Q9 A’ A". Then B" is a flat infinitesimal déformation of BjA to A",
and B’ is a flat square-zero deformation of B"! A" to A’.

By induction on n, we may assume that B" is equivalent to B QA A".
Since N = J’ ~A"B" is A"-isomorphic to a finite direct sum of copies
of k Q9A B, then T1(B/A, N) = 0 by (1.4.1). By (1.3.3), therefore the two
deformations B’ and B QA A’ of B"/A" to A’ are equivalent.

Conversely, the extensions E of B/A by k QAB are easily seen to be
the admissible deformations of B/A to A’ - A E9 (k OA B).
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(2.2) LEMMA (2.2.1). Let A be a ring, let k, M, and N be A-modules.
There exist two spectral sequences

with the same limit Hn.

Indeed, let k* and M’ be projective resolutions of k and M, and let N’
be an injective resolution of N. Let T* be the simple complex associated
to the double complex k* ~AM*, and consider the spectral sequences
’Epq2 and "Epq2 of the double complex HomA (T*, N*). We have

and

On the other hand,

Since Tq is projective, this spectral sequence degenerates, and it conver-
ges to the homology of the double complex

Finally, the first spectral sequence of this complex is

LEMMA (2.2.2). Let A be a noetherian local ring with residue class field
k, and let M and N be A-modules of finite type. If depthA(N) ~ 2, then
depthA(HomA(M, N)) ~ 2; and, if depthA(N) ~ 3, then there exists a
natural isomorphism

Indeed, consider the spectral sequences "Epq2 and ’Epq2 in (2.2.1). By
([4], III, 3.13), if depthA(N) ~ d, then "Epq2 = 0 for q  d, hence Hq = 0
for q  d.

Now the exact sequence of terms of low degree of ’Epq2 is

hence the result.

PROPOSITION (2.2.3) (Schlessinger). Let A be a noetherian local ring, m its
maximal ideal, and k its residue class field. Let M and N be A-modules of
finite type, and assume that M is locally free on (Spec (A) - {m}), and that
depthA(N) ~ 3. Then ExtÀ(M, N) = (0) if and only if
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Indeed, E = Ext,1 (M, N) has support in {m} because M is locally free
off {m}; hence E = (0) if and only if HomA(k, E) = (0). Since depthA(N)
~ 3, (2.2.2) applies; hence ExtqA(k, HomA(M, N)) is zero for q = 0, 1,
and it is zero for q = 3 if and only if E = (0).

(2.2.4) Let A be a. field, and S = ~~n=0 Sn a graded A-algebra
generated by S1. Let m = EB:= 1 Sn denote the irrelevant ideal of

S, and set R = Sm . Let N be a graded S-module of finite type. Set
X = Proj (S).

PROPOSITION (Grothendieck). Let N - ~+~k=-~H0(X, 9 (k» be the
canonical homomorphism. Let d = depthR(Nm). Then

(i) d ~ 1 if and only if 0 is injective;
(ii) d ~ 2 if and only if 0 is bijective;
(iii) d ~ 3 if and only if 0 is bijective, and Hl (X, g(k» = (0)for all k;

(p) d ~ p if and only if 0 is bijective, and H’(X, N(k) = (0) for all
1 ~ i ~ (p-2) and for all k.

Indeed, by definition, d = 0 if and only if there exists an x ~ N such
that sx = 0 for all s E m; i.e., such that 0(x) = 0. Thus (i) holds.

Suppose every SES 1 is a zero-divisor in N. Then

Hence mR c P for some associated prime P, and they must coincide,
because m is maximal.

Assume d ~ 1. There must then exist an s ~ 5’i which is not a zero-
divisor in N. Set X’ = Proj (5/M), and N’ - N/sN. Consider the diagram

Suppose d ~ 2. Then, by (i), all the vertical arrows are injections. By
Serre’s theorem, 4Jk is bijective for all k » 0. Hence, by descending in-
duction, it follows that 4Jk is bijective for all k. Conversely, if 4Jk is bijec-
tive for all k, then ~’k is injective for all k. Thus (ii) holds.
Assume that p ~ 2, that (p) holds, and that d ~ p. Then the following

sequence is also exact on the left:

Thus, since (p) holds for N’, d ~ (p+1) if Hp -1(X,(k)) = (0) for all
k ; and the converse follows by descending induction from Serre’s theorem,
completing the proof.
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(2.2.5) Let A be a ring, S = ~~n=0Sn a graded A-algebra generated
by Sl , and set X = Proj (S). Grade the Kâhler differentials °S/A by
deg (ds) = n for s e Sn .

PROPOSITION. There exists a canonical exact sequence of 0X-modules

Indeed, let U be the complement in Spec (s) of Spec (A), embedded
by the augmentation S ~ A, and let f : U - X be the canonical map.
Since f is smooth, the following sequence is exact and split

Let D denote the canonical derivation of the graded algebra S given by
D(s) = ns for SE Sn, and w : 03A9Spec(S)/A ~ 0Spec(S) the corresponding
homomorphism. Since DIS(s) is zero for all SE S1, w factors into v o u,
where v : 03A9U/X ~ Ou. Since w is surjective, and 03A9U/X is invertible, v is an
isomorphism. Finally, it is easy to see that the grading on Ker (w) de-
fined by the induced isomorphism f*03A9X/A  Ker (w)1 U coincides with
its grading as a submodule of 03A9X/S.
THEOREM (2.2.6) (Schlessinger). Let k be afield, S = Q~n=0 Sn a graded

k-algebra; set X = Proj (S), and Tx = Hom0X(03A9X/k, 0X). Assume that
S is normal, that X is k-smooth, and that H1(X, 0x(n)) = (0) for all n. If
H1(X, Tx(n)) = (0) for all n, then S is rigid over k.

Indeed, in view of (2.1.2), it succès to show T 1 = T1(S/k, S) = 0.
By (1.4.3), Tl = Ext1s(03A9S/k, S). Since X is smooth, °S/k is locally free on
(Spec (5)-{m}), where m = ~~n=1Sn. Therefore T 1 = 0 if and only if
Ext1R(03A9R/k, R) = 0, where R = Sm.
By (2.2.4), depthR(R) ~ 3. Hence (2.2.3) applies to 03A9R/k. Thus T 1 = 0

if and only if depthR(Nm) ~ 3, where N = HomS(03A9S/k, S).
By (2.2.2), depthR(Nm) ~ 2. By (2.2.5), there is an exact sequence

0 ~ 0X ~ N ~ T ~ 0. Hence H1(X, N(n)) = 0 for all n. Therefore, by
(2.2.4), depthR(Nm) ~ 3; thus Tl = 0.

REMARK (2.2.7). In the above theorem, if also H2(X, N(n)) = 0
for all n, then the proof yields the converse.

THEOREM (2.2.8) (Thom, Grauert-Kerner, Schlessinger). Let k be afield.
Let X = PnkxPmk, and embed X projectively by the Segre morphism. If n ~ 1

and m ~ 2, then the projecting cone C of X is rigid over k.
Indeed, 0X(p) = Opn(p) 0 Opm(p) for all p. So, by the Künneth formula,

H°(X, 0X(p)) is the set of bihomogeneous polynomials of degree p,
and Hi(X,0X(p)) = 0 for 1 ~ i  (n+m) and for all p. Let S be the
homogeneous coordinate ring of X. By construction, S is reduced,
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because X is. Thus, by explicit computation, the canonical map

0 : S - ~+~p=-~H0(X,0X(p)) is bijective. Since X is regular, it follows

from (2.2.4) that X is normal (and Cohen-Macaulay).
For any k-scheme Y, set Ty = Hom0Y(03A9Y/k, Oy). It follows from (2.2.5)

that there is an exact sequence

Hence, H°(Pn, TP(p)) = 0 if p  - 2, and H1(pn, TP(p)) = 0 if p ~ - 2.
In general, for any k-scheme Z, Tyxz = (Ty 0 Oz) (f) (Oy Q Tz). So,
the Künneth formula yields H1(X, Tx(p)) = 0 for all p, because m ~ 2.
The conclusion then follows from (2.2.6).

(2.3.1) Let A be a ring, B a graded A-algebra, and M a graded B-
module. An extension 0 ~ M ~ E ~ B ~ 0 is called homogeneous if E is
a graded A-algebra, and the maps are homogeneous (of degree zero). The
set of classes of homogeneous extensions E, E’ under equivalence de-
fined by homogeneous maps u : E ~ E’ is denoted ExÕ(BIA, M).
Choose a presentation 0 ~ I ~ P ~ B ~ 0, and define deg (p) =

deg (g(p)) for p E P. Then I is homogeneous, and the usual exact sequence

consists of graded B-modules and homogeneous maps of degree
zero. Define TÕ(BIA, M) as the cokernel of Homo(Dp/A 0pB, M)
Homo (I/I2, M), where Hom0(-,-) denotes the set of homogeneous maps
of degree zero. Then there exists a bijection Ex10(B/A, M)  TJ(B/A, M),
whose construction is analogous to that in the inhomogeneous theory,
(cf. (1.2.3)).

It is clear from the definitions that T10(B/A, M) is a direct summand of
T1(B/A, M). In particular, the following result has been proved.

LEMMA. The canonical map Ex’(BIA, M) ~ EX1(B/A, M) is injective.
In other words, if there is any equivalence u’ : E - E’ between two

homogeneous extensions of B/A by M, there is a second one u : E ~ E’
which is homogeneous.

Alternately, the Lemma can be proved by defining u(e) for e E En to
be the component of degree n of u’ (e), and by directly verifying that u pre-
serves multiplication.

(2.3.2) Let k be a ground ring, A a k-algebra with an ascending filtra-
tion (Ai)+~i=-~, and set gr(A) = ~~-~ (Ai/Ai-1). (For example, let I
be an ideal of A, and set A = A for i ~ 0, and A = I-1 for i  0.)
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THEOREM (Gerstenhaber). If T1(gr(A)/k, gr(A)) = 0, then there exists
an isomorphism of separated completions (in fact, of pro-objects):
  gr(A)^.

Indeed, let B = ~~-~Aiti, where t is an indeterminate. Then B/tnB =
~~-~(Ai/Ai-n) for all n. Starting with the natural map ul : B/t"B - gr(A),
and proceeding by induction on n, construct as follows a k [t]-algebra
homomorphism un : B/tnB -+ Bn, where Bn = gr(A) Q (k[t]/tn), such
that:

(i) un reduces to un-1

(ii) the submodule (Ai-m/Ai-n) of AilAi-n is carried onto

~nj=m(Ai-j/Ai-j-1)tj, where i is the residue class of t. Suppose un-1
has been constructed, and consider the following diagram, whose rows
are the natural homogeneous admissible extensions:

By (1.4.1 ), (iii), T1(Bn-1/k[t]/tn-1, gr (A» = 0. It therefore follows from
(1.3.3) that there exists a k[t]-algebra isomorphism un which renders the
above diagram commutative; moreover, by (2.2.1), we may assume U,
is homogeneous. It is then easily seen that un satisfies (ii).

Finally, (ii) implies that the u,, form a coherent family of filtration-pre-
serving isomorphisms

whence the assertion.

3. Monoidal transformations

Let X be a scheme, Y a closed subscheme of X, and I the ideal of Y. As-
sume I is of finite type.

(3.1 ) (See [7], II, 8.1 ). Let Z = Proj (~~n= 0In). The structure morphism
f : Z X is called the monoidal transformation (or blowing-up) of X with
center Y.

Clearly, Z is reduced (resp., integral), if X is. The morphism f is projec-
tive, and is an isomorphism precisely at those points where Iis invertible;
in particular,

The (scheme-theoretic) fiber E = f-1(Y) is called the exceptional
divisor, and, indeed, it enters into an exact sequence



419

It has the form E = Proj (~~n=0In/In+1), and thus comes equipped
with a relatively projective embedding over Y, and a cone,

called the normal cone of X along Y.

LEMMA (3.1.1). With the above notation, if C is reduced, then X is

reduced.

Indeed, for any ring A and ideal I of A, if gr(A) is reduced, then A is.

(3.2) Let M be a quasi-coherent Ox-module, and u : M ~ Ox a homo-
morphism such that u(M) = I. Then:

(i) the surjections Symn(M) ~ In define a closed immersion

i: Z  P(M)
(ii) the restriction u|(X-Y) defines a section s : (X-Y) ~ P(M).
PROPOSITION (3.2.1). Under the above conditions i embeds Z as the

(scheme-theoretic) closure T of the image s(X- Y) in P(M).
Indeed, clearly s(X - Y) = i(Z-E), and T z i(Z). Hence the question

is local on X and Z; we may then assume X = Spec (A), and I is an ideal
of A.

As g runs through I, the homogeneous part of degree one of the graded
algebra S = ~~n=0 In, Z is covered by the affines Spec(B), where B is the
component S(g) of degree zero of the localization Sg; symbolically, B =
A[I/g]. Now, T corresponds to an ideal J of B, and J(8(g/1)) is zero.
However, the natural map B - Bg(= Ag) is injective. Hence J = (0),
and T = i(Z).

(3.3) Let X’ be a closed subscheme of X, and Y’ = X’ n Y. Let l’
be the ideal of Y’ on X’, and let.f’’ : Z’ ~ X’ be the monoidal transfor-
mation of X’ with center Y’. Then the surjection I ~ I’ defines a closed
immersion j : Z’ y Z.

PROPOSITION (3.3.1). Under the above conditions j embeds Z’ as the
closure o.f’(X’ - Y) in Z, and it induces a closed immersion Cy, (X’) y CY(X).

Indeed, the first assertion results immediately from (3.2), in view of the
commutative diagram

The second assertion is an immediate consequence of the definitions.
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(3.4) Fix an algebraically closed field k, and assume that X is an integral
algebraic k-scheme, and that Y is an equidimensional closed subscheme
of X. Let X’ be an irreducible closed subscheme of X. With the notation

of (3.1 ) and (3.3), let E = f-1(Y) (resp., E’ = (f’)-1(Y’)) be the ex-
ceptional divisor of the monoidal transformation f : Z ~ X (resp.,
f’ : Z’ ~ X’).

(3.4.1) Suppose that E (resp., CY(X)) is an algebraic fiber bundle over
Y with integral fiber F (resp., with integral fiber the projecting cone over
F). Then, necessarily, dim (F) = (codim (Y, X) - 1). Assume Y’ not equal
to X’, locally integral and equidimensional, and assume that codim (Y, X)
= codim (Y’, X’).
PROPOSITION (3.4.2): Under the above conditions E’ = E x y Y’ (resp.,

Cy, (X’) = CY(X) x y Y’), and Z’ has the same underlying space as Z x y X’
(resp., and X’ is integral).

Indeed, consider Z’ as the closure of (X’ - Y’) in Z, and f’ as the re-
strictionfIZ’. Let {Y’i}, for i = 1, ’ ’ ’, r, be the irreducible components
of Y’. Then (f’)-1(Y’i) is a closed subscheme of f-1(Y’i) which is not
empty, because X’ is irreducible and f’ is a monoidal transformation. We
show next that they have the same dimension, and hence they coincide.
Since E is a fiber bundle over Y, then dim(f-1(Y’i)) = (codim (Y,X)-1) +
dim(Yi’). However, codim (Y, X) = codim (Y’, X’), and Y’ is equi-
dimensional, hence dim (f-1(Y’i)) = dim X’-1. On the other hand,
since E’ is a Cartier divisor on Z’, dim(f’)-1(Y’i) = dim X’-1.
Hence f-1(Y’i) and (f’)-1(Y’i) have the same dimension. Moreover,
f-1(Y’i) is integral, since F and Yi’ are integral, and f-1(Y’/) is a fiber bun-
dle over Yi’ with fiber F. Hence E’ = Exy Y’.
The argument for the normal cones is essentially the same, and X’ is

integral by (3.1.1).

(3.4.3) Let Y0 ~ Yi ... ~ Yn+1 be a sequence of equidimensional
closed subschemes of X, with Yo = X, and Yn+1 = Ø. For 0 ~ p ~ n,
let Up = (Yp-Yp+1), let Ep = f-1(Up), and assume it is a fiber bundle
over Up with integral fiber. Let Wp = ( Yp - Yp+2), and let fp : Zp ~ Wp
be the monoidal transformation with center Up+ 1. Assume that the ex-
ceptional divisor of Zp is a fiber bundle over Up+ 1 with integral fiber,
and that there exists a fiber bundle Pp over Zp with integral fiber, and a
surjective X-morphism gp : Pp ~ f-1(Wp).

Let

and assume

(i) Wp is equidimensional and locally irreducible;
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(ii) Up is equidimensional and locally integral;
(iii) codim (U’p+1, W’p) - codim (Up+1, Wp).
Let fp : Z’p ~ Wp be the monoidal transformation with center Up + 1.
PROPOSITION (3.4.4). Under the above conditions Ep - Ep x Yp Yp, for

0 ~ p ~ n.
Indeed, for p = 0 the assertion is trivially true. Assume p ~ 0. Propo-

sition (3.4.2), applied to fp and fp restricted to the irreducible components
of Wp , asserts that Zp XX’ and Zp have the same underlying space.
Since Pp xX’ = Pp Zp(Zp XX’), then Pp XX’ and Pp ZpZ’p have
the same underlying space.
Now Zp is the closure of Up in Zp, hence Pp x Up is dense in Pp x Zp Zp .

Since the base extension gp XX’ : Pp XX’ ~ f-1(W’P) is surjective,
it follows that f-1(U’p) is topologically dense in f-1(W’p) = Ep xYpY’p.

Let Ép be the closure of Ep in E’. Then we have 

By induction, f-1(U’p) = E’p, hence E’ has the same underlying space
as Ep x yp Yp . Therefore, E;+ 1 is a closed, topologically dense subscheme
of Ep+1 x yp + Y’p+1. Since the latter is reduced, they coincide.

4. Fundamentals

Fix a ground scheme S, an e-bundle 2 E on S, and an integer n, with
0 ~ n ~ e.

(4.1) The Grassmann scheme X = Grassn(E), equipped with its uni-
versal n-quotient 3 Q of EX4, represents the functor whose points t with
values in an S-scheme T are the n-quotients N of ET; i.e., the morphisms
t : T - Grassn(E) and the n-quotients N of ET are in bijective correspon-
dence by N = t* Q.

(4.2) There is a natural commutative diagram

in which:
m = (e-n);
d is the isomorphism induced by the natural correspondence between

2 Shorthand for locally free Os-module of rank e.
3 Shorthand for locally free quotient of rank n.
4 Notation for the pull-back of E via the structure map X ~ S.
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n-quotients N of ET, yn-subbundles 5 M of ET, and m-quotients M*
of E*6T;

z (resp., 03C0*) is the Plücker embedding, which is defined by mapping
an n-quotient N of ET to the 1-quotient An N of A"jEr (resp., similarly
for 03C0*).

i is the isomorphism defined by mapping a 1-quotient L of 039BmE*T to
the 1-quotient L 0 (039BeE) of (039BmE*T) Q (A e E), and identifying the latter
with 039Bn E via the following canonical maps, which are perfect dualities,
since E is locally free:

and

Indeed, the commutativity holds because the following diagram of
canonical maps (arising from an exact sequence 0 ~ M ~ ET ~ N ~ 0
on T) is itself commutative:

(4.3) If E = El Q E2, and ti : T ~ Grassni(Ei) are two morphisms
defined by ni-quotients Ni of EiT, their Segre product is the morphism
tl Q t2 : T ~ Grassn(E) defined by the n-quotient Ni Q N2 of E, with
n = n, n2. In particular, the projections give rise to the Segre embedding

(4.4) Fix an a-subbundle A of E, and an integer p satisfying
max(0, a-n) ~ p ~ 1 + min (a, e - n). The p-th special Schubert

scheme ap(A) defined by A represents the subfunctor of Grassn(E)
whose T-points are those n-quotients N of ET such that the induced
map 1B"AT --+ 1B"N is zero, where q = (a-p+1). (Intuitively, this

condition requires rk(AT n M ~ p where M = Ker (ET ~ N).)
PROPOSITION (4.5). The map of (4.2) induces an isomorphism

5 Shorthand for the submodules which are locally direct summands of rank m.
6 Notation for the dual of M.



423

Indeed, for an exact sequence 0 ~ M ~ ET ~ N ~ 0 defining a

T-point of Grassn(E), the following conditions are equivalent:
(i) the map AIAT Ag N is zero, where q = (a-p+1);
(ii) the map 039Bq’C ~ 039Bq’ ET is zero, where q’ = (a-p+e-n+1) and

C = AT+M;
(iii) the map 039Bq*M ~ /Bq*(EjA)T is zero, where q* = (e - n -p );
(iv) the map 039Bq*(E/A)*T ~ /Bq* Mi is zero.
The equivalence (i) ~ (ii) (resp., (ii) ~ (iii) holds in view of [1],

(2.5), because M (resp., AT) is locally a direct summand of ET; the equi-
valence (iii) ~ (iv) holds by duality (see (4.3)); whence the assertion.

(4.6) Set P = Ker (EX ~ Q); it is called the universal subbundle on
X = Grassn(E), and its dual P* is the universal quotient on d(X) =
Grasse). Set B = (E/A)X and F = (039BbP) Q9 (A bB *) where b =

(e - n - p ). Let v : 039BbB* ~ 039BbP* be the natural map and define u as the
composition

PROPOSITION. The image of u : F -+ Ox is the ideal of 03C3p+ 1 (A).
Indeed, by (4.5), a point t : T - Grassn(E) lies in 03C3p+1(A) if and only

if t*v = 0. Certainly, t * u = 0 if t * v = 0; the converse holds because P
is locally free.

(4.7) Let Kbe a k-subbundle of E. If k ~ (e - n), then 6k(K) = Grassn(E/K),
for they have the same T-points, the n-quotients N of (E/K)T, and
their embedding in Grassn(E) corresponds to reinterpreting N as an
n-quotient of ET. Furthermore, the following diagram of canonical closed
immersions is clearly commutative:

Dually, in view of (4.5) and (4.2), if k ~ m = (e - n), then there is a
commutative diagram

In particular, if k = (e - n -1 ), then 03C3k(K) = P((E/K)*), and, if

k = (e-n+1), then (J(e-n)(K) = P(K); furthermore, the Plücker mor-
phism 03C0 of Grass.(E) embeds them as linear subspaces of P(039BnE).



424

(4.8) Determinantal Varieties
Let So be an affine scheme, and denote by Dz(n, a) the affine So-scheme

of (n x a)-matrices [Uij] whose minors of order z are all zero. Clearly,
D1(n, a) = So, and Dz(n, a) is a cone. Further it is a theorem of Eagan
and Northcott that Dn(n, a) is Cohen-Macaulay ([5]).

PROPOSITION (4.9). D2 (n, a) is the projecting cone over P(n-1)  p(a-1)
embedded by the Segre morphism.

Indeed, D2(n, a) is the closed subscheme of Ana defined by the homo-
geneous ideal I generated by the relations

in the polynomial ring k[{Uij}].
On the other hand, P(n-1) x p(a-1) is embedded by the Segre morphism

in p(na-1) as the closed subscheme whose homeogeneous coordinate ring
is the image of the homomorphism

Let

and let R(M) be the set of

where A = (i1,···, iN), and 03B2 runs over the set of all bijections
03B2 : A ~ {j1,···,jN}. Then R(M) consists precisely of those monomials in
k[{Uij}] whose image under g is M. Since any polynomial P has the
form (LM 03A3P~R(M)aPP), it will be sufficient to show that any two elements
of R(M) are congruent (modulo I). But, clearly, one need only consider
elements P(03B2) and P(y), where 03B2 and 03B3 differ by a single transposition
of {j1,···, jN}, in which case the assertion is trivial.

THEOREM (4.10). With the notation of (4.1), let X = Grassn(E), and
let XE (X-03C3(r+1)(A)). Then there exists an affine subscheme ,So of S, a
(standard ) affine neighborhood U = AmnS0 of x, and a linear subspace V of
dimension [m-(n-c)(a-c)], depending only on x and r, such that

6p(A) n U = V Dz(n-c,a-c), with p - (r+1-z), and c = (a - r).
Indeed, let A(x) = A Q0sk(x), E(x) = E ~0sk(x), and Q(x) =

Q ~0Sk(x). Then x ~ 03C3(r+1)(A) if and only if the homomorphism 039BcA(x)
~ 039BcQ(x) is not zero. Hence there are elements {fi(x),···,fc(x)}
whose images in Q(x) are linearly independent. Extend {f1(x),···,fc(x)}
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to a basis of E(x) so that {f1(x),···,fn(x)} generate Q(x). Replacing S
by a suitably small affine So, we may assume that the fi(x) are repre-
sented by global sections fi of E which are independent at every point
of S0.

Let E’ (resp., E") be the subbundle of E generated by {f1,···,fn}
(resp., by {fn+1,···,fn+m}. For any So-scheme T, let U(T) be the set of
n-quotients N of ET such that Ef -+ N is surjective. Clearly x E U, by con-
struction. Since any surjective homomorphism E’T ~ N is necessarily bi-
jective, U(T) can be identified with Homo,(E", ET), the set of (m x n)-
matrices over r(OT).

In particular, to any T-point t there corresponds a surjective homomor-
phism g : ET ~ QT, and hence a matrix of the form [IM], where I is
the identity (n x n)-matrix, and M E Homo,(E", E;). Let g’ : AT ~ QT
be the composition of g with the injection of AT into ET. Then to g’ there

corresponds a submatrix M’ of [IM] of the form o T 1 where I is the
identity (c x c)-matrix, and T2 is an (n-c) x (a - c)-submatrix of M.
By definition, t ~ 03C3p(A) if and only if 039B(a-p+1)(M’) = 0. Since

{f1,···fc} generate a free submodule of QT, then ([1], (2.5), (ii) ~ (iii))
shows that this is equivalent to 039BzT2 = 0. Hence T2EDz(n-c,a-c).
Moreover, this condition on M involves only the submatrix T2, so
that its remaining entries freely generate a linear subspace V of U,
of dimension [mn-(n-c)(a-c)]. Hence [03C3p(A)-03C3r(A)] ~ U =
Vx Dz(n-c, a-c).
COROLLARY (4.11). The normal cone of [03C3p(A)-03C3(p+z)(A)] along

[03C3(p+z-1)(A)-03C3p+z(A)] is an algebraic.f’zber bundle over [U(p,z-1)(A)-
03C3(p+z)(A)] with fiber Dz (n - c, a-c).
COROLLARY (4.12). [03C3p(A)-03C3(p+1)(A)] is locally isomorphic to affine

[mn-p(n-a+p)]-space.
COROLLARY (4.13). (i) Dz(n, a) is irreducible, of dimension

(na-(a-z+1)(n-z+1)), and nons ingular in codimension 1.
(ii) Dn(n, a) is normal and Cohen-Macaulay.
Indeed, (i) holds because, choosing m = a in (4.10), then Dz(n, a) is

isomorphic to 03C3(a-z+1)(A), which has the required properties. (See [1],
(3.3)). Moreover, Dz(n, a) is Cohen-Macaulay by [5], hence it is normal,
since it is nonsingular in codimension 1 by (i) above. Hence (ii) holds.

5. The monoidal transformation of O’p(A) with center 03C3(p+1)(A)

(5.1) Preserve all the notation of (4). Set Y = Grass(n-a+p)(E/A),
and Z = Grass(a-p)(A). Let R be the universal quotient on Y, and J the
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universal subbundle on Z. Let K = Ker(Ey - R). Then Ay c K and
J c Az. Set

Essentially by definition, a T-point of E corresponds to the following
triple:

Define a morphism f : 03A3 ~ Grassn(E) by mapping t to the T-point
f(t) defined by the (e - n)-subbundle P’ of ET ; since P’ n AT -D J’, the
map /BqAT --+ /Bq(ET/PI) factors through A" (A TIJ’) = 0, hence f(t)
lies in (J p(A).
THEOREM (5.2). Then f : 03A3 ~ 03C3p(A) is the monoidal transformation with

center 03C3(p+1)(A). Over U = (03C3(p+z)(A)-03C3(p+Z+1)(A)), the exceptional
locus restricts to

f-1(U) = Grassz(Pu n 4u) x Grass(n-a+p)(EU/(PU+AU))
and its relatively projective embedding is given by the Plücker and Segre
embeddings. (Note that Pu n Au and (Pu + Au) are subbundles of Eu by [1],
(2.6).)

Indeed, in view of (4.6) and (3.2), it suffices to define an embedding
i : :¿ y P(F) such that i(03A3) is the closure of the section s over

Uo = (03C3p(A)-03C3(p+1)(A)) defined by ul Uo.

Define g by mapping the triple (5.1.1 ) to the pair: the p-subbundle J’
of P’ (=(f o t)*P), and the b-subbundle (K’/AT) of BT.
The image of Y(T) under g is contained in the set of triples:

an (e 2014 n)2014subbundle P’ of ET,
a p-subbundle J’ of P’ which is also a subbundle of AT,
a (b+a)-subbundle K’ of ET containing both AT and P’.

Conversely, such a triple determines a triple of the form (5.1.1). Thus
g is a monomorphism, and (5.2.1 ) describes its image.Therefore g is closed
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immersion, because it is proper 7, being complete, and f-1(U) has the
asserted form.

Let 03A30 = f-1(U0). Then Eo contains all points of depth 0, because
E is flat over S, its geometric fibers E(s) are integral, and Zo induces a
dense open subset in each E(s); hence E is the scheme-theoretic closure
of Y-0. By the computation of f-1(U),f|03A30 is anisomorphism. It remains
to prove that i = (s o f) on 03A30.

Under i, the triple (5.1.1) is mapped to the 1-quotient L = (/Bb(P’fJ’)
Q (/Bb(K’jAT)*) of FT = (f o t)*F. Consider the diagram

in which w is induced by the inclusions of P’ in K’ and of J’ in AT; and u’
is the pull-back of (4.6.1) to T. Set To = t-1(03A30). Since the triple (5.1.1)
restricted to To corresponds under (s o f) to the surjection u’|T0, to
complete the proof it suffices to prove that /)ro is an isomorphism and
that (5.2.2) commutes.
On To, (P’ + AT) = K’, and P’ n A T = J’; hence w|T0 and v 1 To are

isomorphisms. Finally, the commutativity of (5.2.2) is no more than

the commutativity of the following two diagrams of canonical maps:

COROLLARY (5.3). When p - 0, then Y = Grass(n-a)(E/A) and K =
Ker (EY ~ R) is an (e - r + a)-bundle, where R is the universal quotient
on Y; and f : 03A3 = Grassa(K) ~ X = Grassn(E) is the monoidal transfor-
mation with center 03C31(A).

(5.4) For 0 ~ z ~ (min (a, e-n)-p), let fz : 03A3z ~ 6p+z(A) be the
monoidal transformation with center (Jp+z+l(A). In view of (5.1),
1. carries a universal (p+z)-subbundle Jz of A03A3z, and a universal

(a+m-p-z)-subbundle Kz of E03A3z containing As.. Set

7 A proper monomorphism g : X ~ Y is (well-known to be) a closed immersion.
Indeed, each nonempty fiber of g is a monomorphism onto a field; hence an isomor-
phism, by considering 11g. Thus g is finite, and, by Nakayama’s Lemma, 0Y ~ g* 0x
is surjective.
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PROPOSITION. There is a natural surjective X-morphism

Indeed, a T-point t of 03A6z corresponds to a sequence of subbundles
of ET

of ranks p, (p+z), m, (a+m-p-z), (a+m-p) respectively, such

that Jz c AT c Kz. Define gz : 03A6z ~ E by gz(t) = (J’, P’, K’). Since
J’z c (P’ n AT), it follows that gz(t) lies in f-103C3p+z(A). Finally, if T is
the spectrum of a field, and (J’, P’, K’) is a triple of subspaces defining
a T-point of f-103C3p+z(A), then there exist subspaces J’z and K’z of

ranks (p+z) and (m - p - z) such that J’ ~ Jz ~ (P’ ~ AT) and

(P’-I-AT) c K’z c K’; hence gz is onto f-103C3p+z(A).

6. Standard modifications

(6.1) As in (4.1), let X = Grasse let Y = Grass(n-a+p)(E/A),
let R be the universal quotient on Y, and let K = Ker(EY ~ R). Neces-
sarily, rank (K) = (e - n + a - p).

Let X’ = Grass(a-p)(K). For any S-scheme T, a T-point of X’ cor-
responds to an (e-n+a-p)-subbundle K’ of ET containing A, and an
(e - n)-subbund le P’ of ET conta ined in K’. In particular, to P’ there cor-
responds a T-point s of X, which is easily seen to lie in 0" p( A). Thus there
is a natural morphism f : X’ - up(A), defined on T-points by f (t) = s;
call f the standard modification of O"p(A).

Let P be the universal subbundle on X, and, for any non-negative
integer r, set U = [03C3(p+r)(A)-03C3(p+r+1)(A)].

PROPOSITION (6.2). The standard modification f : X’ - 6p(A) is an

isomorphism off 03C3(p+1)(A), and f -1 U = Grass(n-a+p)(EU/PU+AU).
Indeed, by [1 ], (2.6), an (e - n)-subbundle P’ of ET determines a T-

point of U if and only if (P’+AT) is an (a+e-n-p-r)-bundle. Fix a
T-point s of U, defined by an (e - n)-subbundle P’ of ET. Then a T-point
off-les) corresponds to an (e-n+a-p)-subbundle K’ of ET containing
P’, hence to an (n-a+p)-quotient of (ET/PT + AT).

Finally, if r = 0, then (P’+AT) is an (e-n+a-p)-bundle, so deter-
mines a unique T-point t of X’. The morphism s H t is clearly an inverse
for f.

COROLLARY (6.3). If p ~ 1, then 03C3(p+1)(A) is the full singular locus of
03C3p(A).

Indeed, by (5.9), [03C3p(A)-03C3(p+1)(A)] is nonsingular. Conversely, the
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codimension of f-103C3(p+1)(A ) in X’ is (p + 1). However, the restriction
f off to any of the geometric fibers over S is a birational morphism. Hence,
if O’p(A) were non-singular at a geometric point of 03C3(p+1)(A), then the ex-
ceptional locus of f would necessarily have codimension one ([8], p.
415, Prop. 1), whence the assertion.

(6.4) Set Z = Grass(a-p)(A), and let J be the universal subbundle on
Z. Let

be the standard modification. Define the dual standard modification to be
the morphism

induced from F* by the duality isomorphisms (1.2) and (1.5). Expli-
citly, a T-point of Grassn(EL/J) corresponds to an (e - n)-subbundle B of
(ET/JT), hence to an (e - n)-subbundle B of ET containing JT, thence to a
T-point of ap(A). It follows from (6.2) that F is an isomorphism off 61 (R),
where R is the universal quotient on Z, and that F-1 U = Grass,(P, n Au).

(6.5) Let f : Grass(a_p)(K) -+ ap(A) be the standard modification.

Let C be an (a -p)-subbundle of A, let Y’ = Grass(n-a)(E/C), and let
f’ : Grassa (K’) ~ X be the standard modification. By (5.3), f’ is the

monoidal transformation of X with center 03C31 (C).

LEMMA (6.5.1). f is the pull-back of f’ via the canonical immersion of
Y in Y’.

Indeed, let R (resp., R’) be the universal quotient on Y (resp., Y’). Then
R = R’Y. Pulling back to Y the canonical exact sequence 0 ~ K’ ~ Ey,
- R’ - 0 then yields K = I’Y, whence the assertion.

THEOREM (6.5.2). The standard modification f : Grass(a-p)(K) ~ up(A) is
the monoidal transformation of U p(A) with center 6p(A) n cr,(C).

Indeed, by (3.3.1), it will sufhce to show that Grass(a-p)(K) is the
scheme-theoretic closure of (f’)-1[03C3p(A)-03C31(C)].

Let i’ : Grassa(K’) ~ Y’ be the structure map, and let U’ be the com-
plement in Grassa(K’) of the exceptional divisor 03C31(CY, K’) of f’. Then
there is a commutative diagram

where f’IU’ is an isomorphism, and p = (f’|U’)-1 o i’|U’. Moreover
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if t is a T-point of [03C3p(A)-03C31 (C)], it follows easily by [1], (2.5) that p(t)
lies on 0" p(A/C). Then

and it will sufhce to show that Grass(a-p)(K) is the scheme-theoretic
closure of [(i’)-103C3p(A/C)] ~ U’ in any of the geometric fibers of i’, since
the latter induces an open dense subset in each of them.

However, i’is a flat morphism by construction, and its geometric fibers
are integral. Hence the scheme-theoretic closure of [(i’)-iu,(A)] n U’
in any geometric fiber of i’ can have no embedded components, which
completes the proof.

(6.6) With the notation of (6.1), let ¿ = Grass(a-p)(KY Z/JY Z),
and let f : 03A3 ~ O’p(A) be the monoidal transformation of O’p(A) with cen-
ter 03C3(p+ 1)(A). (cf. (5.2)).

Set Z’ = Grass(a_p)(Ay), and let J’ be the universal subbundle on
Z’. Let g : Grass(a_p)(K) -+ 6p(A ) be the standard modification, and
let h : Grass(a-p)(KZ’/J’) ~ Grass(a_p)(K) be the dual standard modi-
fication. Since Z’ = Z x Y, it is clear that Grass(a-p)(KZ’/J’) = 03A3. Thus
there is a diagram

For any integer r &#x3E; 0, let U = [03C3(p+r)(A)-03C3(p+r+1)(A)]. Set G1 =
Grass,(Pu n Au), and G, = Grass(n-a+p)(EU/(PU+AU))· Recall that

f -1 U = G1 x G2. Let p2 : G1  G2 ~ G2 be the projection.

PROPOSITION (6.7). Under the above conditions f = g o h, and

h|f-1 U = p2.
Indeed, recall that a T-point of Y, corresponds to a triple of bundles

(J’, K’, P’), where J’ is a p-subbundle of Ar, K’ is an (e-n+a-p)-sub-
bundle of ET , and P’ is an (e - n)-subbundle of K’ containing J’. By de-
finition, h(t) corresponds to the pair of subbundles (P’, K’) of ET, and
g(t) to P’; hence g o h = f.
Assume that f(t) lies in U. Then (P’+AT) is an (a+e-n-p-r)-

subbundle of ET, P’ n AT is a (p+r)-bundle containing J’, and t

corresponds to the T-point of G1 x G2 determined by the pair of bundles
(J’, K’/(P’+AT)). However, h(t) corresponds to the T-point of G2
determined by K’I(P’+ AT), whence the assertion.
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7. Geometry of twisted subvarieties

Let k be an algebraically closed field, X = Grassn(V) a Grassmann
variety, where V is a k-vector space of dimension v, and X’ a nonsingular,
irreducible subvariety of X. Assume X’ is twisted in X; i.e., the universal
quotient Q on X induces a bundle Q(-1)|X’ which is generated by its
global sections. Fix a "sufficiently general" subspace A of V of dimension
a, and set Sp - X’ n uP(A).

THEOREM (7.1). Under the above conditions:

(i) Codim (Sp, X) = (v-a+p)p
(ii) S(p+1) is the full singular locus of Sp.
Indeed, (i) is a corollary of [1 ], (3.3). Let x E S’p, and assume 6p(A) is

nonsingular at x. Then Sp is nonsingular at x by [ 1 ], (3.3). The converse
is an application of the following general fact.

LEMMA (7.2). Let X be a scheme, X’ and Y subschemes, Y’ = X’ n Y, and
x E Y’. Suppose that X, Y, and Y’ are regular at x, that X’ is irreducible
at x, and that codimx(Y’, X’ ) = codimx(Y, X). Then X’ is also regular at x.

Indeed, there are functions f1,···fn, where n = codimx(Y, X),
which cut out Y at x. Let I (resp., I’; resp., J) be the ideal of Y in X (resp.,
of Y’ in Y; resp., of X’ in X) at x. Then I’ = JII; hence choosing functions
g1,···, 9m, with m = codim,, (Y’, Y), which cut Y’ out of Y at x gives
functions gl, ..., gm which vanish on X’, and whose restrictions to Y cut
out Y’. Then f1,···,fn, g1,···, gm cut Y’ out of X at x, so form part of
a regular system of parameters at x. Hence g1,···, gm cut out a scheme
which is regular at x, lies in X’, and has the same codimension in X at x
as X’, whence the assertion.

THEOREM (7.3). Sp is irreducible if dim (Sp) ~ 1.

Indeed, in view of the constructibility of the property, it suffices to

extend the ground field k to a universal domain Q, and to consider the
case where A is generic over k and dim (Sp) ~ 1. We will employ the
approach of [1], (3.3). Then (X-03C3(p+1)(A)) is covered by certain affines
U, and we shall show that the Sp n U are geometrically irreducible and all
contain a common point x. Then (Sp-S(p+1)) is irreducible. Now every
component of S. has dimension at least d = [dim (X’) + dim (6p(A))
- dim (X) ], because X is nonsingular. But sp - (Sp-S(p+1)) u S(p+1),
while dim (Sp-S(p+1)) = d, and d &#x3E; dim (S(p+1)). Therefore Sp is irre-
ducible.

In [1 ], (3.3), a certain k-basis (ei) of V is fixed, and A is taken as the
vector space spanned by independent, k-generic linear combinations fi of
the ej’s. Each affine U arises from an ordering of the ej’s and the fi’s as
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the standard affine corresponding to the two sets f1,···f(a-p), e(a-p+1),
···, en, and e(n+1), ···, ev.

Let gl , ’ ’ ’, gp be independent generic linear combinations of the
fi’s, and let g(p+1), ’ ’ ’, g(v-n) be generic linear combinations of the
e/s which are independent modulo A. Then the point x of X correspond-
ing to the subspace spanned by the gi’s is a generic point of O"p(A) which
is easily seen to lie in every U.

Finally, an analysis of the coordinates on U like that done in [1 ], (3.3)
easily shows that, for the irreducibility of Sp n U, the following form of
Bertini’s Theorem is sufficient.

LEMMA (7.4). Let k be a field, U = Spec (k[t1, ···, tN]) affine N-space,
and V a subscheme. Let L = k(s1, ···, sm), and K = k(s) be pure transcen-
dental extensions, f = si tl + ... +smtm+fl’ with fi E k[t(m+1), ···, tN],
and W = VK~{f = sl. Assume that the projection of V onto the coor-
dinates t1, ···, tm is an embedding. If V is geometrically integral of di-
mension d ~ 2, then W is geometrically integral of dimension (d-1).

Indeed, let 03A9 be a universal domain for k. Let (yl , ’ ’ ’, yN) E V(Q) be
a generic point over L, and set s’ = f(yi). Then s’ lies in L(yJ, which is
a regular extension of L. If s’ were algebraic over L, then s’ E L, and
the elements s’, s 1 , ..., sm, 1 E L would become linearly dependent over

k(yi). Since k(yi) and L are linearly disjoint over k there would exist
elements al’ ..., am, a ~ k such that s’ = s1a1 + ··· +smam + a. Since

si , ..., sm are linearly independent over k, then yi = a1, ···, ym = am,
and f(yi) = a. Hence d = 0, a contradiction. Therefore s’ is transcendental
over L and an L-automorphism of 03A9 which maps s’ to s will map (Yi) to
a point in W(03A9); replacing (yi) by it, we may assume that the generic point
of V(Q) over L lies in W(03A9).

Let (xi) be an arbitrary point in W(03A9). Since it lies in V(Q), there is
a specialization (yi) H (xi) over L. Since s = sl xl + ’ ’ ’ + sm xm +fi (xi),
the specialization leaves s fixed, so is actually over K. Thus W(03A9) is the
locus of (yi) over K. Therefore W is irreducible, of dimension (d -1 ). It
is reduced, because, by [1 ], (3.4), it is generically smooth, and does not
contain any of the finite number of points of Tl of depth 1 and codimen-
sion ~ 2.

It remains to prove that K(yi) is a regular extension of K. Reordering
y1, ···,ym, we may assume y1 ~ L(ypi), where p = char (L). Let

y = sl yl + ··· +smym + f1(yi). Then s = Y+S1Yl. Hence K(yi) = L(yi)
is a regular extension of K = L(y+s1y1) by the lemma of Zariski-Mat-
susaka.

THEOREM (7.5). Sp is Cohen-Macaulay and normal.
Indeed, this is an immediate consequence of (4.13).
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THEOREM (7.6). The completion of (Sp-S(p+2)) along (S(p+l)-S(p+2»)
is locally isomorphic to the product of (S(p+1)- S(p+2)) with the com-
pletion at the vertex of the projecting cone C over p(v-a+p) x PP, projec-
tively embedded by the Segre morphism.

Indeed, by (4.11) and (4.9), the normal cone of (03C3p(A)-03C3(p+2)(A))
along (03C3(p+1)(A)-03C3(p+2)(A)) is an algebraic fiber bundle whose fiber
is C. Hence, by (3.4) and (7.3), every point of (S(p + 1) - S(p+2)) has an
affine neighborhood U such that the normal cone of (Sp-S(p+2)) along
U is isomorphic to U x C. In view of (2.1.2), since U is smooth by (7.1),
it is rigid by (1.2.2); and, since C is rigid by (2.2.8), then U x C is rigid
by (1.4.1). Therefore, after an algebraic reformulation, the conclusion
results from Gerstenhaber’s theorem (2.3.2).
THEOREM (7.7). Let f’ : 03A3’ ~ Sp be the monoidal transformation with

center S(p+1), and set F,’ = (f’)-1(S(p+r)-S(p+r+1)). Then L’ is non-

singular, and F’r is an algebraic fiber bundle of the form

where B’ is a (p+r)-bundle, and C’ an (n - a + p - r)-bundle.
Indeed, let F : 03A3 ~ 03C3p(A) be the monoidal transformation with center

03C3(p+1)(A), and set Fr = f-1(03C3(p+r)(A)-03C3(p+r+1)(A)); consider L’as
the closure of (Sp-S(p+1)) in I, and.f’ = f|03A3’. (See (3.3)). In view of
(5.2), (5.4), (7.1) and (7.3), then conditions of (3.4.2) are met, and it im-
plies that F’r has the asserted form, that codim(F’r, 03A3’) = codim (Fr, 03A3),
and that F: is nonsingular. Since 03A3 and F,. are nonsingular, and F: =
Fr n 03A3’, the nonsingularity of 03A3’ results from (7.2).
THEOREM (7.8). Let g : 0394 ~ 6p(A) be the standard modification, 0394’

the closure of (Sp-S(p+1)) in 0394, and g’ = g+0394’. Let Gr = g-1(03C3(p+r)(A)-
03C3(p+r+1)(A)), and let G’r = (g’)-1(S(p+r)-S(p+r+1))· Then 0394’ is non-

singular, and Gr is the algebraic, fiber bundle induced by Gr, so has the form

G’r = Grass(n-a+p)(C’),
where C’ is an (n-a+p-r)-bundle.

Indeed, by (6.7), the monoidal transformation f : 03A3 ~ 6p(A) factors
as f = gh in such a way that h acts on Fr = f-1(03C3p+r(A)-03C3p+r+1(A)),
which has the form Grassr(B’)  Grass(n-a+p)(C’), as projection onto
the second factor. In the proof of (7.7) it is shown that F’r =
(f’)-1(S(p+r)-S(p+r+1)) is the fiber bundle induced by Fr . Hence G’r is
dense in the bundle induced by Gr; since the former is closed, and the
latterreduced, they coincide. Finally, since Li, Gr , and Gr are nonsingular
by (6.2) and (7.1), and since G’r = Gr n 0394’ by definition, J’is nonsingular
by (7.2).
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