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ON THE MAPS OF ONE FIBRE SPACE INTO ANOTHER

by

I. M. James

COMPOSITIO MATHEMATICA, Vol. 23, Fasc. 3, 1971, pag. 317-328
Wolters-Noordhoff Publishing
Printed in the Netherlands

1. Introduction

The purpose of this note is to study, in special cases, the Puppe exact
sequence of ex-homotopy theory (for details 1, see [4]). We begin by
recalling the basic notions of the category of ex-spaces and ex-maps,
with respect to a fixed base space B. By an ex-space we mean a space X

together with a pair of maps

such that pu = 1. We refer to p as the projection, to (f as the section,
and to (p, 6) as the ex-structure. Let Xi (i = 0, 1) be an ex-space with
ex-structure (03C1i, 03C3i). We describe a map f : X0 ~ X1 as an ex-map if

as shown in the following diagram.

In particular, we refer to 03C31 03C10 as the trivial ex-map. We describe a

homotopy f : Xo - Xl as an ex-homotopy if f is an ex-map at every

stage. The set of ex-homotopy classes of ex-maps is denoted by x(Xo, X1).
Further notions, such as ex-homeomorphism and ex-homotopy equivalence,
are defined in the obvious way.

Let B be a pointed space, with basepoint e E B. A functor 0 can be
defined, as follows, from the category of ex-spaces to the category of

pointed spaces. If X is an ex-space with ex-structure (p, u), then 03A6X is
the space p - le with 6e as basepoint. If f : X0 ~ Xl is an ex-map, where
Xo, Xl are ex-spaces, then 4lf : WXO - 03A6X1 is the map determined by

1 Theories of this type have been developed independently by J. C. Becker and
J. F. McClendon, amongst others.
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restriction of f. We refer to 03A6 as the fzbre functor. Note that 0 determines
a function

where the codomain means the set of pointed homotopy classes of pointed
maps.

In some cases this function ~ is both surjective and injective. For
example, let A be a pointed space. Regard the wedge-sum A v B as an
ex-space with section the inclusion and projection constant on A. Then
03A6(A v B) = A and we have at once

PROPOSITION (1.2). Let X be an ex-space with fibre 03A6X = Y. Then the
function

is bijective.
By a fibre ex-space we mean an ex-space with a fibration as projection.

When Xo and Xl are fibre ex-spaces there is a useful necessary condition
for an element of N(OXO, 03A6X1) to belong to the image of 9. This condi-
tion involves the brace product, a pairing of homotopy groups derived
from the Whitehead product as follows. Let X be a fibre ex-space with
ex-structure (p, s) and fibre Y. Consider the short exact sequence

where i : Y c X. Given elements 03B2 ~ 03C0*(B), ~ ~ 03C0*(Y) we form the
Whitehead product [s* fi, i * il ]. This element of 03C0*(X) lies in the kernel
of p*, since p* i* = 0, and so by exactness there exists a (unique) element
{03B2, ill, say, of x* (Y) such that

This operation { , 1, which we refer to as the brace product, is studied in
[5] and [9], where various examples are given. From (1.1), (1.3) and the
naturality of the Whitehead product we obtain

PROPOSITION (1.4). Let Xi (i = 0, 1) be a fibre ex-space with fzbre Yi.
If a E 03C0(Y0, Y1) belongs to the image of qJ then

for ail f3 E 03C0*(B), 11 E 03C0*(Y0).
Here the brace product on the left refers to Xo while that on the right

refers to Xl. In certain cases, as we shall see, the condition is sufficient
as well as necessary.

It appears that sphere-bundles play a special role in ex-homotopy
theory just as spheres do in ordinary homotopy theory. Let Oq (q =
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1,2, ... ) denote the group of orthogonal transformations of euclidean
q-space. For m ~ q we regard the (m -1 )-sphere S’ - 1 as an Oq-space,
in the usual way. Given a principal Oq-bundle over B let Em denote the
associated (m-1)-sphere bundle. When m &#x3E; q we regard E. as an ex-

space by choosing a cross-section of the bundle. When m &#x3E; q + 1 we
give n(Em, X) a natural group-structure, as described in § 2 below, so
that

constitutes a homomorphism. We do not give a group-structure to

03C0 (Eq+1, X).
Now consider the case when B is a sphere, say B = S’" (n &#x3E; 1). Let

Em (m = q+1, q+2, ···) be associated with an Oq-bundle over Sn, as
above, and let X be a fibre ex-space over S" with fibre Y. Let i, E 03C0r(Sr)
(r = 1, 2, ... ) denote the homotopy class of the identity map and let

denote the operator given by

Here the brace products are to be interpreted as in (1.4). It follows from
(1.7) below that 03C8 is a homomorphism for r &#x3E; q but this is not true, in

general, for r = q. Our aim is to set up an exact sequence containing 03C8,
as in (1.5), the fibre function ç, and a third operator

which can be defined as follows. Recall (see § 3 of [7]) that

as a cell-complex, where sm is the fibre and ,S" is embedded by the
cross-section. If f : Em+1 ~ X is an ex-map such that 4lf is constant
then the separation element d(f, c) E 1tm+n(X) is defined, with respect
to this cell-structure, where c denotes the trivial ex-map. Since pf = pc
we have p*d(f,c) = 0 and so d(f,c) = i*03B2, by exactness, where

03B2 ~ 03C0m+n(Y). Conversely, given 03B2, there exists an ex-map f, as above,
such that d(f, c) = i*03B2. We define 0(p) to be the ex-homotopy class of
fin 03C0(Em+1, X). It is not difficult to check that 0 constitutes a homo-
morphism for m &#x3E; q. Having made the necessary definitions we are
now ready to state our main result

THEOREM (1.6). The sequence

is exact.
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It is possible to prove (1.6) by using the methods of Barcus and Barratt
[2]. However the proof we give shows, in my opinion, the advantages of
exploiting the elementary properties of ex-homotopy theory.

Before we embark on the proof it is convenient to make a few further
observations. Suppose that the original q-sphere bundle has classifying
element 03B2 ~ 03C0n-1(Oq). By (3.7) of [7] the brace product in the case of
E., 1 is given by

where S* denotes the suspension functor and J03B2 E 1tn+q-l(Sq) is defined
by the Hopf construction in the usual way. Suppose that Y = S" (r ~ 1),
regarded as a pointed 0,-space, and that X is the r-sphere bundle with
cross-section associated with a principal 0,-bundle. Then {ln, lr} = Jy,
similarly, where 03B3 ~ 03C0n-1(Or) is the classifying element, and hence

{ln, 03B1} = Jy o Sn-1*03B1, where a E 03C0m(Sr). Thus

Where the relevant information on the homotopy groups is available we
can calculate the kernel and cokernel of 03C8, for a range of values of m,
and hence calculate 03C0(Em , X) to within a group extension.
For example, take n = 2, q = 2. Take Em to be the (m -1 )-sphere

bundle associated with the Hopf bundle over S2. Using standard results
on the homotopy groups of spheres we find that n(E,3, E6) ~ Z2, in
this case. If instead we take Em to be the trivial (m-1)-sphere bund le we
find that 03C0(E8, E6) ~ Z2 ~ Z2 .

2. The Puppe sequence

Let (K, B ) be a CW-pair, such that B is a retract of K, and let p : K - B
be a cellular retraction. We regard K as an ex-space with the retraction
as projection and the inclusion as section. Let EK denote the complex
obtained from the union of K  I and B by identifying (x, t) E K  I with

px E B if either x ~ B or t = 0, 1. A retraction of IK on B is given by
(x, t) H px. We give IK cell-structure, in the obvious way, so that B is
a subcomplex and the retraction is cellular. We refer to IK as the

suspension of K, in the ex-category. The r-fold suspension (r = 1, 2, ···)
is denoted by 03A3rK. Suppose, for simplicity, that K is locally finite.

Let (pxK, for any ex-space X, denote the function-space of ex-maps
K - X, with the trivial ex-map as basepoint. By taking adjoints, in the
usual way, we identify the homotopy group nr(CPxK) with 03C0(03A3rK, X).
Thus 03C0(03A3rK, X) (r = 1, 2, ···) receives a natural group-structure. This
group is abelian for r ~ 2 but not, in general, for r = 1.
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Now suppose that we have a locally finite complex K’ containing K as
a subcomplex and suppose that p can be extended to a cellular retraction
p’ : K’ ~&#x3E; B. Let K" denote the complex obtained from K’ by identifying
points of K with their images under p. Let p" : K" ~ B denote the
retraction induced by p’. We regard K’ and K" as ex-spaces, with the
retractions as projections and the inclusions as sections. Then

are ex-maps, where i is the inclusion and j is the identification map.
Consider the maps

given by functional composition. By a straightforward application of
the covering homotopy property we obtain

THEOREM (2.1 ). If X is a fibre ex-space then i * : ~X K’ ~ qJxK is a
fibration.

Notice that the fibre, over the trivial ex-map, can be identified with
qJxK" by means of j *. Hence the homotopy exact sequence of the fibra-
tion can be written in the form

This is an example of the generalization to ex-homotopy theory of the
notion of Puppe sequence. An alternative approach (see § 7 of [4]) is to
construct a sequence of ex-maps

and apply the functor 03C0 (, X).
The Puppe sequence gives useful information if one of the three domain

ex-spaces is ex-contractible. For example we have

COROLLARY (2.2). Suppose that K" is ex-contractible. If X is a fibre
ex-space then

is bijective, for r &#x3E; 1, and

is monic.

Here the term monic is used to mean that the kernel of i * is trivial;
it is not true that i * is injective, in general.

In § 1 we are given a principal 0 -bundle over B, and consider the
associated (m-1)-sphere bundle E. (m = q, q+1, ···). We regard Em+1
as the fibre suspension of Em in the usual way (see § 7 of [7]). Let m &#x3E; q.
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Then Em admits a cross-section and so can be regarded as an ex-space.
The suspension EEm is defined, as above, and the natural ex-map

is an ex-homotopy equivalence, as shown in § 6 of [4]. We identify
03C0(Em+1, X) with 7r(ZE., X) under the bijection induced by r, where X
is any ex-space. Thus 03C0(Em+ 1, X) receives a group-structure, for m &#x3E; q.

3. The operators in the sequence

Let D" (r = 1, 2, ···) denote the r-ball bounded by Sr-1. Choose a
map br : D" Sr which is constant on Sr-1 and non-singular 2 on the
interior of D’. Given q, we regard Dm and Sm-1 as Oq-spaces for m ~ q,
in the usual way, and choose bm to be an 0 -map.
We recall that an 0 -bundle over S" (n ~ 2) corresponds to a map

T : Sn-1 ~ Oq, in the standard classification. Let m ~ q. Write g(x, y) =
T(y) · x (x E sm-l, y E Sn-1) so that g : sm-l X Sn-1 ~ sm-l. Let Em
denote the space obtained from the union of Sm-1 x Dn and Sm-1 by
identifying points of Sm-1 x Sn-1 with their images under g, so that the
identification map

is a relative homeomorphism. Write 03C0h(x, y) = bny, where x ~ sm-l,
y E D", so that 03C0 : Em ~ ,Sn. We recall (see § 3 of [7]) that Em, with this
projection, can be identified with the (m -1 )-sphere bundle correspond-
ing to T, i.e. the (m- l)-sphere bundle associated with the given Oq-bundle.
If we replace sm-l by Dm, in this construction, we obtain the associated
m-ball bundle Em with projection 03C0’, say. We regard Em as a subspace of
E’m, in the obvious way, so that 03C0 = 03C0’u, where u : Em c E’m.

Let Fm , F’m denote the spaces obtained from Em , E’m by collapsing
sm-l to a point. Then p’u = vp, as shown below, where v is the inclusion
and p, p’ are the collapsing maps.

Write sy = h(e, y), where y E D", so that s : Dn ~ Em . We regard Fm as
an ex-space with projection p = np -1 and section J = sb-1n. Similarly

2 Here, and elsewhere, it is unnecessary to specify orientation conventions since the
validity of (1.6) is independent of the signs of the operators.
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we regard Fm as an ex-space with ex-structure (p’, cr’) so that v is an
ex-map. Using the method described in § 3 of [7] we can endow these
spaces with cell-structure so as to satisfy the preliminary conditions of
§ 2. Consider, therefore, the Puppe sequence associated with the pair
(F’m, Fm). Recall that F"m, in the notation of § 2, is obtained from Fm by
identifying points of Fm with their images under the projection p. Now p
determines a homeomorphism p" : E§l’ - F;’;, where Em denotes the
space obtained from E. by identifying points of Em with their images
under the projection 03C0. We endow Em with ex-structure so as to make p"
an ex-homeomorphism. The 0m-map bm : Dm ~ sm is constant on sm-l
and so determines an ex-homeomorphism between E§l’ and Em+1. By
composing this with the inverse of p" we obtain an ex-homeomorphism
03B2: F"m ~ Em+1. Now 03A6Fm is a point-space, and 4lF£ = Sm - 03A6Em+1,
where 41 denotes the fibre functor. We use 03A603B2 to identify 4lF£’ with Sm.
Let co denote the composition

where j is the identification ex-map. Then 03A603C9 = 03A6 and hence

as shown in the following diagram where X is a fibre ex-space with
fibre Y.

The fibre of F. has been identified with ,Sm. We embed the base space
S" in Fm by means of the section. Let Sm v Sn denote the union of these
two spheres, with the standard ex-structure. If, in F’m, we identify points
of Sm v Sn with their images under the projection, we obtain an ex-space
which is ex-contractible. Thus (2.2) applies to i*, as shown below, where
03C4 : Sm  Sn ~ F’m.

By using (1.2) 9 is bijective, on the right of the above diagram, and so
we obtain
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LEMMA (3.2). The fibre function

is bijective for m &#x3E; q, monic for m = q.
The next step is to set up a bijection between n(Fm, X) and

03C0(Sm+n-1, Y). Certainly Fm and Sm+n-1  Sn, as spaces, have the

same homotopy type; however in general they do not, as ex-spaces,
have the same ex-homotopy type. Situations of this kind can be dealt
with as follows. Consider the induced fibration p*X over F.. The
section of X over Sn determines a cross-section of p*X over S’n. The

extensions over Fm of this partial cross-section correspond to the ex-maps
of Fm into X. Similarly the vertical homotopies of cross-sections, rel sn,
correspond to ex-homotopies. By standard theory (see [1 ]) such cross-
sections are classified by elements of 03C0m+n-1 (Y)· The corresponding
result, in our situation, is that

is bijective, where 03BE is given as follows. Let f : Fm ~ X be an ex-map of
class y E 03C0(Fm, X), and let c : Fm ~ X denote the trivial ex-map. Let
i : Y ~ X. Then

where the separation element is defined with respect to the pair (Fm, S").
Let 1 : Sm+n-1 ~ Fm be a map 3 of degree 1 such that 03C1l : Sm+n-1 ~ Sn
is nul-homotopic. By consideration of the induced fibration l*03C1*X over
Sm+n-1 we obtain the relation

where E 1tm+n-l (Pm) denotes the homotopy class of l.
We identify Sm+n-1 with the boundary of Dm x D" in the usual way.

Let

denote the identification map used in the construction of the m-ball
bundle E’m. By restricting p’h’ to the boundary of Dm x Dn we obtain a
map

Notice that H is constant on Sm-1  Sn-1. Also H maps Dm x Sn-1
into S"’ and Sm-1  Dn into Fm. Let 03BA ~ 03C0m+n-1(Sm) denote the class
of the map

3 We use the phrase which follows to mean that 1 determines a homeomorphism
when S" c Fm is collapsed to a point.
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which agrees with H on Dm x Sn-1 and is constant on Sm-1 x D". Also
let 03BB E 03C0m+n-1 (Fm) denote the class of the map

which agrees with H on sm-l x Dn and is constant on Dm x sn-le By
(3.9) of [10] the class of H in 03C0m+n-1(F’m) is equal (with suitable conven-
tions) to

where r, j, v are the inclusion maps and where im, i" E 03C0*(Sm  S") are
the classes of the inclusion maps of Sm, Sn respectively. But H is nul-
homotopic, since h’ extends over Dm x D", and so we conclude that

It is easy to check that 1, as above, is a map of degree 1, and that

is nul-homotopic. Moreover it follows from the basic theory of the
Hopf construction (see [10]) that

where (xe 03C0n-1(Oq) denotes the homotopy class of T and the brace
product is defined with respect to Em . We arrange our orientation
conventions so that x = yn, lm}.
The next step in the proof of our main theorem is to establish that

as shown in the following diagram, where is defined by means of the
brace product, as in (1.5).

Let y’ E 03C0(F’m, X). Write ~03B3’ = 17 E n.(Y), v*(y’) = y E 7r(F., X). By
naturality 03B3’*03C4*[ln, lm] = [s*ln, i*~] = i*(ln, ~}, by (1.3), where s :

Sn ~ X denotes the section. Also Y’j*(K) = i*~*(03BA) = i*~*{ln, i.1, as
we have just seen. Now compose both sides of (3.5) with y’ and we obtain
the relation

by (3.4). Since i* is injective this proves (3.6).
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It follows at once from (3.3) by naturality that

as shown in the following diagram, where 0 is defined by means of the
separation element as in § 1.

Now we are ready to complete the proof of (1.6). As we have seen,
the Puppe sequence associated with the pair (F’q, Fq) can be written in
the form

We use ~ and 03BE to replace the terms in the middle by homotopy groups
of Y. We recall that ç is monic for m = q, bijective for m &#x3E; q ; also 03BE is

bijective for m ~ q. Hence and from (3.1), (3.6) and (3.7) we obtain
the exact sequence of § 1.

4. Proper cross-sections

The above theory can be used to give an alternative proof of the main
result of [3], which concerns the following problem. Let B be a pointed
space. Let Xi (i = 0,1) be an ex-space of B with fibre 03A6Xi = Yi, say.
Suppose we have an ex-map p : Xi - Xo which, as an ordinary map,
constitutes a fibration with fibre Z, say, over the basepoint of Yo c Xo.
Write q,p = q. Then q : Y1 ~ Yo can be regarded as a fibration with
fibre Z so that we have the situation indicated in the following diagram,
where u, v and ui are the inclusions.

Under what conditions does the fibration p admit a cross-section? As in
[3 ] we describe such a cross-section f : X0 ~ Xl as proper if
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Note that proper cross-sections are ex-maps, since p is an ex-map. If f
is proper then g : Y0 ~ Y1 constitutes a cross-section of q, where g = 03A6f.
As in [3] we describe g, or its vertical homotopy class, as the type of f.
We approach our problem by asking, for each cross-section 9 of q,
whether p admits a proper cross-section of type g.
Now let B be a (pointed) CW-complex. Suppose that (Xi, Yi) is a

CW-pair, and that the section 03C3i i embeds B as a subcomplex. Then
(Xi, B v Yi) forms a CW-pair, and the answer to our question is in-
dependent of the choice of g in its class, by the homotopy lifting property.
Consider the homomorphism

given by 03C30* on the first summand and io* on the second. Certainly 0 is
an isomorphism for r ~ 2, since ao is a right inverse of po. Suppose
that 0 is also an isomorphism for r = 1. This is the case, for example,
if 03C01 (X0) is abelian, or if TC1 (B) is trivial. Under this hypothesis we prove
LEMMA (4.2). Let f : X0 ~ Xl be an ex-map such that 03A6f : Yo - Y1 is

a cross-section of q. Then there exists a proper cross-section f’ of p such
that 03A6f’ = Of.

Since pf : X0 ~ Xo maps B v Yo identically we have (pf)*03B8 = 0,
where 0 is as above and

Hence (pf)* = 1, since 0 is an isomorphism, and so pf is a homotopy
equivalence, by Theorem 1 of [11]. Hence pl determines a homotopy
equivalence of the pair (Xo, B  Yo ) with itself, by (3.1) of [6], since pf
maps B v Yo identically. Therefore there exists an inverse homotopy
equivalence k : X0 ~ Xo, say, which also maps B v Yo identically. Write
f " = fk : Xo - Xl. Then f" agrees with f on B v Yo. Let lt : X0 ~ Xo
be a homotopy of pf" into the identity such that lt(B v Yo) c B v Yo.
By composing with h = f|B  Y0 we lift ltBB v Yo to a homotopy
1,’ : B v Y0 ~ Xl such that l’0 = h = l’1. We extend 1; over Xo so as to
cover lt, using the homotopy lifting property, and thus deform f" into f’,
say. Then f’ is a proper cross-section of p and 03A6f’ = lPf" = Tf, as
required.
To apply (4.2) we retum to the situation considered in § 1, where

Em+1 is an m-sphere bundle over S". The fundamental group is abelian,
since n &#x3E; 1. We apply (4.2) with (Xo, Yo) = (Em+l’ sm) and write
(Xl, Y1) = (X, Y), so that p : X ~ Em+1 and q : Y - sm. Hence and
from the exactness of our sequence we obtain
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COROLLARY (4.3). Let y E 1Cm(Y) be the class of a cross-section of q.
Then p admits a proper cross-section of type y if and only if

In particular, suppose that Y is a pointed O.-space, and that q is a
pointed Om-map. Suppose that X and E., 1 share the same principal
Om-bundle and that p is the map associated with q. To obtain the main
result of [3] ] from (4.3) it is only necessary to convert the brace products
into the kind of product used in [3], as shown in [5].
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