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Abstract. In the present paper we introduce a straightforward algebraic generaliza-
tion of semi-inner product (in short GSIP) spaces. We enumerate and derive some
fundamental properties of strong topologies in GSIP spaces.

1. Introduction

In his recent paper entitled ’Topologies on generalized inner product
spaces’ Prugovecki [2] has defined generalized inner product spaces and
has introduced different topologies in such spaces in the same fashion as
in the case of inner product spaces. In the present paper we define
generalized semi-inner product spaces and introduce strong topologies
in these spaces an analogous manner and obtain certain theorems. In
as much as, an inner product space is also a semi-inner product space and
similarly a generalized inner product space is also generalized semi-inner
product space. The theorems in this paper contain the corresponding
results given by Prugovecki as particular cases.

2. Definitions

DEFINITION 1. [1, p. 31 ]. Let X be a complex (real) vector space. We
shall say that a complex (real) semi-inner product is defined on X, if to
any x, y E X there corresponds a complex (real) number [x, y] and the
following properties hold:

We then call X a complex (real) semi-inner product space.
We introduce the following definition.
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DEFINITION 2. A linear space 2 is a generalized semi-inner product
space if and only if

(i) There is a subset N of 2 which is a semi-inner product space;
(ii) There is a non-empty set  of linear operators on 2 which has

the following properties:
(a) Each element of  maps 2 into N, i.e.,  c N

(b) If Ax = 0 for all A e , then x = 0.

We denote a generalized semi-inner product space by triple (2, , N).
Clearly every semi-inner product space is also a generalized semi-inner
product space in trivial sense, i.e., N = 2 and  = {1}, where 1

denotes the identity operator on 2.

Example of GSIP space which is neither GIP space nor semi-inner

product space:

Suppose 2 is the family of all measurable function on real line. Let N
be all equivalence classes of functions that are measurable and p-th
power summable on real line, where 2 ~ p  oo. We adopt the semi-
inner product in N to be

where

and sgn is the signum function.
Let  be the family of operators Ep-1(I) such that, for all x, y E 2

and for any scalars ce and p,

where I is the finite-non-degenerate jnterval, XS(t) denotes the charac-
teristic function of the set s, 2 ~ p  oo and E 1 = E.

Verification of example:
 is a linear space by

It is obvious that
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satisfies semi-inner product properties (i), (ii). We proceed to establish
(iii).

Using Hôlder’s inequality, we have

where 1/p + 1/q = 1 and the required inequality follows.
It is clear that si is a set of linear operators. From the definition of

Ep-1(I),

and

Therefore it is obvious that  c N. It is also clear that

It can be easily verified that this example is neither GIP space nor
semi-inner product space.
We define strong topology in GSIP space as follows:

DEFINITION 3. Corresponding to each x E £f

for all 03B4 &#x3E; 0, A1, ···, An e s/ and n = 1, 2,... forms a neighbourhood
basis. The topology defined by this neighbourhood basis will be called
the strong topology in the generalized semi-inner product space,

(, , N).
We define ultra-strong topology in GSIP space as follows:
For each x ~ 2 family of all sets

constitutes a neighbourhood basis. The topology defined by this neigh-
bourhood basis will be called the ultra-strong topology in the generalized
semi-inner product space (2, , N).

3.

We prove the following theorems.

3.1. Each V(0 ; A1, ···, An; ~) is balanced and convex.
3.2. If in a GSIP space (2, , N) a topology is introduced in which



312

the sets V(x; A; 03B4) are neighbourhood of x for all 03B4 &#x3E; 0, A E , then the
resulting topological space is Hausdorff.

3.3. In the strong (ultra-strong) topology on the GSIP space (2, , N),
the space 2 is locally convex Hausdorff linear space.

3.4. The GSIP spaces with strong (ultra-strong) topology is metrizable
if there is countable subset f3 of  which has the property that for any
A ~  there is a B in the linear manifold LB generated by f3 such that

PROOF OF THEOREM 3.1. Let x ~ V(0; A1, ···, An; ô) then [Akx, Akx]
 03B4 for k = 1, 2, ···, n.
Now consider

Therefore

Hence, for |03BB| ~ 1,

and

This proves that V(0; A1, ···, An; ô) is balanced.
Now we shall prove that V(0; A1, ···, A.; ô) is convex.
Let x1, x2 ~ V(0; A1, ···, An; 03B4) and 0 ~ 03BB ~ 1.

Consider

We have

Therefore
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Since

So,

Therefore

This proves that V(0; A1, ···, An; ô) is convex.

PROOF OF THEOREM 3.2.

If the topological space is not a Hausdorff space, then there are at
least two elements xi , X2 E 2, Xl :0 X2 for which any two neighbour-
hoods have common points.

Thus, for any two neighbourhoods V(x1; A; Iln) and V(X2; A; lIn)
there is at least one yn E 2 such that

Therefore

and

We have

Therefore
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Since the above is true for any positive integer n, it follows that

A(x, - x2) = 0.
By second postulate of GSIP space,

contrary to our assumption.

PROOF OF THEOREM 3.3.

The topology in definition 3 is compatible with the vector operations.
To prove that the operation of the vector summation is continuous,

we proceed as follows.
Consider the mapping

Let (x, y) be any point of 2 x 2.
Let V(x0+y0; Ai; 03B4) be an arbitrary basis neighbourhood.
Let (x, y) e V(xo; Ai; 03B4) x V(Yo; Ai; 03B4) be a basis neighbourhood

in the product topology.
We now show that

and

We have

Therefore

Hence x + y E V(x0 + yo ; A i ; 03B4).
Thus g/ is continuous at (x, y&#x3E;.
Similarly it is easy to show that the operation of multiplication by

scalar is continuous.
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In the resulting topology,  is Hausdorff according to theorem 3.2
and is locally convex due to theorem 3.1.
The proof for the ultra-strong topology can be obtained in the same

manner.

PROOF OF THEOREM 3.4.

We shall show that the family

is a neighbourhood basis of the origin in the strong topology.
For every A E  we can find due to (3.4.1 ), a B E LB for which

As fi generates LB , we have that

and consequently

for all x E 2.

Thus if we choose an integer n such that

we have that

which shows that family (3.4.2) is a neighbourhood basis of the origin.
The remaining portion of the proof is on the same lines as that given in
[2, Theorem 3.3].
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