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1. Introduction

Let Ei(n) be the number of even digits and Oi(n) the number of odd
digits occurring in the ith column of the table of logarithms of the first
n integers to the base 10. In 1899 Henri Poincaré [3, page 193 ] expressed
the belief that limn Ei(n)/n and limn Oi(n)/n exist and equal 2. Poincaré
provided mathematical support for this conjecture in [2]. Franel [1 ] dis-
proved Poincaré’s conjecture by showing that these limits do not exist.
Franel also showed that the sequence of arithmetic means of the digits in
the ith column has no limit, and gave information on the set of accumu-
lation points of these sequences.
We replace Franel’s analytic approach by elementary counting argu-

ments. We find the derivations simpler, the ideas transparent, and the
methods more general. We generalize to an arbitrary base of logarithms,
derive the exact set of accumulation points for these sequences, and show
that the limit does not exist for many sequences not treated by Franel.

Franel showed that although the frequency of the digit 1 in the ith

decimal place of log 1, log 2, ···, log n does not tend to a limit as n tends
to infinity, the frequency of the digit 1 in the ith decimal place of la,
2a, ···, na, 0  a  1, does tend to the expected value of 1/10 as n
tends to infinity. We determine exactly which monotone functions of slow
growth have the property that the frequency of the digit 1 in the ith place
tends to a limit as n tends to infinity. This extends some of the results
on the logarithm table to a wide class of function tables.
A similar problem considered by Polya and Szegô [5] ] is whether

the sequence of numbers f(n) - [f(n)] is uniformly distributed in [0, 1 ].
We extend their results by showing that, under suitable hypotheses, this
occurs if and only if the frequency of the occurrence of the digit 1 = 0, 1,
···, 9 in the ith decimal place of/(1), ···, f(n) tends to 1/10 as n tends to
infinity for each i.

1 Research partially sponsored by the Air Force Office of Scientific Research,
Ofhce of Aerospace Research, United States Air Force, under AFOSR Grant Nos. AF-
AFOSR 1113-66 and AF-AFOSR 70-1870A.
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2. Poincaré’s conjecture : distribution of even and odd digits

We begin with a new disproof of Poincaré’s conjecture. Let t be a
real number, t = 03A3~i=-~ ti 10- i, where the ti are uniquely defined by the
stipulation that when there are two choices for the decimal expansion,
i.e. lim ti = 9 or lim ti = 0, then the latter is chosen.

Consider {(logak)i : 1 k :9 ni, the ith column counting right from
the units place as 0, in the table of the first n logarithms to the base
.a &#x3E; 1. Let Ei(n) be the number of even digits in the set and let Oi(n) be
the number of odd digits.

THEOREM 1. The set of accumulation points for the sequence {Ei(n)/n}
and also for the sequence {Oi(n)/n} is the interval [1/(at + 1), at/(at + 1)],
where t = 10- i. Thus the sequences have no limit.

PROOF. Since Oi(n)/n = 1 - Ei(n)/n, the results for Oi(n)/n follow from
those for Ei(n )jn. It suffices to consider the i = 0 or units column and
establish the result for arbitrary a &#x3E; 1. To then establish the theorem for

the ith column, note that log(at) x = y if and only if loga x = ty = 10-iy.
Thus the ith column of the loga n table is the units column of the log(at)n
table and the theorem for the ith column is obtained from the units case

by replacing a by at throughout. We shall use this device frequently
without further comment.

Let E(n) be the number of even digits in {(logak)0 : 1 ~ k ~ ni.
Let wn = E(n)/n, n  1. Then (loga n)o is even if and only if there is a j
such that a2j ~ n  a2j+1. In this case E(n) = E(n -1 ) + 1, n ~ 2, so

where the last inequality follows because 0 ~ wn-1 ~ 1 and 1/(n -1) is
defined and positive. The last equality also yields wn ~ wn-1 + 1/n. Thus
0 ~ wn - wn-1 ~ 1/n, n ~ 2, when (loga n)o is even.

When (logan)o is odd, i.e. there is no j such that a2j ~ n  a2j+1,
then 0 ~ wn-1 - wn  1/(n -1 ), n ~ 2 because for these n,

.so wn(1 + 1/(n - 1)) = Wn-1 and wn-1 - wn = wn/(n -1)  1/(n - 1).
Therefore the integers ~a2j~ are the local minima for wn and the inte-

gers ~a2j+1~ are the local maxima, where ~t~ is defined for real t and

is the greatest integer less than t. The sequence is monotonic between

consécutive relative extrema. Furthermore, lim(wn - wn-1) = 0. From this
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it follows that the set of accumulation points of {wn} is the closed interval
[m, M], where

and

We first calculate ln, by estimating the wn involved. We use the fact
that the number N[a, b) of integers in the interval [a, b) satisfies

b-a-1  N[a, b)  b-a+1.
We have E(~a2p~) = 03A3p-1j=0 N[a2j, a2j+1). For t ~ 0, let d(t) be an

arbitrary number in {u: |u| ~ t}. Then N[a, b) = b - a + d(1) and

Thus

and limp~~ E(~a2p~)/~a2p~ exists and equals 1/(a + 1) so m = 1/(a + 1).
Since E(~a2p-1~) = E(~a2p~), we have

and this tends to a/(a + 1) as p increases, whence M = a/(a + 1). This
completes the proof.

Franel [1, page 293] obtains these accumulation points (limited like
all his results to base 10) but he does not say these are the only accu-
mulation points.

3. The distribution of single digits and of subsets of digits

Let N(a, i, 1, n) be the number of occurrences of the digit l in {(logak)i :
1 ~ k ~ n}.
THEOREM 2. The set of accumulation points of the sequence N(a, i, 1, n)/n

- un is the closed interval with endpoints (at -1)/(a10t - 1) and (a10t -
a9t)/(a10t - 1), where t = 10-i. In particular limn N(a, i, 1, n )/n does

not exist for any a &#x3E; 1, i = 0, ± 1, + 2, ···, l = 0, 1,..., 9.

PROOF oF THEOREM 2: Let N(a, l, n) be the number of occurrences
of the digit 1 in {(logak)0 : 1 ~ k ~ nl. Let wn = N(a, 1, n)/n. Observe
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that 1 occurs in the units place of logan iff a10j+l ~ n  a10j+l+1 for

some j = 0, 1, 2, w .
As in the proof of Theorem 1, we observe that for such n, 0 ~ wn -

wn-1 ~ 1/n when n ~ 2. If instead n does not satisfy a10j+l ~ n 
a10j+l+1 for any j, then we can show 0 ~ wn-1 - wn  1/(n - 1). The
local minima of {wn} are at the integers (al0j+l) and the local maxima
are at (a10j+l+l). The set of accumulation points is [m, M], where

and

Next we find m. In the notation of Theorem 1,

Thus

and the limit as p - ~ is (a -1)/(a10 - 1) = m. Similarly,

and the limit is (a-l)a9f(alO-1) = (a10 - a9)/(a10 -1) = M. This

establishes the theorem for the units place and completes the proof.

COROLLARY 3. If Ai is the set of accumulation points of {N(a, i, 1, n)/n}
then ~~i=1 Ai = 1/10.

Proceeding as in the proof of Theorem 1 readily yields the following
result [5, page 73, problem 180].

THEOREM 4. If f is any non-constant function defined on Il = 0, 1, ···, 9},
then

does not exist for any a &#x3E; 1 or any i = 0, + 1, ···. The set of accumulation
points is [m, M] where general formulas for m and M can be obtained.
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REMARK. The non-existence of the limits in Theorems 1, 2, and 5 be-
low follow by special choice of f. In the case of even integers, choose
f ( j) = 1, j even and f(j) = 0 otherwise. For single integers 1, choose

f(l) = 1 and f(j) = 0 otherwise. For the arithmetic mean, choose

f(j) = j,j = 0, ···, 9.

4. The arithmetic means

Let Y- (a, i, n) be the sum of the digits in the ith place of

{logak : 1 ~ k ~ n}. Let M(a, i, n) = Y(a, i, n)in be the corresponding
arithmetic mean.

THEOREM 5. The set A of accumulation points of {M(a, i, n) : 1  n}
is the interval [m, M] with

and

We have m  M so limn M(a, i, n) does not exist for any a &#x3E; 1 or any

i = 0, ±1, ±2, ···. However, ~~i=1 Ai = 4.5.
PROOF. Let Z(n) be the sum and let wn be the mean for the units (i = 0)

place. We first show that wn is monotone on each of the intervals [aj, aj+1),
i ~ 0. Choose n ~ [a10k+l, a10k+l+1), i.e., logaan has 1 in the units place.
Then

so w, is a convex combination of w,,-, and 1. Thus if w,,-, &#x3E; 1, then
wn-1 &#x3E; w,, &#x3E; 1; if wn-1 = l, then wn-1 = w,, = 1; and if wn-1  1, then
wn-1  wn  l, and wn is monotone on each [a10k+l, a10k+l+1) tend-
ing towards 1 on each such subinterval. Thus the relative maxima and
minima of {wn} are all among the numbers w~aj~,j ~ 1. If we write

we have |wn - wn-1| ~ 9/n. We conclude that the set of accumulation
points is the closed interval [m, MJ with
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There is an infinite subsequence of the ~aj~, say nk, such that limk
nk = m. An infinite number of the {nk} are in one of the ten sets

{~a10k+l~ : k ~ 01, 1 = 0,...,9. Thus m = limk w~a10k+l~ for some

fixed 1. Hence

Similarly,

Thus we wish next to determine the w~a10k+l~.
For convenience we find w~a10k+l+1~ instead. We have

The first double sum equals

The second double sum can be found similarly, or by using the first
double sum and substituting:

Dividing each double sum by ~a1 0k+l+1~, we note that each limk~~ exists
and we find

Thus

Substituting at for a and using L’Hospital’s rule, we find limtt~0 fl(at) =
4.5, which agrees with the result in [1 ] for a = 10. Thus ~~i=1 Ai = 4.5.
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Now let k(a) = la11 - (l+1)a10 + 10a10-1-10a9-1-la+(l+1), the
numerator of fl(a). We have k9(a) = a(9a10 -10a9 + 1) = ak0(a) which
shows f9(a) &#x3E; f0(a). Letting

we see that gl(a) is monotone strictly increasing in 1. Thus fl(a) either
strictly increases as 1 increases or it first decreases, then increases. Hence
f9 (a) is the unique maximum and

which is almost exactly 8 + 8/9 for a = 10.
If 1 ~ 5 it follows that

Franel [1, page 291 ] gives intervals of accumulation points for 1 = 0,
···, 9, for the case a = 10. If we let a = 1 in his formula and replace his
qi by at, we get our fz(a). Thus the convex hull of his set of accumulation
points is the complete set. Whether he has all the points does not seem
easy to check. In any case, he does not seem to know, and his information
(twenty endpoints) contains much that is superfluous (only six are

needed).
Letting

let u(a) be the value of u for fixed a such that gu(a) = 0. We find

and we see that m = f(u(a»(a). As a ~ oo, ~u(a)~ = 0 and as a~1,
~u(a)~ = 4.

REMARK. The type of theorem and method of proof generalize to
¿(a, i, n, S)/n where ¿(a, i, n, S) is the sum of all digits in the set S
which occur in the ith place of {logak : 1 ~ k ~ n}.
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5. Further generalizations

The preceding theorems and proofs do not crucially depend on the
choice of 10 as the base for the number system. They will hold in their
essentials when we use any integer b ~ 2 as the base. Now suppose that
in the previous work we replace a single ith column by a set of consecutive
columns i 1, i1 +1, ···, i1 + m, m ~ 0. By changing the logarithm base
from a to a = ab-m-i1, these become columns - m, - m + 1, ···, 1, 0.

By changing the base of the number system from b to bm+1, these m + 1
columns become the units column. Therefore we have reduced a problem
involving m + 1 columns to a problem involving only the units column.

This suggests generalizing the problems previously considered to

m arbitrary columns il  i2  ...  im , m ~ 1. By using the transfor-
mations a --+ ab-irn and b ~ bim-i1+1, we reduce to the previously
analyzed units column case. We now use Theorem 4 and associated
methods to complete the work. As an example of the results we have:

THEOREM 6. Poincaré’s conjecture generalized to m arbitrary columns
of the table {logak : 1 ~ k ~ ni does not hold.

In this connection we note the attempt by Fisher and Yates (reported
in [4, page 484] to construct random numbers by selecting digits from
the 15 -19 columns of a table of twenty place logarithms to the base 10.
A column of the logarithm table is not normal and in general a row

is not: for some a and k, for instance, logak is rational. However con-
siderations like those in [2, 3 ] suggest that for paths through the logarithm
table that move down and sufficiently rapidly to the right, so that limi,j
[a’t, a(j+1)t) = 0, t = 10-i, then the number associated with the path is
normal. In particular we suggest the:

CONJECTURE: The diagonal sequence {(logai)i : i ~ 1} is normal for

every base a &#x3E; 1 and every integer number base b ~ 2.

REMARK. Mark Finkelstein suggested the following to us. Let w(l)n be
the fraction of initial digits which are l in the table {logak : 1 ~ k ~ ni.
Then the set of accumulation points for {w(l)n} is [0, 1].

PROOF. Let N(l, n)/n = w.( , 1) and note that the initial digit of logak is
1 iff al·10j ~ k  a(l+1)10j for some j ~ 0. Then w(l)n increases on in-
tervals [al·10j, a(l+1)10j) and decreases otherwise. Hence w(l)n has rela-
tive maxima at {~a(l+1)10j~ :j ~ 01 and relative minima at {~al·10j~ :
j ~ 01. We have

and it follows that limj~~ w~a(l+1)10j~ = 1.
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Similarly,

and

That every point in [0, 1] is an accumulation point for {w(l)n}, 1 ~ 1 ~ 9,
now follows.

6. Extensions to monotone slowly increasing functions

THEOREM 7. Let f be a strictly increasing function mapping [0, 00) onto
itself with limx~~f(x)/x = 0. Let N[ f, i, 1, n] be the number of occurren-
ces of the digit 1 in the ith decimal place (counting to the right with the
units place as zero) of the numbers {f(k) : 1 ~ k ~ nl. Then the cluster
points of the sequences

are exactly the points in the interval

where

Consequently limn N[f, i, 1, n]/n exists if

(a) lim (an/bn) = 1 and

(b) either

Conversely, if lim,,N[f, i, 1, n]/n exists, then both the limits in (b) exist
(and are equal). If this limit limnN[f, i, 1, n]ln is not 1, (a) holds as well;
if it is 1, (a) may or may not hold.

PROOF. For any integer i, the ith decimal place of f(x) is the units de-
cimal place of 10if(x). Suppose that Theorem 7 has been established for
the units decimal place, i.e. the case i = 0. Applying this result to the
function (10if)-1(x) =f-1(xjl0i), establishes the results of Theorem 7
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for the ith decimal place of f(x). Thus we only need to prove the theorem
for the special case i = 0 and that is what we will do.
The digit 1 occurs in the units place of f(n) if and only if f(n) =

10j+ 1+y, 0 ~ y  1, where j is a non-negative integer, i.e. if and only if

For simplicity we set aj = f-1(10j+l) and bj =f-1(10j+l+1).
Let wn = N[ f, 0, 1, n]/n. For n satisfying (1) we see that

whence wn ~ wn-1 and wn ~ wn-1 + 1/n. For n not satisfying (1),

so

whence wn ~ wn-1 and

The sequence {wn} is therefore monotonic between relative extrema with
the integers at which local minima (maxima) occur being of the form
~an~(~bn~), where ~t~ denotes the greatest integer less than t. Further-
more, since lim(wn - wn-1) = 0), the set of accumulation points of
{wn} is the entire interval [m, M] where

We estimate,

Divide (2) by ~an~. Since f(n)/n tends to zero as n tends to infinity, by
hypothesis, it follows that n/f-1(n) and thus nj(an) also tends to zero
as n tends to infinity. Hence both sides of the inequality are close to
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for large n. Thus lim wn = lim mn .
Similarly

Dividing (3) by ~bn~ we see that for large n, w~bn~ is close to

Hence the interval of accumulation points of {wn} is as described in the
theorem.

We have seen that the sequence {wn} clusters in the interval [lim mn,
lim MJ, where

We have

Thus if (a) of the theorem holds, Mn - mn ~ 0 so if (b) also holds,
limn N[, f, 0, 1, n]/n = lim M. = lim mn.

Conversely, suppose limn N[ f, 0, 1, n]/n exists. Then limn Mn = limn mn
so limn(Mn - mn) = 0, whence

If limn mn  1, then

establishing (a).
If lim N[f, 0, l, n]/n = 1, then (a) may or may not hold. In fact,

anfbn may have any limit between 0 and 1 inclusive or may have no
limit. For example, let f(x) be defined by choosing g(x) = f-1(x) to
have slope 1 if x ~ ~~j=0 [10j, 10j+1) and g(x) to have slope 10’ if
x E [10j, 10j+1),j = 0, 1, ···. We specify g is continuous and g(0) = 0,
which completely determines g, hence f. It follows readily that limn~~
f(x)/x = 0, that limnN[f, 0, 0, n]/n = 1, and that an/bn ~ 1/10. By re-
placing the slopes 10’ by suitable constants cj, the sequence an/bn can be
made to have any limit between 0 and 1 inclusive, or no limit at all.
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REMARK. Theorem 7 and the proof generalize readily to f such that
for some c &#x3E; 0 and d &#x3E; 0, f is a strictly increasing mapping of [c, ~)
onto [d, oo ) and limxf(x)/x = 0, the domain of f -1 being [d, oo ). Theo-
rem 8 and Theorem 9 below similarly generalize.

Neither condition (a) nor condition (b) is alone enough to establish
the existence of the limits lim,, N[ f, i, 1, n]/n. To see that (b) will not suf-
fice, let f(x) = loga(1+x), a &#x3E; 1. For the Oth decimal place,

exists and equals (a -1)/(a10 -1) but lim an/bn = 1/a. So, although (b)
is satisfied, the limits limn N[ f, 0, 1, n]/n do not exist. (Note that for no 1
can we have lim N[f, 0, 1, n]/n = 1, for then for all other 1 the limits
would be 0 and thus condition (a) would hold.) To see that condition (a)
will not suffice, define f by constructing its inverse g as follows. Let

where 0  c(O, n)  c(l, n)  ...  c(9, n)  1, and g linear for all

other values in [0, oo ). Then g is a monotone function with

so that condition (a) is satisfied. However the sum

is the ratio of the growth of g over intervals of the form [10j+l, 10j+
l + 1], j = 0, 1, ···, n - l, to the total growth of g over [0, 10n]. (This
is asymptotic to the frequency of the occurrence of the digit 1 in the units
place of f(k) for those integers k with 0 ~ f(k) ~ l On. ) So for any given
10 the sum

can be made to converge or not converge by appropriately choosing the
constants c( j, 10).

In light of the difhculty of checking condition (b) of Theorem 7, it is
useful to know that condition (a) suffices for many functions. We show
this below in Theorem 8.

THEOREM 8. Let f be a diff’erentiable function mapping [0, 00) onto itself
with f’ strictly decreasing to zero. Then
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The limit limnN[f, i, l, n ]ln exists if and only if (a) lim anj bn = 1 ; in this

case the limit is 1/10. The limits limn N[f, i, 1, n]/n all exist (and are
1/10) for 1 = 0,1,...,9 and i = 0, + 1, +2, ... if and only if

PROOF. For any given integer k and n &#x3E; k,

Thus the hypotheses of Theorem 7 are satisfied by the function f.
As in Theorem 7 we will only consider the units place of f since the

result for the ith decimal place follows by considering 10if.
Let 1 be a given integer with 0 ~ 1 ~ 9. Recall the notation of Theorem

7 : 9’ = f 1, Cln = g(10n+l), bn = g(10n+l+ 1),

Using the fact that g(n+1)-g(n) is an increasing function of n we
compute

and also

Thus

and
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Dividing the right hand side of (5) by an+1 we see that lim mn ~ 1/10
and dividing the left hand side of (5) by bn we see that lim Mn ~ 1/10.
Hence limn Nf[f, i, 1, n]/n ~ 1/10 ~ limn N[ f, i, 1, n ]/n.
Suppose that lim anjbn = 1. Then from the left hand side of (4),

lim bn-1/an = 1. It now follows from the left hand side of (5) that
lim mn ~ 1/10 and, from the right hand side of (5), that lim Mn ~ 1/10.
Then by Theorem 7,

On the other hand suppose that the limit limn N[f, 0, 1, n]/n exists. As
we saw above, limn N[ f, 0, 1, n]/n must be 1/10 and lim an/bn = 1 by
Theorem 7.

The rest of the theorem follows directly.

REMARK. Theorems 7, 8 and 9 are related to a theorem given by Koksma
[9, pages 88 - 89, Satz 3 ]. In Theorem 7, for instance, the consequence of

(a) can be deduced from Koksma’s Satz 3 for 1 = 0, when additional

hypotheses are placed on f to satisfy the hypotheses of Satz 3. That part
of Theorem 8 which asserts that if (a’ ) holds then the limits all exist and
are 1/10 can be deduced from Satz 3 if we add the hypothesis that g’(x)/
g(x) tends to zero monotonically as x - 00. In the absence of such an
additional hypothesis, Theorem 8 and Satz 3 each apply to functions not
covered by the other. The relation between Theorem 9 and Satz 3 is

similar.

We see from Theorem 8 that if the frequency of all digits 0, ···, 9
in the ith place of f(1) ··· f(n) exists for a function f satisfying the
hypothesis of the theorem, then the frequency is 1/10 and it also is 1/10
for every digit in every decimal place.

Franel’s results that the limits lim N[f, i, 1, n]/n do not exist for
f(x) = log10x and are 1/10 for f(x) = xa, 0  a  1, follow immediately
from Theorem 8 (as extended by the Remark following Theorem 7).

7. The distribution of f(n) module one

In [5, problems 174 and 182] Polya and Szegô discuss the problem
of when, for a certain class of functions f, the sequence x,, = f(n) -
[f(n)] is uniformly distributed in the interval [0, 1 ]. A sequence {xn} is
uniformly distributed in [0, 1 ] if for each Riemann integrable function
f on [0, 1 ],

We show that their results, which consist of one condition which is
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necessary and another which is sufficient, follow from the simple neces-
sary and sufficient condition of Theorem 8.

THEOREM 9. Let f be a differentiable function mapping [0, ~) onto
itself with f’ strictly decreasing to zero. Then the sequence Xn = f(n) -
[f(n)] is uniformly distributed in [0, 1] if and only if the frequency of the
occurrence of the digit 1 ih each decimal place of f (1),···, f(n) tends to
1/10 as n tends to infinity, i.e. iff limn N[f, i, 1, n]/n = 1/10 for all i and
l = 0, 1, ···, 9.

PROOF. Suppose that Xn = f(n) - [f(n)] is uniformly distributed in
[0, 1 ]. The ith digit of f(n) is 1 iff xn belongs to

Letting Cs be the characteristic function of S,

Conversely suppose that lim N[ f, i, 1, n]/n = 1/10 for all i and

1 = 0, 1, 2, ···, 9. We need to show that for xn = f(n) - [f(n)]

for all Riemann integrable functions h. For each e &#x3E; 0 there are functions

hl and h2, both linear combinations of characteristic functions of inter-
vals of the form [a, b), a and b rational, with h1 ~ h ç h2 and

It follows that it suffices to establish (7) for linear combinations of
characteristic functions of intervals with rational endpoints. By linearity
it is enough to show that (7) holds for C[a, b], a and b rational and another
use of linearity shows that it will do to show that (7) holds when

where 1 = 0, 1, ..., 9, i is a positive integer and j is a non-negative in-
teger with 10j+l+1 ~ 10i, i.e. j ~ 10i-1 - 1. Then xn lies in [(10j+/)/10i,
(10j+l+1)/10i) iff (10j+l)10-i ~ Xn =f(n)-[f(n)]  (10j+l+1)10-i
iff 10j+l+p(10i) ~ 10 f (n)  10j+l+ 1 +p(l0i), where p = [f(n)]. For
0 ~ j ~ 10i-1 - 1, let Ij(n) be the number of integers in the set
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i.e. the number of integers m ~ n with

for some p = 0, 1, ···. An integer k ~ n is one for which the ith digit
of f(k) is 1 iff m belongs to ~10i-1-1j=0 Aj(n); thus

We want to show that for the function h = C[a,b] we have

and we see that

Thus, using (8), we must show that if N[ f, i, 1, n JIn --+ 1/10, then each of
the 10i-l pieces I0(n)/n, I1(n)/n, ···, I10i-1-1(n)/n contributes an equal
share to the total frequency.

Let g = f -1 and let N[a, b) be the number of integers in [a, b). Then

where po = max {p : g(p+(10j+l+1)10-i) ~ n}, i.e. po - [f(n) ]. In
general Li is not 0. However, we are interested in those n which are rela-
tive maxima or relative minima and in those cases d is 0.

Now Ij(n)ln has relative maxima only at n of the form

~g(m+10j+1+1)10-i)~ and for such n the sum (9) becomes

Multiplying this by 10’ and estimating as in Theorem 8 yields

lim sup 10iIj(n)/n

Since g’ is monotone increasing,

We use this fact as we did in Theorem 8 to see that (10) is bounded above
by:
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since

from Theorem 8.

Thus we have shown that limn sup Ij(n)/n ~ 10 - i for j = 0, 1, ···,
l0i -1-1. This, together with

and

show that lim Ij(n)/n = 10-i for j = 0, 1, ···, 10i-l_1. This completes
the proof of the theorem.

COROLLARY 10. [5, problems 174 and 182] Let f have the following
properties for t ~ 1:

1) f is (continuously) differentiable,
2) f is monotone increasing to oo as t ~ oo,
3) f’ is monotone decreasing to 0 as t ~ oo.

Then

4) (a) If tf’(t) ~ oo as t ~ 00, the sequence Xn = f(n) - [f(n)] is
uniformly distributed in [0, 1 ].

(b) If tf’(t) ~ 0 as t ~ oo, the sequence Xn = f(n) - [f(n)] is not

uniformly distributed in [0, 1 ].

PROOF. An immediate consequence of Theorem 8 and Theorem 9 as

generalized in the remark following the proof of Theorem 7 since, as
noted in [5], for each a &#x3E; 0 in case (a)

and in case (b)

We thank the referee for his many helpful suggestions.
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