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Introduction

In [7 ] Monna and Springer introduced an integration theory in which
the scalar field was a field Kwith a non-archimedean valuation. In [10] a
non-archimedean Fourier theory has been developed, mostly for abelian
groups. This paper deals with continuous representations of locally com-
pact groups G into non-archimedean Banach spaces.

It is an easy exercise to show that in order that G has sufficiently many
of such representations G must be 0-dimensional. Like in the ’classical’
case, a general treatment appears to be extremely difficult. As a first step,
however, this paper tries to show that the n.a. representation theory for
compact groups is at least as smooth as the ’classical’ theory. One can
prove non-archimedean analogues of the Peter-Weyl Theorem and
the Tannaka Duality Theorem. A disadvantage is the lack of Hilbert
spaces in the non-archimedean situation. In this paper we do introduce
a sort of a non-archimedean Hilbert space (0.2), but still some work is
involved to show that an invariant subspace has an invariant complement.
(Lemma 4.2). On the other hand, the generalized Fourier transformation
is an isometry, which phenomenon does not occur in the classical situa-
tion. (4.10). Since a 0-dimensional compact group G is projective limit
of finite groups, it will not come as a surprise to the reader that our basic
tools are Maschke’s Theorem and the orthogonality relations of re-
presentations of finite groups. In fact, we will show that ’unitary’ repre-
sentations of G into n.a. Hilbert spaces over K have very intimate re-

lationships with representations of finite groups into vector spaces over
the residue class field of K (5.1 and 5.2). As to a treatment of represen-
tations for locally compact groups, the only result is in fact Theorem 3.1
which shows that there is a 1-1 correspondence between representations
of G and of L(G). The next step should be some sort of a Gelfand-Raikov
Theorem. The classical proof involves positive functionals and the Krein-
Milman Theorem and a direct translation of this proof seems to be impos-
sible. For the ’classical’ theory of representations we refer to [2].
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0. Preliminaries

Let K be a complete non-archimedean valued field. The valuation is
supposed to be non-trivial. A (K-) Banach-space is a K-vector space E,
together with a real-valued function ~ ~, defined on E, such that

for all 03BE, ~ E E, Â E K, and such that E is complete. By 1 IEI ~ and |K| we
mean Um ~ ~, resp. Im |I .
A collection (e03B1)03B1~I in E is called orthonormal if for all finite subsets J c I
we have

An orthonormal set (e03B1)03B1~I is called an orthonormal basis in case its linear
hull is dense in E. Then every 03BE E E can be written as a convergent sum

where

Two subspaces S, T are called orthogonal in case for every 03BE E S, YI E T we
have

In 4.7 we need the following

0.1 LEMMA. Let E be a Banach space, let (e03B1)03B1~I, (f03B1)03B1~I be subsets of E
and E* respectively. Suppose ~e03B1~ ~ 1, ~f03B1~ ~ 1 for all oc and

where |d03B1| = 1. Then (e03B1) and (f03B1) are orthonormal.

PROOF. Let f =03A3 03BB03B1f03B1(03B1 E K). Clearly 1 if 11 | ~ max |03BB03B1|.
Conversely 1 Ifl ~ ~f(e03B1)~/~e03B1~ ~ ~f(e03B1)~ ( = |03BB03B1| for all oc. A similar

proof works for the e03B1’s.
The following concept of non-archimedean Hilbert spaces, due to van

der Put is different from that of Kalisch [5]. We give the statements with-
out offering the proofs. Most of them are unpublished results of van
der Put. Some proofs can be found in [8].

0.2. DEFINITION. Let E be a Banach space with ~E~ = |K|. E is called
a n.a. Hilbert space if one of the following equivalent conditions is satisfied.
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(i) Every closed subspace has a normorthogonal complement.
(ii) For every closed subspace S’ c E there is a projection P of E onto

S with JIPII = 1.

(iii) Every orthonormal set can be extended to an orthonormal basis.

(iv) Every maximal orthonormal set is an orthonormal basis.

Before giving a classification of n.a. Hilbert spaces we introduce a

Iresidue class space’ as follows. Let E be a n.a. Hilbert space.
Then É = {03BE E E : ~03BE~ ~ 1}/(03BE E E : ~03BE~  1} is in the obvious way
a vector space over the residue class field k of K. A K-linear map ~ : E ~ F
with ~~~ ~ 1 defines in a natural way a k-linear map ~ : E ~ F. The
assignment E 1-+ E is functorial. A set (e03B1)03B1~I ~ E is orthonormal if and
only if (e03B1)03B1~I forms an independent set. From this we can see that finite
dimensional K-vector spaces with an orthonormal basis are n.a. Hilbert

spaces. It is also easy to verify that every K-Banach space E with 1 IEI =

IKI over a discrete valued field is a n.a. Hilbert space. Without proof we
mention that every n.a. Hilbert space is one of the above types. Note
that subspaces, quotient spaces, and finite direct sums of n.a. Hilbert spa-
ces are n.a. Hilbert spaces. In 5 we need the following lemma.

0.3 LEMMA. Let E,Fbe n.a. Hilbert spaces. Let 0 : E - F be a K-linear
map with ~~~ ~ 1. Then

(i) ~ = 0 iff ~~~  1,

(ii) ~ is bijective iff ~ is a surjective isometry.
PROOF. Left to the reader.

A n.a. Banach algebra over K is a Banach space A over K, together with
a multiplication such that A becomes a K-algebra and such that 1 lfgl ~
~f~ ~g~ for all f, g E A. We will say that a net (u03B1)03B1~I is an approximate
identity for A if 1 lu,,, 11 I ~ 1 for all a and lim fu03B1 = lim u03B1f = f for all

f ~ A.

1. G-modules and A-modules

Throughout this paper G is a locally compact 0-dimensional group with
identity e and Kis a complete non-archimedean valued field. The valuation
is supposed to be non-trivial.

1.1. DEFINITION. A G-module is a Banach space E, together with a map
03C4 : G  E ~ E (written as (x, 03BE) F-+ x03BE) such that

(i) i is separately continuous and linear in ç
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(iii) there is M &#x3E; 0 with /1 xC; 1 ~ M~03BE~,
for all x, y E G, 03BE E E.

If we put Ux(03BE) = x03BE, we obtain a bounded and a strongly continuous
representation x H Ux of G with E as a respresentation space. Conversely,
a bounded and strongly continuous representation of G with representa-
tion space E induces on E a structure of a G-module. Both viewpoints are
equivalent. From (i), (ii), (iii) it follows easily that the structure map r is
jointly continuous. If G is compact, condition (iii) follows from (i) and
(ii): for 03BE E E, the map x ~ ~x03BE~ is bounded, the uniform boundedness
principle implies that the maps 03BE H x03BE(x E G) are uniformly bounded.

1.2. It is clear what one should mean by (continuous) homomorphisms
of G-modules and G-submodules. If S is a G-submodule of a G-module

E, then E/S with the obvious structure map and the quotient norm is a
G-module. Let E, F be G-modules and let 0 : E - F be a homomorphism.
Then Ker 0 and lm 0 are G-modules. E and F are called topologically
equivalent (notation E - F) in case there exists a homomorphisms
E ~ F that is an isomorphism of topological vector spaces.

If, in addition, 0 can be chosen to be an isometry we call E and F iso-
metrically equivalent (notation E ~ F).
Let E, F be G-modules. The space E (D F with the norm

and the structure map

is a G-module, called the direct sum of E and F.
A G-module is called simple (irreducible) in case it has only trivial sub-

modules.

1.3. Isometrical G-modules.

Let E be a non-zero G-module. Define

It is an easy exercise to show that n(E) ~ 1. We call E an isometrical G-

.module in case n(E) = 1. This is equivalent to IIxçll I = lIçll for all

x E G, 03BE E E. Every G-module E is topologically equivalent to an isometrical
G-module: define on E the new norm ~03BE~’ = supx~G Ilx. çll, and observe
that ~ ~’ ~ ~ ~ and ~x·03BE~’ = ~03BE~’ (x ~ G, 03BE ~ E).
For isometrical G-modules we define arbitrary direct sums as follows.

let (E03B1)03B1~I be a collection of isometrical G-modules. The space {(03BE03B1)03B1~I ~
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03A003B1 E03B1 : lim03B1 ~03BE03B1~ = 0} together with the norm

and the structure map defined via

is easily seen to be an isometrical G-module, called the direct sum of
the E03B1, notation ~03B1~I E03B1. (In fact, it is the direct sum in the category
of isometrical G-modules, the morphisms being G-module homomorphisms
with norm ~ 1).
A Hilbert G-module is an isometrical G-module E, where E is a n.a.

Hilbert space (See 0.2.).

1.4 Finite dimensional G-modules.
Let E be a finite dimensional G-module. Its character XE is defined via

XE is a continuous function: G ~ K; XE(XY) = XE(YX) for all x, y E G;
if E, F are finite dimensional then ~E~F = xE + XF, 1 if E - F then XE =

XF. The proofs are classical.

1.5 DEFINITION. Let A be a K-Banach algebra with approximate identiy.
An A-module is a Banach space E, together with a map p : A  E ~ E

(written as ( f, ç) ~ f03BE) such that

(i) p is bilinear and continuous

Write Tf(03BE) = f03BE. The map f H T f is a non-degenerate continuous re-
presentation of A with representation space E. Conversely, a non-dege-
nerate continuous representation of A with representation space E induces
on E the structure of an A-module. Let (u03B1)03B1~I be an approximate iden-
tity of A. Conditions (i), (ii), (iii) are equivalent to (i), (ii) and

PROOF: Clearly (iii)’ implies (iii). To show that (iii)’ follows from (i),
(ii), (iii), consider the set Eo = (j E E : u03B103BE ~ 03BE}. Since u03B1f03BE ~ f03BE for all
JE A, Eo is dense in E. We claim that Eo is closed: let Çn E E0, 03BEn ~ 03BE.
Then there is C &#x3E; 0 such that
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By choosing first n properly and then 03B1, we can make ~03BE - u03B103BE~ small.

1.6. The remarks in 1.2 through 1.4 can be made for A-modules as well,
of course with the obvious modifications. To find the counterpart of an
isometrical G-module, define for a non-zero A-module E:

Again, we have q(E) ~ 1. If q(E) = 1 we call E a normalized A-module.

Every A-module E is topologically equivalent to a normalized A-module.
(Define ~03BE~’ = sup {~f03BE~/~f~ :f ~ A, f ~ 0}). It is also clear how one
should define infinite direct sums of normalized A-modules. If E is finite

dimensional, define

The properties of 03A6E are similar to those mentioned in 1.4 for characters.

2. Vector-valued Haar measure

Let E be a K-Banach space. By C~(G ~ E) we mean the space of
continuous functions : G ~ E that vanish at infinity. With the supremum
norm C~(G ~ E) is a Banach space. Define 0 : C~(G ~ K) 0 E ~
C~(G ~ E) via

If one puts on Coo(G -+ K) Q E the greatest cross-norm (03C0-norm), 0 be-
comes an isometry with dense image, hence 0 can be extended to an iso-
morphism of Banach spaces (again called 0)

Let mK : C~(G ~ K) - K be a continuous, non zero, left invariant linear
function (i.e., MK is a left Haar integral). Define mE : C~(G ~ E) - E
by

Then mE is continuous, non-zero, and left invariant. Further, let 0 : E - F
be a continuous linear map. Then

The proofs are straightforward and are omitted. The above observations
lead to the following

2.1. DEFINITION. K is called suitable with respect to G in case for each
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K-Banach space E there exists a continuous map mE : C~(G ~ E) ~ E
such that

(i) mE is continuous and non zero

(11) mE is left invariant

(iii) for every continuous linear map ~ : E ~ F(E, F Banach spaces)
we have ~(mE(f)) = mF(~ 0 f).

2.2. THEOREM. If mE and mÉ satisfy (i), (ii), (iii) of Definition 2.1. then
there is À E K such that mE = 03BBm’E for all E. Further, K is suitable with
respect to G if and only if a K-valued left Haar integral on C~(G ~ K)
exists.

PROOF. Let 03BE E E. Define ~ : K ~ E by ~(03BB) = Àç(À E K). Then we
have

Now (~  f)(x) = f(x)03BE = 03B8(f ~ 03BE). So mE(~ f) = (mK à 1)(f ~ 03BE)
= mK(f)03BE. Similarly, m’E(~ o f) = m’K(f)03B6. Since the K-valued

Haar measure is unique (see [7]), there is À E K with mK = 03BBm’K. Hence
mE = Àmi on functions of the type 03B8-1(f ~ ç) hence for all functions.
The second part of the theorem has been proved at the beginning of this
section.

2.3 In the sequel TG will be the collection of the compact open sub-
groups of G. The characteristic of a field L is denoted by x(L ), the residue
class field of K by k.
A necessary and sufncient condition for K to be suitable with respect

to G is given in [7]. For reasons of simplicity we shall work mostly
with pairs G, K that have the following property: either x(k) = 0 or G
is p-free whenever x(k) = p ~ 0. (Here p-free means that for every
Hl, H2 ~ 0393G, Hl c H2, the index (H2 : Hl ) is not divisible by p).
Then K is suitable with respect to G and moreover we can choose mK
such that |mK(H)| = 1 for all H E 0393G. For more details we refer to [10]. In
[7], a Fubini Theorem is proved for K-valued integrals. Using the de-
finition of mE it is not very hard to prove a Fubini Theorem for the vec-
tor-valued Haar integral.

3. G-modules and L(G)-modules

In this section we assume that G admits a left Haar integral mK with
ImK(H)/ = 1 for all H ~ 0393G . Instead of mE(f) we sometimes write
~f(x)dx (f E C~(G ~ E)). It is shown in [10], that the ’integral norm’
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on CJG ~ K)

equal to the supremum norm, and that |mK(f)| ~ ~f~~ ( f E C~(G ~ K)).
It is not very hard to show that also ~mE(f)~ ~ ~f~~(f ~ C~(G ~ E)).
Further, it is also shown in [10], that the space C~(G ~ K) forms a
Banach algebra L(G) under convolution and that {uH : H ~ 0393G} forms an
approximate identity for L(G). Here H1 ~ H2 iff H1 ~ H2 and uH is
defined as follows

Let f: G ~ K and XE G. We define fx by fx(y) = f(x-1y), (y e G).
3.1. THEOREM Let E be a G-module. The map (f, 03BE) ~ f03BE given by

makes E into an L(G)-module. Conversely, if E is an L(G)-module, then
the map (x, 03BE) ~ x03BE, given by

makes E into a G-module. The above constructions yield a 1-1 correspon-
dence between the G-module structures and the L(G)-module structures on
the Banach space E.

PROOF. Since for each 03BE, f the function x H- x03BEf(x) is in C~(G ~ K),
f03BE is a well-defined element of E. Further, IJfçll = ~ lg x03BEf(x)dx~ ~
~ sup..G ~x03BEf(x)~ ~ supx~G ~x·03BE~· ~f~~. Finally, for f, g ~ L(G ~ K)
and 03BE E E : (f *g)03BE =  x03BEf(xy)g(y-1)dydx =  x03BEf(y)g(y-1x)dydx
= Il x03BEf(y)g(y-1x)dxdy = f f yx03BEf(y)g(x)dxdy. On the other hand,

f(g03BE) = I x(g03BE)f(x)dx = SI xy03BEg(y)f(x)dydx.
Now let E be an L(G)-module, and let x ~ G. The set Eo = {03BE ~ E:

lim (UH)xÇ existsl is a linear space. For f ~ C~(G ~ K) we have:
(uH)x(fç) = «UH)X *f)03BE = (uH *f)x03BE ~ fx03BE. Hence Eo is dense in E.

Now let Çn E Eo, lim Çn = Let H, H’ be compact open subgroups. Then

~(uH)x03BE - (uH’)x03BE~ ~ max (q(E)~03BE - 03BEn~, ~(uH)x03BEn - (uH’)x03BEn~).

By choosing first n large enough and then H and H’ sufficiently small we
can make the left hand expression arbitrarily small. Hence Eo is closed
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and Eo = E, so x03BE is well defined. Next,

Finally we only need to check (xy)03BE = x(y03BE) where 03BE is of the formf11
(f ~ L(G), ~ E E) : (xy)f~ = lim (uH)xy(f~) = lim ((uH)xy*f)~ =fxy~,
whereas x(yf17) = x(fy17) = (fy)x17 = lxy17. The 1-1 correspondence
between the G- and L(G)-module structures will follow from the

following formulas

To prove (1), let 03BE E E, x E G and e &#x3E; 0. For H E r G we have:

f y03BE(uH)x(y)dy = S y03BEuH(x-1y)dy = 1 xy03BEuH(y)dy. Choose H such that
~xy03BE - x03BE~  e for all y E H. Then

In order to show (2), it suffices to establish the formula for the case where
ç has the form g~ where 9 E L(G), 1 e E. So we have to check

Now the left hand expression is equal to (f * g)~ = (~f(x)gxdx)~ =
(mL(G)(h))~, where h is the function x i-+f(x)gx of C~(G ~ L(G)).
Define a map 0 : L(G) ~ E via

By Definition 2.1 (iii) we have

EXAMPLE. The left regular representation. L(G) is an L(G)-module un-
der the map ( f, g) H f * g. The corresponding G-module structure is given
by xf = fx ( f E L(G), x E G).

3.2. THEOREM. Let E, F be G-modules and let È, F be the corresponding
L(G)-modules in the sense of Theorem 3.1 respectively. Then we have
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(i) n(E) = q(Ê). In particular, E is an isometrical G-module if and
only if E is a normalized L(G)-module.

(ii) 0 : E ~ F is a G-module map if and only if 0  ~ F is an L(G)-
module map.

(iii) E and E have the same submodules.
(iv) E rv F iff  ~ F; E - F iff  ~ F.
(v) E is simple if and only if  is simple.

PROOF. (i) follows from the proof of Theorem 3.1. (iii), (iv), (v) fol-
low from (ii). To prove (ii), let 0 : E ~ F be a G-module map. By De-
finition 2.1 (iii) and Theorem 3.1 we have for f E L(G), 03BE E E

Conversely, let 0 : E --+ F be an L(G)-module map. Then for x E G,
ç E E we have

4J( xç) = 0(lim (uH)x ç) = lim 0«UI)x ç) = lim (uH)x~(03BE) = x~(03BE).
3.3. THEOREM. Let E be a finite dimensional G-module. Let XE and 03A6E

be the trace functions defined in 1.4 and 1.6 respectively. Then we have

PROOF. Write Ux(03BE) = xj and Tf(03BE) = f03BE(x E G, f ~ L(G), 03BE E E). Then
lJJE(f) = tr (03BE ~ f03BE) = tr (Tf) = tr (S Uxf(x)dx) = ~ tr (Ux)f(x)dx =
=~f(x)~E(x)dx. Next, XE(X) = tr (Ux) = tr (lim T(uH)x) = lim tr (T(..).)
= lim 03A6E((uH)x)·

3.4 THEOREM. Let E be a finite dimensional G-module. Then Ker E =

{x E G : xç = çfor all 03BE E El is an open normal subgroup of G.

PROOF. Ker E is a normal subgroup of G. Consider the corresponding
L(G)- module structure on E and write Tf(03BE) = f03BE(f ~ L(G), 03BE E E). By
1.5 we have lim UHÇ = ç for all 03BE, hence TUH converges to the identity
operator. Since u,, is idempotent Tufi is a projection and H1 ~ H2 implies
Im TuHI c Im TuH2 . So there is an Ho e F. with uH003BE = 03BE. Let x e Ho.
Then xç = lim (uH)x uH0 03BE = ç. Hence Ker E is open.

3.5 THEOREM. Let G be compact and let E be a simple G-module. Then
dim E  oo.

PROOF. Let 03BE ~ E, 03BE ~ 0. Since uH there is H E TG such that
uH03BE ~ 0. The linear space {fuH03BE : f E L(G)j is non-zero, finite dimensional
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(every function of the type f * uH is constant on left cosets of H), and an
L(G)-submodule, hence a G-submodule. Since E is simple, dim E  oo.

4. Compact groups

In this section we prove a non-archimedean variant of the Peter-Weyl
theorem. A supernatural number is a formal product IT pnp where p runs
through the set of the primes and where np is an integer 0 or oo. It
is clear how to define products, l.c.m., g.c.d. of elements of a set of super-
natural numbers. We define the order (G : 1) of G as 1.c.m. {(G/H : 1) :
H E FGI. The index (G : 1)c is defined similarly.

4.1. THEOREM. Let G be compact and let ~(K)  (G : 1) whenever ~(K)
~ 0. Then G has suffciently many continuous irreducible representations.

PROOF. Let XE G (x =f. e). There is H ~ 0393G, H normal, with x ~ H.
Thanks to Maschke’s Theorem the left regular respresentation of GfH
(which is faithful) is completely reducible, since ~(K)  (G/H : 1). Hence
there is an irreducible représentation of G/H with vx mod H =f. 1. V in-
duces an irreducible representation U of G with U, :0 1.

The next lemma is very useful when trying to decompose representa-
tions into irreducible ones. From now on in 4 and 5 we suppose that G is

compact and that a K-valued Haar measure mK exists on G with ImK(H)1
= 1 for all H E Fc. We take mK(G) = 1.

4.2 LEMMA. Let E, F be isometrical G-modules and let 0 : E - F be a
continuous linear operator. Define 4J’ by

Then we have

(i) ~’ is a G-module map : E - F, ~~’~ ~ ~~~,
(ii) if E = F and 0 is a projection onto a G-submodule rS’ of E, then

~’ is a projection, ~’(E) = S, Ker 0’ is a G-submodule.

PROOF. (i) The continuity of x H (x-l, x) H (x-’, x03BE) H (x-’, ~(x03BE))
1-+ x-1~(x03BE) yields no problems. Hence ~’(03BE) is well-defined and linear
in 03BE. Next,

whence ~~’~ ~ ~~~. Further, for y ~ G : ~’(y03BE) = ~x-1~(xy03BE)dx =
= S yx-1~(x03BE)dx = y~’(03BE).
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(ii) For 03BE E E : 4J(xç) e S, hence x-1~(x03BE) E S. Thus 4J’(E) c S.
If 03BE E S, then x-1~(x03BE) = x-1xç = 03BE. So we have

That Ker 0’ is a G-submodule follows from (i).

Let E be a finite dimensional G-module. Let el’ ..., en be a basis of E.

The functions

span a finite dimensional space of continuous K-valued functions, called

PJl E( G). It is clear that another choice of the basis doesn’t change PJl E( G),
and that E - Fimplies eE(G) = PJl F( G).

Define PJl( G) to be the K-linear space generated by {RE(G) : E is
a simple G-module}.

4.3. LEMMA. The following sets are equal.
(1 ) The K-linear span of {RE(G) : E is a simple Hilbert G-modulel.
(2) R(G).
(3) The K-linear span of {RE(G) : dlm E  ool.
(4) The space of the locally constant functions.
(5) {f ~ L(G) : (!s)seG spans a finite dimensional spacel.

PROOF. We show (1) c (2) c (3) c (4) c (5) c (1).
(3) c (4) follows from Theorem 3.4. The rest, except (5) c (1), is

obvious. Let f E (5). The left ideal I c L(G) generated by f is finite di-
mensional. Considering I as a G-module under the left regular represen-
tation, we can apply Maschke’s theorem and find that I = Q Ii (in the
algebraic sense), where the Ii are simple. Thus we may assume that I
is simple. I is a n.a. Hilbert space, and 7 is an isometrical G-module. Let
~ E I* be the function f ~ f(e)(f ~ I). Thenf(x) = ~(fx), hence f ~ RI(G).

4.4. LEMMA. Let E, F be simple G-modules and let E ~ F, f ~ PJl E( G),
g E PJl F( G). Then

PROOF. Let 0 E E* and il E F. By Lemma 4.2 the map 0’ : E - F de-
fined via
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is a G-module map, hence 0’ = 0. So for all 03BE ~ E, 03C8 e F* we have:

4.5. COROLLARY. Every simple G-module is topologically equivalent to a
simple Hilbert G-module.

PROOF. Let E be a simple G-module and let f E f!ll E( G). If for every
Hilbert module F we had E ~ F then ~f(x)g(x-1)dx = 0 for all

9 E f!ll F( G). By Lemma 4.3 we then had ~f(x)g(x-1)dx = 0 for all

g E e(G). Since f!ll( G) is dense, f = 0. Contradiction.

4.6. DEFINITION. Let G be a compact group, and let k be the residue class

field of K. K is called a splittingfieldfor G in case Çn -1 = 0 has n different
roots in k whenever n |(G : 1)c.

In the terminology of [1] our definition is equivalent to : ’k is a splitting
field for G/H for each normal H E FG"

4.7. THEOREM (Peter-Weyl) Let K be a splitting field for G. Let (Ea)aeI
be a complete set (modulo -) of simple Hilbert G-modules. For each a,
let e03C31, ···, e’ be an orthonormal basis of Ea. Define for 6 E E, 1 ~ i, j ~ d,

Then

PROOF. To show (1) we may assume J = r (Lemma 4.4). There is a
normal subgroup H ~ 0393G such that the Uu are constant on the cosets of
H. The left hand expression of (1) is then equal to

Since d03C3(G : H) we have Idal = 1. (2) follows from the fact that the
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ufj span R(G) and from Lemma 0.1, by taking the u03C3ij for e03B1’s, and the

maps f ~ ~f(x)u03C4kl(x-1)dx for, f03B1’s.
4.8. COROLLARY. Let K be a splitting fzeld for G where G is abelian. Then

the continuous characters: G ~ K.f’orm an orthonormal basis of L(G).

PROOF. Let E be a simple G-module. By [1 ], (27.3), 4J : E ~ E is a
G-module map implies 4J = À1(À E K). Hence dim E = 1. Now apply
Theorem 4.7 (2).

4.9. COROLLARY Let K be a splitting field for G and let E and E’ be
finite dimensional G-modules. Then the following statements are equivalent.

PROOF. By Theorem 3.2 and Theorem 3.3 we only have to show

(2) ~ (1). Let first E, E’ be simple. By Corollary 4.5 we may assume that
E, E’ are Hilbert G-modules. The orthogonality relations yield

Hence the assumptions XE = XE’ and E ~ E’ are contradictory. The ge-
neral case can easily be proved by decomposing E and E’ into a direct
sum of simple modules.

4.10. COROLLARY. Let K be a splitting field for G and let (E03C3)03C3~E be as in
Theorem 4.7. For f E L(G) define

where IIflla = sup lllf. 03BE~/~03BE~ : 03BE E E03C3, 03BE ~ 0}. Then ~f~^ = ~f~.

PROOF. Write f = 03A3 03BB03C3iju03C3ij(Theorem 4.7 (2)). Then it follows that

5. Hilbert G-modules for compact G.

The left regular representation of L(G) can (in case K is a splitting
field for G) be decomposed into a direct sum (in the sense of 1.3) of
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irreducible representations. This follows from Theorem 4.7. Note that
L(G) need not be a n.a. Hilbert space. We now try to decompose arbi-
trary representations. We can only get some results in case the represen-
tation space is a n.a. Hilbert space. (Theorem 5.3).
Throughout this section we assume that E is a Hilbert G-module. With

the definition x . ç = x·03BE(x E G, 03BE E E, ~03BE~ ~ 1), E (see 0.2) becomes a
G-module (in the algebraic sense). E H É is functorial. The crucial pro-
perty is the following.

5.1. THEOREM. Let E, F be Hilbert G-modules and let oc E ~ F be a G-
module map. Then there is a G-module map ~ : E - F with oc.

PROOF. There exists a continuous linear map 03C8 : E ~ F with = 03B1.
Write Ux(03BE) = x03BE, Vx(17) = xq(x E G, 03BE e E, 17 E F). Define

By Lemma 4.2, 0 is a G-module map. Write Hx = 03C8Ux - Vx03C8. Then
Hx = 03B1Ux - Vx03B1 = 0, so by 0.3, (i) we have IIHxl1  1 for all x ~ G.

Hence ~ = 03C8 = x.

5.2. COROLLARY. Let E, F be Hilbert G-modules. Then E ~ F implies
E ~ F. In case K is a splitting field we have, in addition, the following.

(i) E is simple if and only if E is simple.

(ii) Let E, F be simple and let 0 : E ~ F be a topological equivalence
of G-modules. Then there is À E K with 0 = 03BB03C8, where 1/1 an isometry. In
particular, E - F implies E ~ F.

PROOF. Let x : É - F be an isomorphism of G-modules. By Theorem
5.1 there is a G-module map 0 : E ~ F with ~ = x. By 0.3, (ii) 0 is an
isomorphism of Banach spaces. To prove (i), let E be be simple. Let
x : E ~ É be a G-module map. There is a G-module map ~ : E ~ E with
~ = x. By [1], (27.3), 0 = 03BBI, |03BB| ~ 1. Hence x = 03BBI, so E is simple.
Now let E be simple. Let 0 : E ~ E be a projection and a G-module

map. Then ~ is a projection, so ~ = 0 or I, whence 0 = 0 or I. Thus E
is simple. To prove (ii), choose 03BB-1 E K such that ~03BB-1~~ = 1. Then
03BB-1 ~ ~ 0, hence a bijection by Schur’s lemma. It follows that 03BB-1~ is an
isometry.
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5.3. THEOREM. Let E be a Hilbert G-module. Then E is an orthogonal
direct sum of simple G-modules. In case K is a splitting field this decompo-
sition is unique in the following sense. Let E = ~03B1~I En03B103B1 =~03B1~J Fm03B103B1 be
two decompositions in the above sense (E03B1 ~ Ep if oc :0 fi; n03B1 is the multipli-
city ; same for F03B1’s). Then there is a bijection (J : I ~ J such that

PROOF. We first show that E has simple submodules. There exist
H E TG and 03BE E E such that uH 03BE ~ 0. The G-submodule generated by this
vector is finite dimensional, hence it contains simple G-submodules. The
existence of a decomposition of E now can easily be shown, using Lemma
4.2 and Zorn’s Lemma. To show the uniqueness property, let a E I,
03B2 e J and consider the G-module map

If E03B1 ~ F03B2, this map is the zero map. Define a(a) to be the only 13 for
which the above maps are non-zero. The identity on E sends En03B103B1 into

Fm03C3(03B1)03C3(03B1); it must be onto. Since dim E03B1  oo, a cardinality argument can
show that n03B1 = m03C3(03B1). By Corollary 5.2 (ii) E03B1 ~ F03C3(03B1) implies E03B1 ~ F03C3(03B1).

6. The Tannaka duality theorem

We formulate the Tannaka Duality Theorem in the language of [3 ]y
11.3. A Hopf algebra is a K-algebra H with identity together with algebra
homomorphisms L1 : H - H (8) H and e : H - K such that the diagrams

commute. It is useful to consider the multiplication as a map ~ : H Q H
- H and the identity as a map 11 : K --+ H. The Hopf algebra then is
completely described by the 5-tuple (H, ~, 11, A, e).

Let X be a compact 0-dimensional Hausdorff space and let K be a field.

Let R(X) denote the space of the locally constant functions : X - K. Then
R(X) is a commutative K-algebra with identity, generated by its idem-
potents. Conversely, if A is such an algebra then the set of all algebra
homomorphisms: A ~ K with the finite-open topology is a 0-dimensional
compact Hausdorff space. In fact the above functors yield a duality be-
tween the category of 0-dimensional compact Hausdorff spaces and the
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category of the commutative K-algebras with identity, generated by its
idempotents. (See [9], Chapter III).
Now if S is a compact 0-dimensional semigroup with identity, let -q(S)
be the K-algebra of the locally constant functions on S. It is a commutative
Hopf algebra under

where 6, 03C0, e are defined by

If H is a commutative Hopf algebra, generated by idempotents, let G(H)
be the collection of all algebra homomorphisms : H - K. Under the
finite-open topology and with the multiplication

G(H) becomes a 0-dimensional compact Hausdorff semigroup with iden-
tity e. We now have the following theorem the proof of which is left to
the reader.

6.1. THEOREM. Let !7 be the category of 0-dimensional Hausdorff semi-
groups with identity, and let H be the category of the commutative K-Hopf
algebras generated by idempotents. Then the functors fi : P ~ H : G
have the properties G R ~ idg and WG - idH. These natural equivalences
js : S ~ GPÃ(S) and jH : H ~ RG(H) are given by

and

We now can give a very short proof of a well-known result (See [4],
(8.19)).

6.2. COROLLARY. Every 0-dimensional Hausdorff semigroup with iden-
tity is projective limit of finite semigroups.

PROOF. We show that every element f e H e 3Q lies in a finite

dimensional sub-Hopf algebra. By [6], (2.5) f is contained in a finite
dimensional sub-coalgebra C. The subalgebra generated by C is easily
seen to be a sub-Hopf algebra, and it is also finite dimensional since we
can interpret H as an R(S) for some S.
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An antipode in a Hopf algebra H is a K-linear map co : H ~ H such
that the diagram

commutes. If G e P is a topological group, then R(G) has an antipode
defined by 

It is not very hard to show that R(S) has an antipode if and only if S
is a topological group. This remark, together with Theorem 6.1 and Lem-
ma 4.3 form the non-archimedean analogue of the Tannaka Duality
Theorem.
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