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1. Introduction

The classical model for physical measurement includes, as primitives,
a non-empty set A, a closed binary (concatenation) operation o, and
an (ordering) relation ~, and the axioms are (necessary and) sufhcient
to establish a homomorphism into (R, +, ~ ~ [1, 2, 3, 4, 7]. This model
accounts for the measurement of many important physical quantities
such as mass, length, duration, electrical resistance, etc., but it is unsuitable
for many others, among them periodic quantities such as angle and clock
time. The purpose of this note is to present axioms in terms of the usual

primitives (A, o, ~~ that result in a homomorphism into ~[O, K],
+ (mod K), ~~.
At least two earlier axiomatizations of angles exist. Zassenhaus [8]

treated them as abstract entities which are oriented and among which

judgments of equality can be made. In addition, he assumed that
some pairs of angles, but not all, can be concatenated to form new ones;
he imposed this restriction because repeated sums of positive angles
ultimately lead to negative ones. This axiomatization differs in several
ways from those typical of other extensive quantities. First, an order
rather than just an equivalence is usually postulated. Second, unless the
intended interpretation actually forces an inherent restriction on con-
catenation (e.g., the disjointness of events inherent in the additivity
of probability), it is usual to let the concatenation operation be closed.
Third, orientation is ignored whenever possible; this is true, e.g., of

the usual axioms of length and duration measurement. In addition, Zas-
senhaus’ axioms do not adequately highlight the periodic nature of an-
gular measurement.

1 This work was supported in part by NSF grant GB-6536 to the University of
Pennsylvania; it was initiated while 1 was an Organization of American States Pro-
fessor at the Pontificia Universidade Catôlica do Rio de Janeiro, Brasil.

2 1 wish to thank the referee for suggesting the reformulation in terms of cyclic
orders, for pointing out an error in the original proof of Lemma 8, and for other useful
suggestions.
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The other paper, Lenz [5], has a différent set of limitations from our

point of view. The main one is that his primitives are far more elaborate
than is usual in the theory of measurement; in particular, he postulates a
good deal of Hilbert’s geometrical structure, defines angles in terms of it,
and then adds sufhcient axioms to yield the periodic representation. One
can view this note as an attempt to isolate the basic abstract structure un-

derlying Lenz’ construction. In some respects, our proof is similar to his;
the most obvious parallel is the natural embedding of the given structure
into an ordinary extensive one. A noticeable difference is the form of the
Archimedean axiom which, in the absence of any geometrical structure,
must be quite strong, as in other theories of extensive measurement.

2. Axioms and statement of représentation theorem

Throughout this note, A is a non-empty set, ~ a binary relation on A,
and o a closed operation on a. By ~ we mean both ~ and ~ 3, and
by ~ we mean both ~ and not ~.

DEFINITION 1. The triple ~A, ~ , o ~ is a periodic extensive structure
iff, for all a, b, c E A,

1. ~A, ~~ is a weak order, i.e., ~ is transitive and connected in the
sense that, for all a, b E A, either a ~ b or b ~ a.

2. ~A, ~, o ) is a weak abelian semigroup 4.
3. a ~ b iff either (i) a o c ~ b o c ~ c, (ii) c ~ a o c ~ boc, or

(iii) b o c ~ c ~ a o c.
4. If a &#x3E;- b, then there exists a positive integer n such that a ~ na and

nb ~ b, where la = a and na = (n -1) a o a.
Axioms 1 and 2 are unexceptional in the theory of extensive measure-

ment and have an obvious interpretation for angles.
Axioms 3 and 4 reflect the fact that when a and b are angles whose sum,

a o b, is less than one cycle, then a o b ~ a, b; whereas when a o b is greater
than one cycle, then a, b &#x3E;- a o b (see Lemma 2 and Def. 3). Thus, in Axiom
3, if a o c and b o c are both less than a cycle (case i) or are both greater
than a cycle (case ii), the order a ~ b is unchanged by adding c both to
.a and to b; but when a o c is greater than one cycle and b o c is less, the
order is reversed (case iii). And Axiom 4 says that if one angle exceeds
another, then there is some integer n such that na ( = sum of n copies of
a) just completes a cycle but nb fails to do so. This is a type of Archime-
dean Axiom.

3 Given Axiom 1, it is trivial to show that ~ is an equivalence relation.
4 That is, o is a closed binary operation such that a o (b o c) ~ (a o b) o c and

aob-boa for all a, b, c E A.
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THEOREM 1. ~A, ~ , 0) is a periodic extensive structure with identity e
iff for any real K &#x3E; 0 there exists a unique function ~ from A into [0, K)
such that

(i) a ~ b iff ~(a) ~ ~ (b),
(ii) ~(a o b) = ~(a) + ~(b) (mod K),
(iii) ~(e) = 0.
The most common values of K for angles are 1, 203C0, and 360, in which

case the unit is called, respectively, the cycle, radian, and degree, and for
clock time 12 and 24 are the familiar values.

The axioms of Definition 1 can be reformulated in terms of the follow-

ing concept due to Rieger [6] ; see Fuchs [3], p. 62, and Lenz [5].

DEFINITION 2. A trinary relation C on a semigroup ~A, 0) is a cyclic
order iff, for all a, b, c, d E A,

1. Exactly one of C(a, b, c) or C(a, c, b) holds.
2. C(a, b, c) implies C(b, c, a).
3. C(a, b, c) and C(a, c, d) imply C(a, b, d).
4. C(a, b, c) implies C(a o d, b o d, c o d) and C(d o a, d o b, d o c).

If ~A, 0) is abelian and has an identity e, C is called Archimedean iff
5. C(e, a, b) implies there exists a positive integer n such that C(e, a,

na) and C(e, nb, b).
If we think of the elements of A as lying in a circle, we can interpret
C(a, b, c) to mean that a, b, and c are clockwise in the order a, b, c.

THEOREM 2. If ~A, ~, 0) satisfies Axioms 1- 3 of Definition 1 and if
C on AI - is defined by

where a is the equivalence class containing a, then C is a cyclic order. If, in
addition, ~A, o~ has an identity e and Axiom 4 holds, then C is Archimedean.

Conversely, if C is a cyclic order on an abelian semigroup ~A, o~ with
identity e and if ~ on A is defined by

then ~A, ~ , o~ satisfies Axioms 1- 3 of Definition 1. If C is Archimedean,
then ~A, ~, o~ satisfies Axiom 4.

Combining these two theorems, it is easy to show the following.
COROLLARY. If (A, o~ is an abelian semigroup with identity e and C

is an Archimedean cyclic order, then for any real K &#x3E; 0 there is a unique
function ~ from A into [0, K) such that
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(i) C(a, b, c) iff 0(a) &#x3E; ~(b) &#x3E; ~(c), 0(b) &#x3E; ~(c) &#x3E; ~(a), or

4J( c) &#x3E; ~(a) &#x3E; 0(b).
(ii) 4J(ao b) = ~(a) + ~(b) (mod K).
(iii) 0(e) = 0.
The problem of cyclic orders over non-abelian semigroups, which

is the natural extension of Rieger’s work on cyclic orders over non-abe-
lian groups, appears to be much more complex. As pointed out by a
referee, it would be interesting to know under what conditions a cyclically
ordered semigroup can be extended to a cyclically ordered group.

3. Preliminary lemmas

In each of the following lemmas we assume that ~A, ~, o~ is a peri-
odic extensive structure, that a, b, c E A, and that i, j, k, 1, m, and n are
positive integers.

LEMMA 1. a-b ifl a o c - b o c; and a ~ b iff either

(i) a  c ~ b  c ~ c,
(ii) c » a o c » b o c, or
(iii) b  c ~ c ~ a  c.

PROOF. Axioms 1 and 3.

PROOF. Suppose that, on the contrary, b &#x3E;- a o b ~ a. From b &#x3E;- a o b,
Lemma 1 (with c = a) implies three possibilities, but the hypothesis
a o b ~ a excludes all but a o b ~ b o a ~ a o b o a ~ a. Similarly, Axiom
3 applied to a o b ~ a (with c = b) yields b ~ a o b o b ~ a o b. Thus,
a o b o b ~ a o b ~ a o b o a. Using Axiom 2 and Lemma 1 to cancel
a o b, we conclude that a ~ b, which is a contradiction. QED
Lemma 2 insures that the following notion is well defined.

DEFINITION 1-

For angles, r(a, b) is 1 if the sum of the two angles is a complete cycle
or more and is 0 if it is less than a complete cycle.

PROOF. The only possible violation is r(a, c) = 0 and r(b, c) = 1, i.e.,
a o c ~ c ~ b o c. By Lemma 1, b ~ a, contrary to hypothesis. QED
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LEMMA 4. r(a, b) + r(a o b, c) = r(b, c) + r(a, b o c).
PROOF. There are four cases:

(i) r(a, b) = 0 = r(a o b, c). By definition a ob?: a, b and (a o b) o c ~
a o b, c. Using Axiom 2,

and so by Lemma 2, r(a, b o c) = 0. Suppose r(b, c) = 1, then a o b o c ~
c ~ b o c and so, by Lemma 1, b » a o b, which is contrary to hypothesis.
So r(b, c) = 0.

(ii) r(a,b)= 1, r(a o b,c) = 0.Thus, a,b ~ a o b and a o b o c ~ a o b,c.
If r(b, c) = 0, then b o c ~ b, c. By Lemma 1, b » a o b implies b o c ~
a o b o c or a o b o c » c » b o c. The latter is impossible, so by Lemma 2,
r(a, b o c) = 1. If r(b, c)= 1, then b, c » b o c. So a o b o c ~ c ~ b o c,
whence r(a, b o c) = 0 by Lemma 2.

(iii) r(a, b) = 0, r(a o b, c) = 1. Similar to (ii)
(iv) r(a, b) = 1 = r(a o b, c). Thus, a, b ~ a o b and a o b, c ~ a o b o c.

From a » a o b » a o b o c, Lemma 2 implies r(a, b o c) = 1, and Lemma
1 implies b » b o c, so by Lemma 2, r(b, c) = 1. QED

LEMMA 5. If k and n are positive integers such that n - k - 1 is a positive
integer and a ~ b, then

r[(n-k-1)a, a]+r[(n-k)a, kb] ~ r(b, kb) + r [(n - k - 1)a, (k + 1)b].
PROOF. Using the commutativity of o, and so of r, and Lemmas 3

and 4,

We next introduce a count of the number of complete cycles that is
made when the sum na is formed.

DEFINITION 4. W(l, a) = 0

PROOF. For any m &#x3E; 0 and n = 1 the assertion is true by definition.
By induction and Lemma 4,
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LEMMA 7. W(mn, a) = mW(n, a) + W(m, na)
PROOF. For m = 1, it is obviously true. By induction on m, and

Lemma 6,

For n ? 3, by Lemmas 3 and 5 (omiting meaningless terms for n = 3, 4),

LEMMA 9. If a ~ b and 1 is a positive integer, then there exists a

positive integer k such that W(k, a) ~ W(k, b) + l.
PROOF. By Axiom 4, there exists a positive integer n such that

r [(n -1 )a, a] = 1 and r [(n -1 )b, b] = 0. By Lemma 8
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Observe that if r(c, jc) = 1 for all j, then ( j -1 )c » jc » (j + 1)c. Can-
celing ( j -1 )c by Lemma 1, c ~ 2c ~ 3c ~ ···. By Axiom 4, this ter-
minates in a finite number of steps and so we may choose i sufficiently
large that W(i, cl i - l. Choosing this i for c = nb and letting k = in,

4. Imbedding in a non-periodic structure

If a is an angle and m a non-negative integer, then it is natural to inter-
pret (m, a) as the angle consisting of m cycles plus a. For the set of such
objects, we have the following natural notions of ordering and concate-
nation :

DEFINITION 5. If ~A, ~, o~ is a periodic extensive structure and N
is the set of non-negatzve integers, define

THEOREM 3. If ~A, ~, 0) is a periodic extensive structure, then

~A*, ~ *, *) is a non-negative extensive structure in the following sense
[7 ] : for all a, fi, y, ô E A*,

1. (A *, ~ *) is weak order;
2. ~A*, ~*, *) is a weak abelian semigroup;
3. 03B1 ~* 03B2 iff 03B1*03B3 ~* 03B2*03B3;
4. if 03B1 ~* 03B2, then there exists a positive integer n such that

n03B1*03B3 ~ * n03B2 * 03B4;
5. 03B1*03B2 ~ * 03B1.

PROOF. 1. This follows from Axiom 1 of Definition 1.

2. This follows from Axiom 2 of Definition 1 and Lemma 4.

3. Suppose that (m, a) ~* (n, b), and consider the relation between
(m, a) * (p, c) = (m +p + r(a, c), a  c) and (n, b) * (p, c) = (n +p + r(b, c),
b o c). If ~ * holds, then either m &#x3E; n or m = n and a ~ b. If m &#x3E; n, then

the conclusion is ~ * since either r(a, c) ~ r(b, c) or a  c ~ c ~ b o c.
If m = n and a ~ b, then by Lemma 3, r(a, c) ~ r(b, c) and so ~ * fol-
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lows. To complete the proof we need only show that if a ~ b and r(a, c)
= r(b, c), then a  c ~ b o c. If r(a, c) = r(b, c) = 0, then a o c ~ a, c and
b o c ~ b, c. By Lemma 1, a ~ b implies a  c ~ b  c ~ c. If r(a, c) =
r(b, c) = 1, then a, c ~ a o c and b, c &#x3E;- b o c. By Lemma 1, a ~ b implies
c » a o c » b o c.

If m &#x3E; n, choose k so large that km &#x3E; kn + 1, then by Lemma 8,

If m = n and a &#x3E;- b, then choose k as in Lemma 9 and proceed as above.

5. If n &#x3E; 0, then

because either r(a, b) = 1 or r(a, b) = 0 which implies a 0 b?:: 1. QED

5. Proof of Theorem 1.

If ~A*, ~ *, *~ is a non-negative extensive structure, Theorems 2 and
3 of [7] ] combine to say that there exists an additive homomorphism
which is unique up to a similarity transformation. For a periodic struc-
ture A, ~, o~ with identity e and a constant K &#x3E; 0, let ç* be the unique
homomorphism of the structure in Theorem 2 for which ~*(1, e) = K.
Set ~(a) = ~*(0, a). Note that 0 ~ ~(a)  ~*(1, e) = K. It is obvious
that a ~ b iff ~(a) ~ ~(b). Consider

But

~

Thus,

Since i
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The necessity of the axioms is routine to verify. QED

6. Proof of Theorem 2

Suppose ~A, ~, 0~ satisfies Axioms 1-3 of Definition 1 and C is defi-
ned on A/~ as in the statement of the theorem. We show the four axioms
of Definition 2.

1, 2. Trivial

3. Suppose C(a, b, c) and C(a, c, d). Suppose a &#x3E;- b ~ c. Since both
e ~ d ~ a and d ~ c ~ a lead to the contradiction a &#x3E;- a, we know

a ~ c ~ d, and so a ~ b ~ d, whence C(a, b, d). The argument is

similar in the other six cases.

4. Suppose C(a, b, c). If a » b » c, then by Axiom 3 of Definition 1
either (i) a  d ~ b  d or (ii) b o d » d » a o d and (iii) b o d » c o d or
(iv) c  d ~ d ~ b  d. Clearly (i) and (iii) imply C(a  d, b  d, c  d) and
(ii) and (iv) are impossible since they imply d ~ d. If (i) and (iv), then
either c  d ~ a  d ~ d, which implies c » a (Lemma 1), contrary to
assumption, or c  d ~ d ~ a  d ~ b  d, whence C(a o d, b o d, c  d).
The argument is similar for (ii) and (iii) and for the two other cases
b ~ c » a and c &#x3E;- a » b. The fact that ~A, 0) is abelian establishes the
other conclusion.

Assume, in addition, Axiom 4 and an identity. For a E A, a ~ e since if
e » a, Axiom 4 implies there is a positive integer n such that e » ne - e,
which is impossible. If C(e, a, b), then the only possibility is a » b ~ e,
whence by Axiom 4, there is a positive integer n such that a » na ~ e
and nb ~ b » e, whence C(e, a, na) and C(e, nb, b).

Conversely, suppose ~A, 0) is an abelian semigroup with identity e
and cyclic order C. Since - is =, we ignore it. We prove Axioms 1 and
3 of Definition 1 (2 is one of the hypotheses).

1. If a ~ b and b ~ c, then C(e, a, b) and C(e, b, c). By Axiom 3 of
Definition 2, C(e, a, c), so a ~ c. By Axiom 1, either a ~ b or b ~ a
for a ~ b.

3. If a ~ b, C(e, a, b) and so by Axiom 4, C(e o c, a o c, b o c) = C(c,
a o c, b o c). This implies Axiom 3 of Definition 1 if we can show C(a, b, c)
implies a ~ b ~ c, b ~ c ~ a, or c ~ a ~ b. Suppose not, then one of
the other three possibilities must hold. If a ~ c ~ b, then C(e, a, c),
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C(e, a, b), and C(e, c, b). By Axiom 2, C(c, e, a) and C(c, b, e), whence
by Axiom 3, C(c, b, a). So by Axiom 2, C(a, c, b), which is impossible
by Axiom 1. The remaining two cases are similar.

If C is Archimedean, Axiom 4 of Definition 1 follows immediately.
QED

REFERENCES

N. G. ALIMOV

[1] On ordered semigroups. Izvestia Akademii Nauk, 1950, 14, 569-576.

F. A. BEHREND

[2] A contribution to the theory of magnitudes and the foundation of analysis. Math.
Zeit., 1956, 63, 345-362.

L. FUCHS

[3] Partially ordered algebraic systems. Reading, Mass: Addison-Wesley, 1963.

O. HÖLDER

[4] Die Axiome der Quantität und die Lehre vom Mass. Ber. D. Säch., Gesellsch.
D. Wiss., Math-Phy. Klasse, 1901, 53, 1-64.

H. LENZ

[5] Zur Begründung der Winkelmessung, Math. Nachrichten, 1967, 33, 363-375.

L. S. RIEGER

[6] On the ordered and cyclically ordered groups I-III, V~stník Krát. Ceské Spol.
Nauk., 1946, 1-31; 1947, 1-33; 1948, 1-26.

F. ROBERTS &#x26; R. D. LUCE

[7] Axiomatic thermodynamics and extensive measurement. Synthese, 1969, 18,
311-326.

H. ZASSENHAUS

[8] What is an angle? Amer. math. Monthly, 1954, 61, 369-378.

(Oblatum 13-IV-70) Professor R. Duncan Luce

Program in the Social Sciences
The Institute for Advanced Study
Princeton, New Jersey 08540
U.S.A.


