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Introduction

In this paper we continue our study of strict singularity begun in the
final chapter of [2]. In Section 1 we prove some theorems on linear oper-
ators in normed linear spaces. These are of some interest in themselves

and will be used in Section 2 where we consider operators in locally con-
vex spaces. In [2] the author introduced the notion of super strict singu-
larity for such operators. Here we study super strictly singular operators
in terms of operators they induce in associated normed spaces. T. Kato
[4] showed that every strictly singular operator mapping a Hilbert space
X into a Hilbert space Y is compact. We prove a close analogue of this:
if E and F are locally convex spaces which are generalized Hilbert spaces,
then every bounded super strictly singular operator mapping E into F
is precompact. Here, a generalized Hilbert space is a locally convex space
whose topology is generated by a system of seminorms arising from inner
products. It is well-known that every nuclear space is such a generalized
Hilbert space.

If we drop the assumption that E and F are generalized Hilbert spaces,
the above result no longer holds. Nevertheless, if E = F, and with appro-
priate restrictions on E, a bounded super strictly singular operator B
mapping E into itself closely resembles a compact operator in its spectral
properties: it has at most countably many eigenvalues with 0 as the only
possible accumulation point. Furthermore, for every complex A ~ 0,
AI - B is a homomorphism with finite ascent and finite descent.

1

Throughout this section X and Y will be normed linear spaces, X’ and
Y’ their duals and X and  their completions. A linear operator B map-
ping X into Y is denoted by B : X - Y. By this notation we imply that
the domain of definition of B is all of X, unless otherwise stated. Further-

1 This work was supported by the Netherlands Organization for the Advancement of
Pure Research (Z.W.O.).
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more, ’subspace’ always means ’linear subspace’. If M is a subspace of
X, the restriction of B to M is denoted by Bm.

DEFINITION 1.1. A continuous linear operator B : X ~ Y is called

strictly singular (s.s.) if it is not a topological isomorphism when re-
stricted to any infinite-dimensional subspace of X.
The s.s. operators have been characterized as follows (cf. [3]).
THEOREM 1.2. For a continuous linear operator B : X ~ Y the follow-

ing statements are equivalent.

(i) B is s. s..
(ii) Given e &#x3E; 0 and given an infinite-dimensional subspace M c X, there

exists an infinite-dimensional subspace N c M such that BN has norm not
exceeding e.

In the next theorems we settle the following two questions.
1. If a linear operator B : X ~ Y satisfies (ii) above, does this imply

that B is continuous? The most we can say, in general, is that for some sub-
space L c X with dim X/L  oo, BL is continuous. If Y is complete and
B is closed, then B itself must be continuous.

2. If B : X ~ Y is s.s. and if B :  ~  is the unique continuous
extension of B to the completion , is B s.s.? The answer turns out to be
afhrmative.

LEMMA 1.3. Let X be an infinite-dimensional normed linear space.
Given an arbitrary e E (0, 1) and an arbitrary subspace N c X with
dim N  oo, there exists a subspace M c X with dim XIM  oo such that

REMARK. The expression in the left member of (1) is the distance from
the unit sphere of N to M. This distance is positive, so in particular
N n M = {0}. Therefore we can define a projection P on N+M by

It is easily seen that (1) is equivalent to ~P~  (1- 03B5)-1.
PROOF. We choose finitely many unit vectors x1,···, xk in N such

that for every x c- N, 1 Ixl = 1 wehave ~x - xi~  03B5 for some i, 1 ~ i ~ k.
By the Hahn-Banach theorem there exists for every xi an xi’ c- X’ with

Let M = nk-1 N(x’i), where N(x’i) denotes the null space of x’i, Then
clearly dim XJM  oo. We show that (1) holds.



171

Let x ~ N, ~x~ = 1 be arbitrary. Choose xi such that 1 lx - xil  8.

Then we have for any y E M,

since

This proves (1).
COROLLARY 1.4. Let X, M, N and 8 be as in the Lemma. Then for every

xo E M there exists an x’0 E X’ such that

PROOF. We may assume that ~x0~ = 1.Let x’0 be defined on sp{x0, N}
by

We must show that xô has norm  1 + (1- 03B5)-1 on sp{x0, N}. The
Hahn-Banach theorem then gives an extension of x’0 to X with the same
bound. But, P being defined as above, we have for all oc and for all x E N,

Hence 1 lx’l ~ ~I - P~ ~ 1+IIPII  1+(1-8)-1.
THEOREM 1.5. Let B : X ~ Y be a linear operator. Suppose that there

exists a constant c &#x3E; 0 with the property that every infinite-dimensional
subspace of X contains a vector x such that 11 xi = 1 and 11 Bxl  c. Then

there exists a subspace L c X with dim XIL  oo such that BL is con-
tinuous.

PROOF. Clearly we may assume that dim Y = 00. Suppose that no such
L exists. This will lead to a contradiction.
We begin by choosing Xl E X such that 1 lx, 11 = 1 and IIBxll1 &#x3E; 6c. By

the Hahn-Banach theorem we can select x’1 E X’ and y’ E Y’ such that
~x’1~ I = ~y’1~ I = 1 and x’1(x1) = 1, y’1(Bx1) = IIBxll1. We denote the
null spaces of x’1 and y’ by N(x’1) and N(y’1), respectively.
By Lemma 1.3 and Corollary 1.4, applied with N(1) = sp {Bx1} and

a  t, there exists a subspace M(1) c Y, dim Y/M(1)  oo such that

for every y E M(1) there exists a y’ E Y’ with

Putting N1 = N(x’1) ~ B-1N(y’1) ~ B-1M(1), N1 is a subspace of

finite codimension in X. By our supposition BN! is therefore unbounded.
Hence an x2 E N1 exists with
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Next we choose x2 E X’, y2 E Y’ such that

again using the Hahn-Banach theorem. The choice of y2 is possible by the
preceding, since X2 ~ N1 implies Bx2 E M(1).
For the next step we apply Lemma 1.3 again, this time with N(2) =

sp {Bx1, Bx2} and e  1. If M(2) satisfies the Lemma for this choice of
N (2) and 8, we put N2 = N1 n N(x2) n B-1N(y’2) ~ B-1M(2). Ob-
viously codim N2  oo . By assumption BN2 is then unbounded and we
can find an X3 E N2 such that 11 X311 = 1 and ~Bx3~ &#x3E; m3 , where

Next we choose x’ E X’, y’ E Y’ such that

and

y’3 can be so chosen by Corollary 1.4, since Bx3 e M(2).
Inductively, we select sequences (xn) in X, (xn) in X’ and (yn) in Y’ such

The sequence (xn) is easily seen to be linearly independent. Its linear
span M = sp {x1 , x2 , ...} is therefore infinite-dimensional. We shall

eventually show that M cannot contain an element x such that ~x~ = 1

and IIBxl1  c, thus arriving at the desired contradiction.
Let x = 03A3nk=1 ak xk E M be arbitrary. Then

By induction, we prove that
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Suppose that (7) is true for all k such that 1 ~ k ~ j, for some j  n.

Since, by (2)

we have, by the induction hypothesis,

This proves (7).
Since dim M = oo, there must exist an x = 03A3nk=1 03B1kxk E M such that

lixil = 1 and IlBxll  c. By (4) and (5), we have for k ~ n

so

This implies that for anyj ~ n,

since ~y’k~  3 for all k. Taking j = 1 we find that ~03B11 BX111  3c. This

implies, since IIBxll1 &#x3E; 6c, that |03B11|  1 2. Also, for every 2 ~ j ~ n,

This implies that |03B1j|  2 - j ( j = 2, ..., n). But then

contrary to the choice of x. This completes the proof.

REMARK 1.6. The conclusion of the theorem is the strongest possible.
We cannot expect continuity of B on all of X. Indeed, let B : X - Y
be continuous. Choose a dense hyperplane H c X with 0 E H and an
xo E XBH. Then X = H Et) sp {x0}. Define B1 : X ~ Y by putting
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and extending linearly. Then B1 is not continuous on all of X, but still
satisfies the hypothesis of the theorem.
From Theorem 1.5 we derive the following sufhcient condition for a

closed linear operator to be bounded.

COROLLARY 1.7. Let B : X - Y be a closed linear operator and let Y be

complete. Suppose that there exists a constant c &#x3E; 0 with the property
that every infinite-dimensional subspace of X contains an x such that
~x~ = 1 and IIBxll  c. Then B is continuous.

PROOF. By the previous theorem there exists a subspace L c X with
dim XIL  oo such that BL is continuous. Let L be the closure of L
in X. Then BL is continuous, since it is closed, and BL is continuous. Let
N be any complementary subspace of L in X. Then dim N  oo and X

is the topological direct sum of L and N. Hence

where P is the continuous projection of X onto L with null space N. Since
BN is continuous, this implies that B is continuous.

COROLLARY 1.8. If Y is complete, then for a closed linear operator
B : X - Y the statements (i) and (ii) in Theorem 1.2 are equivalent.

PROOF. (ii) implies that the hypothesis of Theorem 1.5 is satisfied. By
Corollary 1.7, B is then continuous. Therefore (i) holds by Theorem 1.2.

COROLLARY 1.9. For an arbitrary linear operator B : X ~ Y, (ii) is

equivalent to

(i’) BL is s.s., for some subspace L c X with dim X/L  oo.

PROOF. If (ii) holds for B, the condition of Theorem 1.5 is satisfied so
that BL is continuous for some L with dim X/L  oo. Clearly (ii) also
holds for BL. Hence BL is s.s. by Theorem 1.2.

Conversely, if (ii) holds for some BL, L a subspace of X with dim X/L
 oo, then (ii) holds for B.

REMARK l.10. For an arbitrary, not necessarily continuous linear opera-
tor B : X - Y there are two possible ways to define strict singularity:

(iii) B does not have a bounded inverse when restricted to any in-
finite-dimensional subspace.

(iv) B is not a topological isomorphism when restricted to any infinite-
dimensional subspace.
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Clearly, (iii) « (iv) when B is continuous. It is not difficult to show that
in general (iii) and (iv) are not equivalent. Finally, it is known that

(iii) ~ (ii) (cf. [3 ]). So, by Corollary 1.9, (iii) implies the continuity of
BL, where L is some subspace of X with dim XIL  oo.

We now proceed to deal with question 2.

THEOREM 1.11. Let X, Y be normed linear spaces with completions , ,
respectively. If B : X ~ Y is strictly singular, then its unique continuous
extension B :  ~ Y is also s.s.

PROOF. Suppose that B : 1 - 1 is not s.s.. Then there is a subspace
M c X, dim M = oo and such that BM is an isomorphism. We may
assume that M n X = {0}, since at any rate dim M n X  oo. Hence,
for some c &#x3E; 0 we have

Choose xi E M with ~x1~ = 1. By the Hahn-Banach Theorem we can
select x’1 ~ M’ with ~x’1~ = ~x1~ = x’1(x1) = 1 Choose x2 ~ N(x’1)
with ~x2~ = 1. Let x2 E M’ be such that ~x’2~ = ~x2~ = x’2(x2) = 1.
Choose X3 ~ N(x’1) n N(x’2) with ~x3~ = 1, etc..

Inductively, we construct sequences (xn) in M, (xn) in M’ such that

It is easily verified that the sequence (xn) is linearly independent. Then
N = sp {x1, x2), ···} is an infinite-dimensional subspace of M. As in
Theorem 1.5, we have for an arbitrary element x = 03A3ni=1 03B1ixi E N that

Let

Then, for every sequence (03B11, 03B12,···) ~ A we have ce; = 0 for i sufficiently
large and, by (3), |03B1i| ~ 2i-l, 1 ~ i  oo.

Let (x1,k)~k=1 be a sequence in X such that limk~~ x1,k = xl . Then,
for a fixed (03B11, ···, 03B1n, 0, ···) ~ A we have
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Therefore

for k sufficiently large. We shall show that there exists a k1 such that (4)
holds for k ~ kl and for all (al’ ..., Otn, 0, ... ) E A. (Note that n varies
with the particular element of A under considération.)

Indeed, for every (03B11, ···, an , 0,···) E A we have

Hence, for every k e N and for every (03B11, ···, Otn, 0, ···) e A we have

and

Therefore there is a kl ~ N such that for all (03B11, ···, an , 0, ···) ~ A we
have

hence

Next we choose a sequence (X2,k)r= 1 in X such that limk~~ x2, k = X2.
Then

for every fixed (03B11, ···, a., 0,···) E A. Since for every (03B11,···, 03B1n,

0, ... ) E A we have |03B12| ~ 2 and
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as well as

there exists a k2 EN such that for all (03B11,···,03B1n,0,···) ~ A we have

and

and therefore

We take care to choose x2,k2 so that it is independent of Xl,kl. This can
be done by choosing k2 sufficiently large. (Note that X2 and xl, ki are
linearly independent, since M n X = {0}.)

Inductively, using the fact that |03B1k| ~ 2k -1 for every (03B11,···, an , 0, ... )
E A, we choose a linearly independent sequence (xn,kn)~n=1 in X such that,
for every j e N and for every (03B11,···, an , 0, ···) E A the following
inequality holds.

Let

In particular, we then have for every j ~ N and for every «(Xl’ 03B12,

···, 03B1j, 0,···) ~ A,
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The linear subspace L = sp {x1, k1, x2, k2, ···} is infinite dimensional

and contained in X. If x = 03A3ni=1 03B1ixi, ki ~ 0 is an arbitrary element
of L, there exists a constant 03B1 ~ 0 such that (03B103B11, ···, 03B103B1n, 0, ... ) E A.
Hence, in virtue of (5) and the homogeneity of the norm, we have

The last inequality implies that BL is an isomorphism, which contradicts
the fact that B is s.s.. This completes the proof.

COROLLARY 1.12. Let B : X ~ Y be a linear operator which does not
have a bounded inverse when restricted to any infinite-dimensional sub-
space. Then B has a linear extension B :  ~  with the same property.

PROOF. By Corollary 1.9 and Remark 1.10 there is a subspace L c X
with dim XIL  oo such that BL is s.s.. We may identify Lwith the closure
of L in . Since dim XIL  oo, also dim /  oo and

Also L can be written as

Hence  = M+N1 + N2.
We define B on X by iputtin-a

where B, is the unique continuous extension of BL to L,
and extending linearly to X = M+N1 + N2 . Then B = B on X. Also B
is continuous on M and therefore BM is s.s. by Theorem 1.11. Since
dimX/M  oo, B does not have a bounded inverse on any infinite-dimen-
sional subspace of X (Cf. Corollary 1.9 and Remark 1.10).

2

In this section E and F will be locally convex spaces (1.c.s.). 0-neigh-
borhoods U and will always be assumed to be absolutely convex and
closed. L(E, F) is the set of all continuous linear operators mapping E
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into F. The null space and the range of a linear operator B : E - F are
denoted by N(B) and R(B), respectively.

DEFINITION 2.1. A linear operator B : E ~ F is said to be bounded (pre-
compact, compact) if there exists a 0-neighborhood U in E such that
BU is a bounded (precompact, relatively compact) subset of F.

THEOREM 2.2. [2]. A continuous linear operator B : E ~ F is precom-
pact if and only if there exists a 0-neighborhood U in E with the property
that for every 0-neighborhood V in F there is a closed subspace L ce E of the
form L = ~ni=1 N(x’i), with x; E E’ and x; bounded on U (i = 1,···, n)
such that B(U n L) c V.

In [2] the author introduced the following generalization of precom-
pactness that proved useful in stability theory.

DEFINITION 2.3. A continuous linear operator B : E ~ F is called super
strictly singular (s.s.s.) if there exists a 0-neighborhood U in E with the
property that for every infinite-dimensional subspace M c E such that
M n N(B) = {0} and for every 0-neighborhood V in F there exists an
infinite-dimensional subspace N c M such that N q: U and B( U n N) c V.
The s.s.s. operators mapping E into F form a two sided ideal in L(E, F)

which coincides with the s.s. operators when E and F are normed linear

spaces. For the proofs of these statements and for a theorem concerning
perturbations of Fredholm operators by s.s.s. operators we refer to [2].

Let U be a 0-neighborhood in E and let pu be its gauge. Then Eu is
the quotient space E/p-1U(0) equipped with the norm

The completion of Eu is denoted by Eu.
DEFINITION 2.4. A l.c.s. E is called a generalized Hilbert space if there

exists a 0-neighborhood base u such that for all U E u the spaces Eu are
Hilbert spaces.

The next result is due to T. Kato [4].

THEOREM 2.5. If X and Y are Hilbert spaces, then every s.s. operator
B : X - Y is compact.

In the following we shall prove a more general statement (Corollary
2.7).
THEOREM 2.6. Let E and F be generalized Hilbert spaces and let B : E - F

be s.s.s.. Then there exists a 0-neighborhood U in E with the property that
for every 0-neighborhood V in F there exists a subspace L - E with
dim E/L  co and such that ~V B(U n L) is precompact in Fy , where
~V : F ~ Fv is the quotient map.
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PROOF. Let U be a 0-neighborhood in E satisfying the condition of
Definition 2.3. If pU is the gauge of U, then p-1U(0) = {x : x ~ E and pU(x)
= 0} is a subspace of E and Definition 2.3 implies that dim p-1U(0)/
N(B) ~ p-1U (0)  00. Therefore, replacing U by a smaller 0-neighbor-
hood if necessary, we may assume that p-1U(0) c N(B). Let V be an
arbitrary 0-neighborhood in F. Then, in virtue of pu 1 (0) - N(B), B
induces a linear operator BU,V : Eu - FV defined by

It follows from Definition 2.3 that BU,V satisfies (ii) of Theorem 1.2, with
X and Y replaced by Eu and Fv, respectively. Although Bu,’ might not
be continuous, by Theorem 1.5 there exists a subspace Lu c Eu with
dim EU/LU  oo such that the restriction BLÛ is continuous. Therefore
BLÛ is s.s. (cf. Corollary 1.9). Our assumption that E and F are general-
ized Hilbert spaces allows us to assume that the completions Lu and FY
are Hilbert spaces. By Theorem 1.11 the unique continuous extension

(BU,VLU)~ : Éu - Fv is also s.s.. Hence, by Theorem 2.5, (BU,VLU)~ is compact
and therefore BU,VLU: LU ~ Fv is precompact. Ou : E - Eu being the
quotient map, let L = ~-1U(LU). Then clearly dim E/L  oo and ~V B(U
n L) is precompact in Fv.
COROLLARY 2.7. Let, in addition to the hypotheses of Theorem 2.6, be

given that B is bounded. Then B is precompact.

PROOF. We can choose U in the above proof so small that BU is
bounded in F. Then it is obvious that BU,V : EU ~ Fv is continuous for
every V. Therefore, in the preceding proof we can take Lu = Eu, hence
L = E. Hence BU,V : Eu - FV is precompact for every V. This implies
that B : E - F is precompact, since Tl is arbitrary.

Implicit in the proof of Theorem 2.6 is the following.

COROLLARY 2.8. Let B : E ~ F be s.s.s.. Then there exists a 0-neighbor-
hood U in E such that for every 0-neighborhood V in F there is a subspace
L c E with dim E/L  oo for which the following diagram commutes

where ou, Ov are the quotient maps, Lu = Ou(L), L = ~-1U(LU), and
BU,VLU is s.s..
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In the special case when E and F are generalized Hilbert spaces, U can
be so chosen that all BLÛ are precompact.

If B is bounded, L in the diagram can be replaced by E.

For bounded operators the converse also holds.

THEOREM 2.9. Let B : E ~ F be bounded. Then B is s.s.s. if and only if
there exists a 0-neighborhood U in E such that for every 0-neighborhood
V in F the diagram

commutes and BU’v is s.s.

PROOF. Let U be as above. Then obviously p-1U (0) c N(B). Indeed,
for every x ~ E, x rt N(B) we have 4JvBx =j:. 0 for some V. Hence 4Ju(x)
~ 0, since the diagram commutes.

If M is a subspace of E with dim M = oo and M n N(B) = {0}, then
dim ~UM = oo. Let be an arbitrary 0-neighborhood in F. Then, by
the strict singularity of BU,V, there exists a subspace N c 4Ju M with
dim N = oo such that BU,V N c V. Then (~-1U N) n M is an infinite-dimen-
sional subspace of M, not contained in U, with B((~-1UN) n M n U) c V.
We have shown that U satisfies Definition 2.3. Hence B is s.s.s.

COROLLARY 2.10. If B : E ~ F is bounded and s.s.s., then its unique con-
tinuous extension B :  ~ F, E and fi the completions of E and F respec-
tively, is also bounded and s.s.s..

PROOF. Let U and ? be 0-neighborhood bases of E and F, respectively.
If LI (U ~ u) and V (Fe lll) are the closures of U and V in É and F,
respectively, then {U : U ~ u} and {V: V ~ B} are 0-neighborhood
bases in the completed spaces. Clearly Eu is a dense subspace of Eu, 
so (EU)~ ~ Eu and likewise (FV)~ ~ V. Let U be as in Theorem 2.9. We
only have to prove, by Theorem 2.9, that U is bounded in F, which is
trivial, and that for every V the diagram
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commutes and U,V is s.s.. Obviously the diagram commutes since all
the operators appearing in it are continuous extensions of the operators
in the corresponding commuting diagram for B. Also, for every V, U, V
coincides with the restriction to Ëp of the operator (BU,V)~ : (EU)~ ~ (FV)~.
The latter is s.s. by Theorem l.l l, therefore U, V is also s.s. This complètes
the proof.

Finally, we turn our attention to spectral properties of a s.s.s. operator
B mapping a l.c.s. E into itself. G. F. C. de Bruyn [1 ] introduced the
following:

DEFINITION 2.11. A linear operator B : E - E is called a Riesz-trans-
formation if the following holds.

(a) For any complex 03BB, ~ 0
(i) 03BBI - B is a 03C3-transformation (i.e., ÂI- B is a homomorphism with

dim N(03BBI - B)  oo, dim E/R(03BBI - B)  oo and R(03BBI - B) closed),
(ii) the ascent and descent of 03BBI - B are finite.

(b) The eigenvalues of B form a finite set or a sequence convergent
to 0.

The next theorem is due to de Bruyn [1].

THEOREM 2.12. If B : E - E is a bounded linear operator, then B is a
Riesz-transformation if and only if 03BBI - B is a a-transformation for every
non-zero ,1.

THEOREM 2.13. Let E be a Fréchet space which is superprojective (cf.
[2]). Then every bounded s.s.s. operator B : E ~ E is a Riesz-transfor-
mation.

PROOF. If E is superprojective, it follows from [2, III 2.4] that for

every 03BB ~ 0, ,1I-B is a 6-transformation. By Theorem 2.12, B is then a
Riesz-transformation.

REMARK 2.14. The hypothesis that E is a Fréchet space may be

weakened. It is suincient that E is fully barreled and E x E is a Ptak
space (cf. [2]).
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