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PARTITIONS OF UNITY IN HOMOTOPY THEORY
by

Tammo tom Dieck (Saarbriicken)

We prove, roughly, that a map f'is a homotopy equivalence if fis locally
a homotopy equivalence. We also prove that p : E — Bis a fibration if the
restrictions of p to the sets E, of a suitable covering (E,) of E are fibrations.

The paper was inspired by talks of Dold (see [5]) and might well be
considered a second part to Dold [4]. The essential difference to the work
of Dold is that we have to consider numerable coverings of a space X
which are closed under finite intersections. We use the fundamental
observation of G. Segal ([11], Prop. 4.1) that the ,,classifying space” of
such a covering is homotopy equivalent to X. It seems that this theorem
of Segal and the section extension theorem of Dold ([4], 2.7) are the
two foundation stones of the theory.

1. The main results

A covering (E,|x € A) of a space E is called numerable if there exists
a locally finite partition of unity (¢, € A4) such that the closure of
7110, 1] is contained in E,. If ¢ = A we put
A, =) 4,-
(From now on we use only non-empty o in this context!) If B is a fixed
topological space we have the category Top/B of spaces over B and we

have a notion of homotopy and homotopy equivalence over B (see
Dold [4], 1).

THEOREM 1. Letp : X — Bandq : Y — Bbe spacesover Bandf: X —» Y
a map over B (i.e. gf = p). Let U = (X,Joc A) resp. V = (Y,|lae A) be
a numerable covering of X resp. Y. Assume f(X,) < Y, and that for every
finite 6 = A the map f, : X, — Y, induced by f is a homotopy equivalence
over B. Then f is a homotopy equivalence over B.

We call p : E — B a fibration if it has the covering homotopy property
for all spaces (Hurewicz fibration). We call p : E — B an h-fibration if p
is homotopy equivalent over B to a fibration. (Then p has the weak co-
vering homotopy property (WCHP) in the sense of Dold [4], 5. See also
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160 Tammo tom Dieck 21

[3] for details.) We call p : E — B shrinkable if p is homotopy equivalent
over Btoid : B — B.

THEOREM 2. Let p : E —» X be a continuous map. Let U = (E,Ja € A)
be a family of subsets of E and let V = (X,|o € A) be a numerable covering
of X. Assume p(E,) = X, and that for finite 6 — A the map p, : E, > X,
induced by p is shrinkable. Then p has a section.

The following theorem answers questions of Dold and D. Puppe (see

[5]).

THEOREM 3. Let p : E — B be a continuous map. Let U = (E,Ja € 4)
be a numerable covering such that for every finite 6 = A the restriction
Do E, > Bof p to E, is a fibration (an h- fibration, shrinkable). Then p
is a fibration (an h-fibration, shrinkable).

The above theorems and their proofs have many corollaries and ap-
plications. We mention some of them.

THEOREM 4. Let U = (X,| € A) be a numerable covering of a space
X. If all the X, have the homotopy type of a CW-complex then X has the
homotopy type of a CW-complex.

The hypothesis of Theorem 4 is, for instance, satisfied if all the X, are
either empty or contractible. This in turn is true for spaces which are
equi-locally convex (Milnor [9]). Another application of Theorem 4 is
the following: If p : E — B is an h-fibration, if B has the homotopy type
of a CW-complex and if every fibre p~!(b), b € B, has the homotopy type
of a CW-complex, then E has the homotopy type of a CW-complex.

THEOREM 5. Let U = (X,|x € A) be an open covering of X and V =
(Y,le € A) an open covering of Y. Let f : X — Y be a continuous map with
f(Xa) < Yd’

(a) If the f, : X, — Y, are homotopy equivalences then f induces for every
paracompact space Z a bijection

fe 1 [Z,X] - [Z,Y]
of homotopy sets.
(b) If the f, are weak homotopy equivalences then f is a weak homotopy
equivalence.

THEOREM 5(b) is a variant of a result of McCord [8, Theorem 6]. Com-
pare also the special case discussed by Eells and Kuiper [6].

2. Homotopy equivalences

In this section we prove Theorems 1, 4 and 5. We begin with the proof
of Theorem 1. For simplicity we omit the phrase ‘over B’. In the following
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lemmas, for instance, we use cofibrations ‘over B’ and homotopies ‘over
B

The covering U of X leads to the classifying space BXy introduced by
G. Segal ([11], p. 108). We recall the basic properties of this space. The
map f induces F : BXy — BYy, because the construction of BX is func-
torial. We have a commutative diagram

F
BXU_'_) BYV

do

X —> Y
!

where the vertical maps are homotopy equivalences (Prop. 4.1 of Segal
[11]). Note that compactly generated spaces do not enter that propo-
sition. Note also that BX}, is a space ‘over B’ and that pr is a homotopy
equivalence ‘over B’. It is useful to observe that pris in fact shrinkable
— as the proof of Segal shows — and hence in particular an A-fibration. The
space BXy, being the geometric realisation of a semi-simplicial space, has
a functorial filtration by skeletons BX{, n =0, 1,2, - - -. We need the
following lemma in order to prove that Finduces homotopy equivalences

F® :BX®™ - BY™.

LEMMA 1. Given a commutative diagram

f1 S2
Al < Ao i Az

S

B, «<— By—> B,
91 g2

where f, g, are cofibrations and hy, hy, h, are homotopy equivalences.
Then hy, hy, h, induce a homotopy equivalence h: A — B where A is the

push-out of (fy, f,) and B the push-out of (g, g,)-

PrROOF. The lemma is of course well known, see R. Brown [1], 7.5.7.
We sketch a proof because we need the basic ingredient also for other
purposes. Using the homotopy theorem for cofibrations (compare
[3], 7.42) we can assume without loss of generality that f, and g, are co-
fibrations, too. But then it is clear that Lemma 1 follows from Lemma 2
below. (Compare the detailed proof of a dual lemma in R. Brown and P.
R. Heath [2]).
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LeMMA 2. Givern a commutative diagram

Ay —1> 4,

Jo

Bo_;"" B,

where f and g are cofibrations and hy, and h, homotopy equivalences.
Given a homotopy equivalence Hy, : By — Ao and a homotopy ¢ : Ag X1
— Ay with ¢(a,0) = Hyho(a), ¢(a,1) = a for ac Ay. Then we can
find a homotopy equivalence H, : By — A, with fH, = H, g and a homo-
topy Y : Ay xI — A; with y(a,0) = H hy(a), Y(a, 1) = aforae A, and

S (a,2t) agAy;t <
f(a) agAdy; t =

v (a1 = |

N= N

Proof. [3], 2.5.
We can now prove by induction over n

LeMMA 3. The map F® : BX{" — BY{™ is a homotopy equivalence.

ProOF. Thespace BX{? is the topological sum of the X,, 6 = A finite.
Hence F©@ js obviously a homotopy equivalence. We can construct
BX{" from BXJ™Y via the following push-out diagram

11 (X, x 04" —=> Bx(~D

1€An
|. B

H (X x 4" —> BXY

t€An

Explanation: 4" is the standard n-simplex with boundary d4" and j, is
induced by the inclusion 04" < 4". Note that j, is a cofibration (over
B!). The topological sum is over t € 4,, where

A, ={(00," ", 0,)log E *** E 0,, 0,  Afinite},

and ¢(o,, - - *, 6,) = 0,. The map k,, is the attaching map for the n-sim-
plices. Lemma 1 gives the inductive step.
As a corollary to the preceding proof we have

LEMMA 4. The map J,: BXy™Y - BX\" is a cofibration.
We also need

LEMMA 5. The space BXy is the topological direct limit of the BX .
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Proor. Geometric realisation commutes with direct limits.
In view of Lemma 3 to 5 the following lemma will finish the proof of
Theorem 1. Consider a commutative diagram

iy iz

Xo X, X,
Jo l S1 l S2 l
where i;, iy, --and I, I,, - - - are cofibrations and f;, f; , - - - are homo-

topy equivalences. Let X be the topological direct limit of the i, Y the
limit of the I, and f: X — Y the map induced by the f;.

LEMMA 6. The map f: X — Y is a homotopy equivalence.

Proor. (Compare [3],§ 10.) Using Lemma 2 we construct inductively
homotopy equivalences F,:Y, —» X, with i,F,_, = F,I, and homo-
topies @, : X, = X, from F,f, to id(X,) such that ¢, is constant for ¢t =1
—27"*Y and such that (i,xid)p, = ¢,—,. The F, and ¢, induce
F:Y - Xand ¢ : XxI— X suchthat ¢(x,0) = F,(x)and ¢(x,1) = x
for x € X. Hence f has a homotopy left inverse.

REMARK 1. Lemma 6 shows in particular that X = lim X, is the homo-
topy direct limit of the X, in the sense of Milnor [(10], p. 149), i.e. the
projection of the telescope of the i, onto X is a homotopy equivalence.

REMARK 2. The numerability of the covering U is only used to establish
the homotopy equivalence BXy ~ X. The map F : BXy— BYy is always
a homotopy equivalence, if the f, are homotopy equivalences. There are
other cases in which pr: BXy — X is a homotopy equivalence, e.g. if
U is closed, finite-dimensional and the inclusions X, < X, are cofibra-
tions.

Proof of Theorem 4. We show that BX, has the homotopy type of
a CW-complex. The procedure is the same as in the proof of Theorem 1.
If in the diagram

Ay PR Ao - A,

all spaces have the homotopy type of a CW-complex and if fis a cofibra-
tion, then the push-out has the homotopy type of a CW-complex. This
shows inductively that the BX ™ have the homotopy type of a CW-com-
plex. One finishes the proof using Lemma 5, Lemma 6 and Remark 1.

Proof of Theorem 5. Let U = (X,|« € A) be any covering of X. Consider
pr: BXy — X. We claim that for every « € 4 the map pr, : pr™'X, - X,
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is shrinkable. If U(x) is the covering (X, () X;|8 € A) of X, we show that
its classifying space, B, say, is canonically homeomorphic to pr~1X,.
The result then follows since U(x) is clearly a numerable covering of
X, because it contains X,. The homeomorphism B, =~ pr~'X, follows
along the lines of Gabriel-Zisman [7], Ch. III, 3.2.

Let now U be an open covering of X. We show that for a paracompact
Z the map pry : [Z, BXy]— [Z, X] is bijective. We consider a pull-back
diagram

E —q‘> BXy

1

Z— X
r

for given f. By Corollary 3.2 of Dold [4] we see that g is shrinkable. Let
s :Z — E be a section of ¢g. Then gs satisfies pr o gs = f and hence pr,
is surjective. Injectivity follows similarly; one has to use Prop. 3.1 of
Dold [4]. Theorem 5(a) follows.

To prove Theorem 5(b) we show that F : BXy; — BY), is a weak homo-
topy equivalence if the f, are weak homotopy equivalences. We prove
analogues of Lemmas 3 to 6. But this is standard homotopy theory.

3. Sections

We prove Theorem 2. We use the notations of the previous section.
We construct a map s such that the following diagram is commutative

.
p
BXU T> B.
More precisely we construct inductively maps s : BX™ - E with
ps™ = pr|BXP, J,s™® = 5®"1, and an additional property to be men-
tioned soon.

The map
sO: 11 x, > E
gedo
is given as follows: s'”|X, — E is a section X, —» E, composed with the
inclusion E, < E. The section exists because E, — B, is shrinkable. The
equality ps‘® = pr|BX{” clearly holds. Suppose s~V is given. We want
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to extend
s Uk, [ (X x 04") - E

over | [ (%, oy X 4"). If T = (ay, - - -, 0,), we impose the additional induc-
tion hypothesis that the image of X,,, x 94" under s Uk is contained in
E,,. The construction of s'” agrees with this requirement. With our new
hypothesis we have the commutative diagram

n sn= l)kn
Xy x 04 > E,,
Xq — = X

From Dold [4], Prop. 3.1(b), we see that s~ Pk, can be extended over
LI X, x 4, and hence we can construct s via the push-out diagram
entering the proof of Lemma 3. The properties ps™ = pr|BX{” and
J,s™ = 571D are obvious from the construction. We show that s™ sa-
tisfies the additional induction hypothesis. Given t = (6¢, * - *, 6,4 ;) We
describe

Kyt Xymx 04" > BXP.

Let d;: A" — A}*! be the standard map onto the i-th face of 4"** and
let e; be the inverse homeomorphism. Let

a,- . Xq(r) - X

q(eit)

be the inclusion, where

§T = (O'Oa C 5 0i—150i415° "% 0'n+1)-

The restriction of k,.q to X, x 47! is K,(9; xe;). By construction of
5™ the image of s"K,(0; x ;) is contained in E,, (for i > 0) or E,, (for
i =0). But E,, = E, , hence 5™ has the desired property. Because of
Lemma 5 the maps s combine to give s : BXy — E.

If (X,) is numerable then pr : BXy — X has a section tand s¢: B> E
will then be a section of p. This proves Theorem 2.

4. Fibrations
If p : E-» Bis a map we denote by W, the subspace
W, = {(w, e)lw(l) = pe} = B'XE,
where B’ is the path space with compact open topology. The map
T

:EI—>W,,,

14
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defined by n,(v) = (pv, v(1)), is shrinkable if p is a fibration. Conver-
sely, if m, has a section then p is a fibration.
In general we have a commutative diagram

kP
W, —> E

NS

k,(w, e) = e, j,(w,e) = pe. The map k, is a homotopy equivalence
and j, is a fibration. From our definition of A-fibrations and Theorem
6.1 of Dold [4] it follows immediately that p is an A-fibration if an only
if k, is a homotopy equivalence over B.

We have recalled these characterisations of fibrations and h-fibrations
because we want to use them in the following proof of Theorem 3.

Proof of Theorem 3. To begin with let us assume that the p, are A-fibra-
tions. The W,_form a numerable covering of W, and we have k,(W,_ ) <
E,. Moreover we know that W, — E_ is a homotopy equivalence over B
because p, is an A-fibration. We are now in a position to apply Theorem 1,
which tells us that k, is a homotopy equivalence over B. Hence p is an A-
fibration.

Now assume that the p, are fibrations. We want to show that x, has
a section. We use Theorem 2. We have the numerable covering (W]
ae A) of W, and we have the family of subsets (E.|x € 4). Moreover
El — W, is shrinkable because p, is a fibration. (Note that this is also
true if E, is empty.) Theorem 2 gives the desired section of 7.

Finally assume that the p, are shrinkable, i.e. homotopy equivalences
over B. Theorem 1 shows that p is a homotopy equivalences over B. The
proof of Theorem 3 is now finished.
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