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We prove, roughly, that a map f is a homotopy equivalence if f is locally
a homotopy equivalence. We also prove that p : E - B is a fibration if the
restrictions of p to the sets E03B1 of a suitable covering (E03B1) of E are fibrations.
The paper was inspired by talks of Dold (see [5]) and might well be

considered a second part to Dold [4]. The essential difference to the work
of Dold is that we have to consider numerable coverings of a space X
which are closed under finite intersections. We use the fundamental

observation of G. Segal ([11], Prop. 4.1) that the "classifying space" of
such a covering is homotopy equivalent to X. It seems that this theorem
of Segal and the section extension theorem of Dold ([4], 2.7) are the
two foundation stones of the theory.

1. The main results

A covering (E03B1|03B1 E A) of a space E is called numerable if there exists
a locally finite partition of unity (t03B1|03B1 E A) such that the closure of
t-103B1 ] 0, 1 ] is contained in E03B1. If 6 c A we put

aea

(From now on we use only non-empty 6 in this context!) If B is a fixed
topological space we have the category Top/B of spaces over B and we
have a notion of homotopy and homotopy equivalence over B (see
Dold [4], 1).
THEOREM 1. Let p : X ~ B and q : Y ~ B be spaces over B and f : X ~ Y

a map over B (i.e. qf = p). Let U = (X03B1|03B1 E A) resp. V = (Y03B1|03B1 E A) be
a numerable covering of X resp. Y. Assume f(X03B1) c Y03B1 and that for every
finite a c A the map fa : X03C3 ~ Ya induced by f is a homotopy equivalence
over B. Then f is a homotopy equivalence over B.
We call p : E ~ B a fibration if it has the covering homotopy property

for all spaces (Hurewicz fibration). We call p : E ~ B an h-fibration if p
is homotopy equivalent over B to a fibration. (Then p has the weak co-
vering homotopy property (WCHP) in the sense of Dold [4], 5. See also
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[3 ] for details.) We call p : E ~ B shrinkable if p is homotopy equivalent
over B to i d : B - B.

THEOREM 2. Let p : E ~ X be a continuous map. Let U = (E03B1|03B1 E A)
be a family of subsets of E and let V = (X03B1|03B1 E A) be a numerable covering
of X. Assume p(E03B1) c X03B1 and that for finite u c A the map p03C3 : Ea --+ X03C3
induced by p is shrinkable. Then p has a section.
The following theorem answers questions of Dold and D. Puppe (see

[5]).
THEOREM 3. Let p : E ~ B be a continuous map. Let U = (E03B1|03B1 E A)

be a numerable covering such that for every finite 6 c A the restriction
pal : E03C3 ~ B of p to Ea is a fibration (an h- fibration, shrinkable). Then p
is a fibration (an h-fibration, shrinkable).
The above theorems and their proofs have many corollaries and ap-

plications. We mention some of them.

THEOREM 4. Let U = (X03B1| E A) be a numerable covering of a space
X. If all the Xa have the homotopy type of a CW-complex then X has the
homotopy type of a CW-complex.
The hypothesis of Theorem 4 is, for instance, satisfied if all the Xa are

either empty or contractible. This in turn is true for spaces which are

equi-locally convex (Milnor [9]). Another application of Theorem 4 is
the following: If p : E ~ B is an h-fibration, if B has the homotopy type
of a CW-complex and if every fibre p -1 (b), b E B, has the homotopy type
of a CW-complex, then E has the homotopy type of a CW-complex.

THEOREM 5. Let U = (X03B1|03B1 E A) be an open covering of X and V =
(Y03B1|03B1 E A) an open covering of Y. Let f : X ~ Y be a continuous map with
f(X03B1) ~ Y03B1.
(a) If the fa : X03C3 ~ Ya are homotopy equivalences then f induces for every
paracompact space Z a bijection

of homotopy sets.

(b) If the fa are weak homotopy equivalences then f is a weak homotopy
equivalence.
THEOREM 5(b) is a variant of a result of McCord [8, Theorem 6]. Com-

pare also the special case discussed by Eells and Kuiper [6].

2. Homotopy equivalences

In this section we prove Theorems 1, 4 and 5. We begin with the proof
of Theorem 1. For simplicity we omit the phrase ’over B’. In the following
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lemmas, for instance, we use cofibrations ’over B’ and homotopies ’over
B’. .

The covering U of X leads to the classifying space BXU introduced by
G. Segal ([11], p. 108). We recall the basic properties of this space. The
map f induces F : BXU ~ BYy, because the construction of BXU is func-
torial. We have a commutative diagram

where the vertical maps are homotopy equivalences (Prop. 4.1 of Segal
[11 ]). Note that compactly generated spaces do not enter that propo-
sition. Note also that BXU is a space ’over B’ and that pr is a homotopy
equivalence ’over B’. It is useful to observe that pr is in fact shrinkable
- as the proof of Segal shows - and hence in particular an h-fibration. The
space BXU, being the geometric realisation of a semi-simplicial space, has
a functorial filtration by skeletons BX(n)U, n = 0, 1, 2,···. We need the
following lemma in order to prove that F induces homotopy equivalences

LEMMA 1. Given a commutative diagram

where fl , 91 are cofibrations and ho, hl, h2 are homotopy equivalences.
Then ho, hl, h2 induce a homotopy equivalence h : A ~ B where A is the
push-out of (fl f2) and B the push-out of (g 1, 92 ).

PROOF. The lemma is of course well known, see R. Brown [1 ], 7.5.7.
We sketch a proof because we need the basic ingredient also for other
purposes. Using the homotopy theorem for cofibrations (compare
[3], 7.42) we can assume without loss of generality that, f2 and 92 are co-
fibrations, too. But then it is clear that Lemma 1 follows from Lemma 2
below. (Compare the detailed proof of a dual lemma in R. Brown and P.
R. Heath [2]).
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LEMMA 2. Given a commutative diagram

where f and g are cofibrations and ho and hl homotopy equivalences.
Given a homotopy equivalence Ho : B0 ~ Ao and a homotopy ~ : Ao x I
- Ao with ~(a, 0) = Ho ho(a), 9 (a, 1) = a for a E Ao . Then we can

find a homotopy equivalence Hl : B1 ~ Al with , f ’Ho - Hl g and a honio-
topy 03C8 : A1  I ~ A1 with 03C8(a, 0) = Hl h1(a), 03C8(a, 1) = a for a E A1 and

Proof. [3], 2.5.
We can now prove by induction over n

LEMMA 3. The map F(n) : BXU(n)U ~ BY(n)V is a homotopy equivalence.
PROOF. The space BX(0)U is the topological sum of the X03C3, 03C3 c A finite.

Hence F(0) js obviously a homotopy equivalence. We can construct
BX(n)U from BX(n-1)U via the following push-out diagram

Explanation: A" is the standard n-simplex with boundary BAn and jn is
induced by the inclusion BAn c dn. Note that jn is a cofibration (over
B!). The topological sum is over i E An, where

and q(03C30,···, un) = Un. The map kn is the attaching map for the n-sim-
plices. Lemma 1 gives the inductive step.
As a corollary to the preceding proof we have

LEMMA 4. The map Jn : BX(n-1)U - BX(n)U is a cofibration.
We also need

LEMMA 5. The space BXu is the topological direct limit of the BX(n)U.
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PROOF. Geometric realisation commutes with direct limits.

In view of Lemma 3 to 5 the following lemma will finish the proof of
Theorem 1. Consider a commutative diagram

where il, i2,··· and h , I2,··· are cofibrations and f0 , f1, ··· are homo-
topy equivalences. Let X be the topological direct limit of the ik, Y the
limit of the Ik and f : X - Y the map induced by the fk.

LEMMA 6. The map f: X ~ Y is a homotopy equivalence.

PROOF. (Compare [3], § 10.) Using Lemma 2 we construct inductively
homotopy equivalences Fn : Yn ~ Xn with in Fn-1 = Fn In and homo-
topies (Pn : Xn ~ Xn from Fn fn to i d (Xn) such that ~n is constant for t ~ 1
- 2-tn+ 1) and such that (in xid)(Pn - ~n-1. The Fn and 9n induce
F : Y ~ X and ~ : X  I ~ X such that ~(x, 0) = Fn (x) and ~(x, 1) = x
for x ~ X. Hence . f ’ has a homotopy left inverse.

REMARK 1. Lemma 6 shows in particular that X = lim Xk is the homo-
topy direct limit of the Xk in the sense of Milnor [(10], p. 149), i.e. the
projection of the telescope of the in onto X is a homotopy equivalence.

REMARK 2. The numerability of the covering U is only used to establish
the homotopy equivalence BXU ~ X. The map F : BXU ~ BY,, is always
a homotopy equivalence, if the f03C3 are homotopy equivalences. There are
other cases in which pr : BXU ~ X is a homotopy equivalence, e.g. if
U is closed, finite-dimensional and the inclusions X03C3 c XT are cofibra-
tions.

Proof of Theorem 4. We show that BXu has the homotopy type of
a CW-complex. The procedure is the same as in the proof of Theorem 1.
If in the diagram

all spaces have the homotopy type of a CW-complex and if f is a cofibra-
tion, then the push-out has the homotopy type of a CW-complex. This
shows inductively that the BX(n)U have the homotopy type of a CW-com-
plex. One finishes the proof using Lemma 5, Lemma 6 and Remark 1.

Proof of Theorem 5. Let U = (X03B1|03B1 E A) be any covering of X. Consider
p r : BXU ~ X. We claim that for every oc E A the map pr03B1 : pr-1X03B1 ~ X,,,
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is shrinkable. If U(a) is the covering (X03B1 n XplP E A) of X03B1 we show that
its classifying space, B03B1 say, is canonically homeomorphic to pr-1X03B1.
The result then follows since U(ot) is clearly a numerable covering of
X03B1 because it contains X03B1. The homeomorphism B03B1 ~ pr-1X03B1 follows
along the lines of Gabriel-Zisman [7], Ch. III, 3.2.

Let now U be an open covering of X. We show that for a paracompact
Z the map pr* : [Z, BXU] ~ [Z, X] is bijective. We consider a pull-back
diagram

for given f. By Corollary 3.2 of Dold [4] we see that q is shrinkable. Let
s : Z - E be a section of q. Then gs satisfies pr o gs = f and hence pr*
is surjective. Injectivity follows similarly; one has to use Prop. 3.1 of
Dold [4]. Theorem 5(a) follows.
To prove Theorem 5(b) we show that F : BXU ~ BY,, is a weak homo-

topy equivalence if the f,, are weak homotopy equivalences. We prove
analogues of Lemmas 3 to 6. But this is standard homotopy theory.

3. Sections

We prove Theorem 2. We use the notations of the previous section.
We construct a map s such that the following diagram is commutative

More precisely we construct inductively maps s(n) : BX(n)U ~ E with
ps(n) = pr u Jns(n) = s(n-1), and an additional property to be men-
tioned soon.

The map

is given as follows: s(0)|X03C3 ~ E is a section X03C3 ~ E03C3 composed with the
inclusion E. c E. The section exists because E,, -+ B03C3 is shrinkable. The
equality ps(0) = prIBXf,°) clearly holds. Suppose s(n-1) is given. We want
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to extend

over Il (Xq(03C4) x dn). If 03C4 = (03C30, ···, 03C3n), we impose the additional induc-
tion hypothesis that the image of Xq(T) x DAn under s(n-1)kn is contained in
E03C30. The construction of s(0) agrees with this requirement. With our new
hypothesis we have the commutative diagram

From Dold [4], Prop. 3.1(b), we see that s(n-1)kn can be extended over
 Xq(03C4) xd,, and hence we can construct s(n) via the push-out diagram
entering the proof of Lemma 3. The properties ps (n) = pr|BX(n)U and
Jns(n) = s(n-1) are obvious from the construction. We show that s (n) sa-
tisfies the additional induction hypothesis. Given i = (u 0, ... , 03C3n+1) we
describe

Let di : 0394n ~ 0394n+1i be the standard map onto the i-th face of 0394n+1 and
let ei be the inverse homeomorphism. Let

be the inclusion, where

The restriction of kn+1 to Xq(03C4)  0394n+1i is Kn(Di x ei). By construction of
s(n) the image of s(n)Kn(~i x ei) is contained in E03C30 (for i &#x3E; 0) or E03C31 (for
i = 0). But Ea1 c E03C31, hence s (n) has the desired property. Because of
Lemma 5 the maps s (n) combine to give s : BXU ~ E.

If (X03B1) is numerable then pr : BXU ~ X has a section t and st : B ~ E
will then be a section of p. This proves Theorem 2.

4. Fibrations

If p : E ~ B is a map we denote by Wp the subspace

where BI is the path space with compact open topology. The map
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defined by 1tp(v) = (pv, v(1)), is shrinkable if p is a fibration. Conver-
sely, if 03C0p has a section then p is a fibration.

In general we have a commutative diagram

kp(w, e) = e, jp(w, e) = pe. The map kp is a homotopy equivalence
and jp is a fibration. From our definition of h-fibrations and Theorem
6.1 of Dold [4] it follows immediately that p is an h-fibration if an only
if kp is a homotopy equivalence over B.
We have recalled these characterisations of fibrations and h-fibrations

because we want to use them in the following proof of Theorem 3.

Proof of Theorem 3. To begin with let us assume that the p. are h-fibra-
tions. The Wpa form a numerable covering of Wp and we have kp(Wp,,) c
Ea. Moreover we know that Wpa --+ E03C3 is a homotopy equivalence over B
because Pais an h-fibration. We are now in a position to apply Theorem 1,
which tells us that k. is a homotopy equivalence over B. Hence p is an h-
fibration.

Now assume that the Pa are fibrations. We want to show that np has

a section. We use Theorem 2. We have the numerable covering (Wp03B1|
a e A) of Wp and we have the family of subsets (EI03B1|03B1 E A). Moreover
E) - Wp is shrinkable because p03C3 is a fibration. (Note that this is also
true if E03C3 is empty.) Theorem 2 gives the desired section of Tep.

Finally assume that the Pa are shrinkable, i.e. homotopy equivalences
over B. Theorem 1 shows that p is a homotopy equivalences over B. The
proof of Theorem 3 is now finished.
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