Compositio Mathematica

JAMES R. MOSHER
 Semirings with descending chain condition and without nilpotent elements

Compositio Mathematica, tome 23, $\mathrm{n}^{\circ} 1$ (1971), p. 79-85
http://www.numdam.org/item?id=CM_1971__23_1_79_0
© Foundation Compositio Mathematica, 1971, tous droits réservés.
L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numbam

SEMIRINGS WITH DESCENDING CHAIN CONDITION AND WITHOUT NILPOTENT ELEMENTS

by
James R. Mosher

1. Introduction

Several decades ago, Artin, Nesbitt, and Thrall [1] published their classic work on rings with descending chain condition on left ideals. In recent years Herstein [5], Divinsky [3], Kertész [6], Szaśz [8], and others have compiled these and other results in their books or articles. In this paper the author extends to a class of semirings some of these results in ring theory.

2. Definitions

A semiring is a non-empty set R on which two associative binary operations, addition and multiplication, are defined such that the multiplication distributes over the addition from both sides and such that there exists $e \in R$ with $x+e=e+x=x$ and $e x=x e=e$ for all $x \in R$. We call e the zero of R and denote it by 0 .

A semiring R is left semisubtractive if for each $x, y \in R$ there exists $z \in R$ with $z+x=y$ or $x=z+y$.

A left semi-ideal of a semiring R is a non-empty subset A of R such that for each $x, y \in A$ and $r \in R$ it is true $x+y, r x \in A$. A left semi-ideal A of R is a left l-ideal if $x, y+x \in A$ imply $y \in A$ and is a left r-ideal if $x, x+y \in A$ imply $y \in A$. Similarly one defines these concepts using 'right' instead of 'left'. A subset that is both a left and right semi-ideal is called a semi-ideal. Similarly one defines l-ideal and r-ideal. If a subset is a left [right] l-ideal and left [right] r-ideal, it is called a left [right] ideal. An ideal is a subset that is both a left and right ideal.

A semiring R satisfies the descending chain condition of left l-ideals (abbreviated DCC) if for each sequence $R \supseteq L_{1} \supseteq L_{2} \supseteq \cdots$ of left l-ideals there is a positive integer n such that $L_{n}=L_{n+1}=L_{n+2}=\cdots$. This is clearly equivalent to the property that each non-empty set of left l-ideals of R contains a minimal member.

The definitions of nilpotent and idempotent elements of a semiring are
the same as in ring theory. The element 0 will be excluded when considering nilpotent or idempotent elements.

The zeroid of a semiring R, as introduced by Bourne and Zassenhaus [2], is $\{x \in R \mid z+x=z$ or $x+z=z$ for some $z \in R\}$. A semiring R has right additive cancellation if $x+z=y+z$ for $x, y, z \in R$ implies $x=y$. It follows that a left semisubtractive semiring with zero as its zeroid has right additive cancellation.

Convention. We will let R denote a left semisubtractive semiring with DCC, with zero as its zeroid, and without nilpotent elements.

3. Preliminary results

Proposition 1. Each nonzero left l-ideal A of R contains an idempotent x with $A=R x$.

Proof. By DCC, A contains a minimal nonzero left l-ideal B. For each $c \neq 0$ in $B, B c$ is a nonzero left semi-ideal of R in B. Let $B c^{*}$ be the left l-ideal of R generated by $B c$ (see [7]). Since $B c^{*} \subseteq B, B c^{*}=B$. Hence $c \in B c^{*}$ which means $x c=c+y c$ for some $x, y \in B$. By left semisubtractivity, $b+x=y$ or $x=b+y$ fpr some $b \in B$. If $x=b+y$, then $b c=c$. If $b+x=y$, then $0=c+b c$ and hence $c=c+b(c+b c)=c+b c+b^{2} c=$ $b^{2} c$. In either case there exists $e \in B$ such that $c=e c$.

For some $d \in B, d+e^{2}=e$ or $e^{2}=d+e$. If $J=\{x \in B \mid x c=0\}$, then J is a left ideal of R, so that $J=(0)$. If $d+e^{2}=e$, then $e c+d c=e^{2} c+$ $d c=e c$ and hence $d \in J$. If $e^{2}=d+e$, again $d=0$. Therefore A contains an idempotent e. We now show A has an idempotent x such that, if $y \in A$ with $y x=0$, then $y=0$. For each idempotent $e \in A$, let $M_{e}=\{x \in A \mid x e$ $=0\}$ which is a left ideal of R. Choose idempotent x of A such that M_{x} is minimal, and suppose $M_{x} \neq(0)$. Now M_{x} has an idempotent g; note that $g x=0$. For some $h \in A, h+x g=g+x$ or $x g=h+g+x$. In the first case, from $h x+x g x=g x+x^{2}$ we get $h x=x$ and similarly $h g=g h=g$. Thus $h^{2}+x g=h^{2}+h x g=h g+h x=g+x=h+x g$, so that $h^{2}=h$. Clearly $M_{h} \subseteq M_{x}$; since $g x=0$ and $g h=g \neq 0, M_{h} \neq M_{x}$, a contradiction. For the other case, we have $h g+g=g h+g=h x+x=g h x=0$. Hence for $k=h x g+g+x$, we have $k^{2}=k \in A$. For $z \in M_{k}, z k=0$ and hence $z g+z x=z h x h g+z h x g+z g+z x=z h x h g$, so that $z x=z g x+$ $z x^{2}=z h x h g x=0$, meaning $z \in M_{x}$. Thus $M_{k} \subseteq M_{x}$ but $M_{x} \neq M_{k}$, a contradiction. Therefore $M_{x}=(0)$.

Finally we show $y=y x$ for each $y \in A$ and that $A=R x$. If $y \in A$, then $z+y=y x$ or $y=z+y x$ for some $z \in A$. If $z+y=y x$, then $y x=$ $y x^{2}=z x+y x$ and hence $z x=0$ meaning $z=0$. The other case gives
the same result. Therefore $y=y x$ for all $y \in A$. Since $R x \subseteq A=A x \subseteq$ $R x, A=R x$. This completes the proof.

Observe from Proposition 1 that each non-zero left l-ideal of R has a right identity. Also, if e is an idempotent of R, then $R e[e R]$ is a left [right] ideal. Clearly, $R e$ is a left semi-ideal. If $x e, y+x e=z e \in R e$, then $y e+x e=y e+x e^{2}=z e^{2}=z e=y+x e$, so that $y=y e \in \operatorname{Re}$ and Re is a left l-ideal, and similarly $R e$ is a left r-ideal. Consequently any left l ideal is a left ideal by Proposition 1.

Theorem 2. If A is a non-zero ideal of R, then A contains an idempotent element e such that $A=e R$ and such that e is the identity of A.

Proof. By Proposition 1, A contains an idempotent element e such that $A=\operatorname{Re}$. Let $B=\{x \in A \mid e x=0\}$. Now B is a right ideal of R. Since e is a right identity of $A, B e=B$. Since $B^{2}=(B e) B=B(e B)=(0)$, we have $B=(0)$. Letting $y \in A$, there exists $z \in A$ such that $z+y=e y$ or $y=z+e y$. If $z+y=e y$, then $e y=e^{2} y=e z+e y$, so that $e z=0$ and $z=0$. By the other case $z=0$ also. Thus $y=e y$ for each $y \in A$, so that e is the identity of A, and $A=e R$. This completes the proof.

Corollary. The semiring R contains an identity 1.
For $a, b \in R,(a+b)(1+1)$ is $a+b+a+b$ and also $a+a+b+b$. Thus $a+b+a=a+a+b$. For some $y \in R, y+a+b=b+a$ or $a+b=y+b$ $+a$. In the first case $a+a+b=a+b+a=a+y+a+b$, so that $a=a+y$ and $y=0$. Similarly $y=0$ in the other case. Consequently R is a hemiring, that is, a semiring with commutative addition.

The center of R is the set $C=\{x \in R \mid y x=x y$ for every $y \in R\}$. The following proposition is analogous to a theorem in ring theory [4].

Proposition 3. Each idempotent element e of R is in C if and only if e is the identity for some non-zero ideal of R.

We now are able to prove that any left ideal of R has DCC.
Theorem 4. If A is a left ideal of R, then any left semi-ideal [ideal] of A is also a left semi-ideal [ideal] of R.

Proof. The proof is the same as the proof of the analogous ring theory theorem.

Corollary. Any left ideal of R has DCC.
It is to be observed from Theorem 4 that, if B is a right semi-ideal [ideal] of an ideal A, then B is a right semi-ideal [ideal] of R. This fact will be useful to us later in this paper.

4. Central idempotent elements

An idempotent of a hemiring is central if it belongs to the center of the hemiring. Further, an idempotent is semiprimitive if it is central and if it cannot be expressed as $u+v$ where u and v are central idempotents with $u v=0$. The concepts of orthogonal and pairwise orthogonal idempotents in hemirings are defined analogously as in rings. At this point two characterizations of semiprimitives can be given.

Proposition 5. A central idempotent e of R is semiprimitive if and only if there does not exist a central idempotent $u \neq e$ such that $e u=u$ (that is, e is the only central idempotent of R in $e R$).

Proof. Let e be semiprimitive and suppose there is a central idempotent $u \neq e$ such that $e u=u$. For some $v \in R, v+u=e$ or $u=v+e$. If $v+u$ $=e$, then $v u+u=v u+u^{2}=e u=u$ and hence $u v=v u=0$. Thus $v+u$ $=v^{2}+u$, so that $v^{2}=v$. Clearly $v \neq 0$ and $v \in C$. Consequently, v is a central idempotent. Since $v+u=e$ and $u v=0$ we have a contradiction to e being semiprimitive. If $u=v+e$, then $e v+e=v+e$, so that $e v=v$. Also $u v=0$, so that $0=(v+e) v=v^{2}+v$ and $0=u^{3} v=v^{4}$ $+3 v^{3}+3 v^{2}+v=v^{4}+v$ which implies $v^{2}=v^{4}$. Since $v^{2} \in C, v^{2}$ is a central idempotent with $e=v^{2}+u$, a contradiction. The converse follows easily from the contrapositive.

Before giving the second characterization, two definitions are necessary. A hemiring is simple if the only ideals it contains are (0) and itself. An ideal of a hemiring is simple if it is simple as a hemiring.

Proposition 6. A central idempotent e of R is semiprimitive if and only if Re is simple.

Proof. If e is semiprimitive, then it is the only central idempotent of $R e$ by Proposition 5. Let J be a non-zero ideal of $R e$. By the observation before Theorem $2, R e$ is an ideal, so that J is an ideal of R by Theorem 4. Thus $J=R u$, where u is a central idempotent. Since $u \in J$ $\subseteq R e, u=e$. Hence, $J=R e$ and $R e$ is simple. The converse is proved the same as in ring theory.

Theorem 7. Every central idempotent e of R which is not semiprimitive is a sum of a finite number of pairwise orthogonal semiprimitive idempotents.

Proof. The ideal $R e$ contains semiprimitive idempotents. Suppose u and v are distinct semiprimitive idempotents of R in $R e$. By Proposition $6, R u$ and $R v$ are simple ideals. If $u v \neq 0$, then $R u=R u \cap R v=R v$. By Proposition 5, $u=v$ which is a contradiction. Hence $u v=0$.

Let M be the set of all semiprimitive idempotents of R in $R e$. The elements of M are pairwise orthogonal. Consider any finite sum of elements of M, say $\Sigma u_{i}=u$. Clearly $u^{2}=u=u e=e u$. For some $x \in R e, x+u=e$ or $u=x+e$. If $x+u=e$, then $u x=0$ and as well $x u=0$; with this $x=x^{2}$. Clearly $x \in C$, so that $R x$ is an ideal in Re. If $u=x+e$, then $e x=x$. Hence $x+e=x^{2}+2 x+e$ and $x^{2}+x=0$. Also $u x=x u=0$, so that $x^{2}=x^{2}+x^{4}+x^{3}=x^{4}+x\left(x+x^{2}\right)=x^{4}$. Since $x^{2} \in C, R x^{2}$ is an ideal in $R e$. Considering the set N of all these $R x$ or $R x^{2}$, as the case might be, choose a minimal member of N. If it is not (0), then it is equal to $R f$, where f is a central idempotent of $R e$ such that $e=f+\Sigma v_{i}, v_{i} \in M$, or it is equal to $R f^{2}$, where f^{2} is a central idempotent of Re such that $f+e$ $=\Sigma w_{i}, w_{i} \in M$. Considering the first case we observe that, by the corollary to Theorem $4, R f$ contains a minimal non-zero ideal K which is also an ideal of R. By Theorem $2, K=R v$ where v is a central idempotent of R. Since K is simple, v is semiprimitive, and hence $v \in M$.

Suppose $v=v_{j}$ for some j. Hence $v_{j} \in R f$ which implies $v_{j}=x f$ for some $x \in R$. Since $e=f+\Sigma v_{i}, x v^{j}=x f v_{j}+x\left(\Sigma v_{i}\right) v_{j}=v_{j}+x v_{j}$, so that $v_{j}=0$ which is a contradiction. Therefore $v \neq v_{i}$ for every i.

Take $w=v+\Sigma v_{i}$; then $w=y+e$ or $y+w=e$ for some $y \in R e$. As before $w^{2}=w=w e=e w$, and $w \in C$. Suppose $w=y+e$; then as before $y^{4}=y^{2}, y^{2} \in C$, and hence $R y^{2}$ is an ideal of $R e$. Thus $v+\Sigma v_{i}=$ $y+f+\Sigma v_{i}$, so that $v=y+f$. Since $R f$ is an ideal, $y \in R f$. Therefore $R y^{2} \subseteq R f$. Assume $f \in R y^{2}$; then $f=r y^{2}$ for some $r \in R$. Since $v y=0$, $v=v f=v r y^{2}=0$, a contradiction. Thus $f \notin R y^{2}$ and $R y^{2} \neq R f$, a contradiction.

Suppose then that $y+w=e$; then as before $y^{2}=y, y \in C$, and hence $R y$ is an ideal in $R e$, and as well $y+v+\Sigma v_{i}=f+\Sigma v_{i}$ and $y+v=f$, so that $R y \subseteq R f$. As well $R y \neq R f$, a contradiction. Consequently, for this case the minimal member of N has to be (0).

Consider now the second case; again $R f^{2}$ contains a non-zero ideal of the form $R v$ where v is a semiprimitive idempotent and hence in M. If $v=w_{j}$ for some j, then $w_{j} \in R f^{2}$ and hence $w_{j}=x f^{2}$ for some $x \in R$. Thence $\quad x w_{j}=x\left(\Sigma w_{i}\right) w_{j}=x f w_{j}+x e w_{j}=x f w_{j}+x w_{j} \quad$ and $\quad x f w_{j}=0$. Thus $0=f\left(x f w_{j}\right)=w_{j}^{2}=w_{j}$, a contradiction. Therefore $v \neq w_{i}$ for every i.

Take $w=v+\Sigma v_{i}$; then $w=y+e$ or $y+w=e$ for some $y \in \operatorname{Re}$. As before $w^{2}=w=w e=e w$, and $w \in C$. Suppose $w=y+e$; then as before $y^{4}=y^{2}, y^{2} \in C$, and hence $R y^{2}$ is an ideal of $R e$. Thus $v+\Sigma v_{i}=$ $y+f+\Sigma v_{i}$, so that $v=y+f$. Since $R f$ is an ideal, $y \in R f$. Therefore $R y^{2} \subseteq R f$. Assume $f \in R y^{2}$; then $f=r y^{2}$ for some $r \in R$. Since $v y=0$, $v=v f=v r y^{2}=0$, a contradiction. Thus $f \notin R y^{2}$ and $R y^{2} \neq R f$, a contradiction.

Suppose then that $y+w=e$; then as before $y^{2}=y, y \in C$, and hence $R y$ is an ideal in $R e$, and as well $y+v+\Sigma v_{i}=f+\Sigma v_{i}$ and $y+v=f$, so that $R y \subseteq R f$. As well $R y \neq R f$, a contradiction. Consequently, for this case the minimal member of N has to be (0).

Consider now the second case; again $R f^{2}$ contains a non-zero ideal of the form $R v$ where v is a semiprimitive idempotent and hence in M. If $v=w_{j}$ for some j, then $w_{j} \in R f^{2}$ and hence $w_{j}=x f^{2}$ for some $x \in \mathrm{R}$. Thence $x w_{j}=x\left(\Sigma w_{i}\right) w_{j}=x f w_{j}+x e w_{j}=x f w_{j}+x w_{j}$ and $x f w_{j}=0$. Thus $0=f\left(x f w_{j}\right)=w_{j}^{2}=w_{j}$, a contradiction. Therefore $v \neq w_{i}$ for every i.

Take $w=v+\Sigma w_{i}$; then $w=y+e$ or $y+w=e$ for some $y \in R e$. As before $w^{2}=w$, we $=w$, and $w \in C$. Suppose $w=y+e$; then $y^{4}=y^{2}$, $y^{2} \in C$, and $R y^{2}$ is an ideal of $R e$. Since $f^{2}+f=0, v+\Sigma w_{i}=e+y=$ $f^{2}+f+e+y=f^{2}+\Sigma w_{i}+y$ and hence $v=f^{2}+y$. Since $R f^{2}$ is an ideal, $y \in R f^{2}$. Therefore $R y^{2} \subseteq R f^{2}$. By assuming $f^{2} \in R y^{2}, f^{2}=r y^{2}, r \in R$, and thus, since $v y=0, v=v f^{2}=v r y^{2}=0$, a contradiction. Therefore $R y^{2} \neq R f^{2}$, a contradiction.

If $y+w=e$, then $y^{2}=y, y \in C$, and $R y$ is an ideal in $R e$. As well $f+y+v+\Sigma w_{i}=f+y+w=f+e=\Sigma w_{i}$ and $y+v=f^{2}+f+y+v=f^{2}$, so that $y \in R f^{2}$. Thus $R y \subseteq R f^{2}$ and $R y \neq R f^{2}$, a contradiction. Consequently, for this case the minimal member of N has to be (0). Therefore e is a finite sum of semiprimitive idempotents, as we wanted to prove.

5. Direct sums and a structure theorem

The concept of direct sum in hemirings is the same as in ring theory. Hence we have the following theorem which is proved the same as in ring theory:

Proposition 8. If A_{1}, \cdots, A_{m} are distinct simple ideals of R and if $A=A_{1}+\cdots+A_{m}$, then A is their direct sum.

We conclude the section with the main theorem of the paper. It is a generalization to hemirings of a well-known structure theorem discussed by Artin, Nesbitt, and Thrall [1].

Theorem 9. The hemiring R has only a finite number of non-zero simple ideals and is their direct sum.

Proof. By the corollary to Theorem $2, R$ contains an identity 1 which is a central idempotent. If 1 is semiprimitive, then R is simple by Proposition 6 and the proof is complete. Assume 1 is not semiprimitive. By Theorem 7, $1=\Sigma e_{i}$ where the e_{i} are pairwise orthogonal semiprimitive idempotents. Since $R=R \cdot 1=R\left(\Sigma e_{i}\right) \subseteq \Sigma R e_{i} \subseteq R, R=\Sigma R e_{i}$. By Proposition 6, each $R e_{i}$ is a simple ideal. By Proposition 8, R is the direct sum of $R e_{i}$.

Let I be a non-zero simple ideal of R. If $R I R=(0)$, then $I^{3}=(0)$, a contradiction. Hence $I=R I R$. Thus $I=R I R \subseteq I\left(\Sigma R e_{i}\right) \subseteq \Sigma I R e_{i} \subseteq I$, so that $I=\Sigma I R e_{i}$. Some $I R e_{i} \neq(0)$ since $I \neq(0)$; hence $I \cap R e_{i} \neq(0)$ which implies $I=I \cap R e_{i}=R e_{i}$. Therefore, R has only a finite number of simple ideals and the proof is complete.

REFERENCES

E. Artin, C. J. Nesbitt and R. M. Thrall
[1] Rings with minimum condition (University of Michigan Publication in Mathematics, no. 1, 1944 .
S. Bourne and H. Zassenhaus
[2] On the semiradical of a semiring, Proc. Nat. Acad. Sci. U.S.A., vol. 44 (1958), pp. 907-914.
N. J. Divinsky
[3] Rings and Radicals, Mathematical Expositions no. 14, Toronto: University of Toronto Press, 1965.
A. Forsythe and N. McCoy
[4] On the commutativity of certain rings, Bull. Amer. Math. Soc., vol. 52 (1946), pp. 523-526.
I. N. Herstein
[5] Noncommutative Rings, The Carus Mathematical Monographs no. 15, The Mathematical Association of America, 1968.
A. Kertész
[6] Vorlesungen über Artinsche Ringe, Akad. Kiado, 1968.
J. R. Mosher
[7] Generalized quotients of hemirings, Compositio Mathematica, vol. 22 (1970), pp. 275-281.
F. Szász
[8] Über Ringe mit Minimalbedingung für Hauptrechtsideale, III, Acta Math., 14 (1963), pp. 447-461
(Oblatum: 9-III-70)
Prof. J. R. Mosher
Texas A \& M University
Department of Mathematics
COLLEGE STATION, Texas 77843
U.S.A.

