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1. Introduction

Several decades ago, Artin, Nesbitt, and Thrall [1] published their
classic work on rings with descending chain condition on left ideals.
In recent years Herstein [5], Divinsky [3], Kertész [6], Szasz [8], and
others have compiled these and other results in their books or articles.
In this paper the author extends to a class of semirings some of these re-
sults in ring theory.

2. Definitions

A semiring is a non-empty set R on which two associative binary opera-
tions, addition and multiplication, are defined such that the multiplica-
tion distributes over the addition from both sides and such that there exists

e ~ R with x+e = e+x = x and ex = xe = e for all x ~ R. Wecalle
the zero of R and denote it by 0.
A semiring R is left semisubtractive if for each x, y E R there exists

z ~R with z+x = y or x = z+y.
A left semi-ideal of a semiring R is a non-empty subset A of R such

that for each x, y E A and r E R it is true x + y, rx E A. A left semi-ideal
A of R is a left 1-ideal if x, y + x E A imply y E A and is a left r-ideal if
x, x + y ~ A imply y E A. Similarly one defines these concepts using
’right instead of ’left’. A subset that is both a left and right semi-ideal
is called a semi-ideal. Similarly one defines 1-ideal and r-ideal. If a subset
is a left [right] 1-ideal and left [right] r-ideal, it is called a left [right]
ideal. An ideal is a subset that is both a left and right ideal.
A semiring R satisfies the descending chain condition of left 1-ideals

(abbreviated DCC) if for each sequence R 2 Ll 2 L2 ~ ··· of left
1-ideals there is a positive integer n such that Ln = Ln+1 = Ln+2 = ···.
This is clearly equivalent to the property that each non-empty set of left
1-ideals of R contains a minimal member.

The definitions of nilpotent and idempotent elements of a semiring are
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the same as in ring theory. The element 0 will be excluded when consider-
ing nilpotent or idempotent elements.
The zeroid of a semiring R, as introduced by Bourne and Zassenhaus

[2], is {x E R|z+x = z or x + z = z for some z ~ R}. A semiring R has
right additive cancellation if x + z = y + z for x, y, z E R implies x = y. It
follows that a left semisubtractive semiring with zero as its zeroid has
right additive cancellation.

CONVENTION. We will let R denote a left semisubtractive semiring
with DCC, with zero as its zeroid, and without nilpotent elements.

3. Preliminary results

PROPOSITION 1. Each nonzero left 1-ideal A of R contains an idempotent
x with A - Rx.

PROOF. By DCC, A contains a minimal nonzero left l-ideal B. For each
c ~ 0 in B, Bc is a nonzero left semi-ideal of R in B. Let Bc* be the left
1-ideal of R generated by Bc (see [7]). Since Bc* ~ B, Bc* = B. Hence
c ~ Bc* which means xc = c + yc for some x, y E B. By left semisubtrac-
tivity, b + x = y or x = b + y fpr some b E B. If x = b + y, then bc = c. If
b+x = y, then 0 = c+bc and hence c = c+b(c+bc) = c+bc+b2c =
b2c. In either case there exists e E B such that c = ec.
For some d E B, d+e2 = e or e2 = d+e. If J = {x E B|xc = 01, then

J is a left ideal of R, so that J = (0). If d+e2 = e, then ec + dc = e2c +
dc = ec and hence d E J. If e2 = d + e, again d = 0. Therefore A contains
an idempotent e. We now show A has an idempotent x such that, if y ~ A
with yx = 0, then y = 0. For each idempotent e E A, let Me = {x E AI xe
= 01 which is a left ideal of R. Choose idempotent x of A such that M,,
is minimal, and suppose Mx e (0). Now Mx has an idempotent g ; note that
gx = 0. For some h E A, h + xg = g + x or xg = h + g + x. In the first
case, from hx + xgx = gx+x2 we get hx = x and similarly hg = gh = g.
Thus h2 + xg = h2 + hxg = hg + hx = g + x = h+xg, so that h 2 = h.

Clearly Mh ~ Mx ; since gx = 0 and gh = g ~ 0, Mh :0 Mx , a contra-
diction. For the other case, we have hg + g = gh + g = hx + x = ghx =0.
Hence for k = hxg + g + x, we have k2 - k E A. For z E Mk, zk = 0 and
hence zg + zx = zhxhg + zhxg + zg + zx = zhxhg, so that zx = zgx +
zx2 = zhxhgx = 0, meaning z E Mx. Thus Mk ~ Mx but Mx ~ Mk, a
contradiction. Therefore Mx = (0).

Finally we show y = yx for each y E A and that A = Rx. If y E A,
then z + y = yx or y = z+yx for some z E A. If z +y = yx, then yx =

yx2 = zx+ yx and hence zx = 0 meaning z = 0. The other case gives
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the same result. Therefore y = yx for all y E A. Since Rx z A = Ax £
Rx, A - Rx. This completes the proof.

Observe from Proposition 1 that each non-zero left 1-ideal of R has
a right identity. Also, if e is an idempotent of R, then Re [eR] is a left
[right] ] ideal. Clearly, Re is a left semi-ideal. If xe, y + xe = ze E Re, then
ye + xe = ye+xe2 = ze 2 =ze = y + xe, so that y - ye E Re and Re
is a left l ideal, and similarly Re is a left r-ideal. Consequently any left 1-
ideal is a left ideal by Proposition 1.

THEOREM 2. If A is a non-zero ideal of R, then A contains an idempotent
element e such that A = eR and such that e is the identity of A.

PROOF. By Proposition 1, A contains an idempotent element e such
that A = Re. Let B = {x E A|ex = 0}. Now B is a right ideal of R. Since
e is a right identity of A, Be = B. Since B 2 = (Be)B = B(eB) = (0),
we have B = (0). Letting y E A, there exists z E A such that z +y = ey
or y = z + ey. If z + y = ey, then ey = e2y = ez+ey, so that ez = 0 and
z = 0. By the other case z = 0 also. Thus y = ey for each y E A, so that e
is the identity of A, and A = eR. This completes the proof.

COROLLARY. The semiring R contains an identity 1.
For a, b E R, (a+b)(1+1) is a+b+a+b and also a+a+b+b. Thus

a+b+a = a+a+b. For some y ~ R, y+a+b = b+a or a+b = y+b
+a. In the first case a+a+b = a+b+a = a+y+a+b, so that a = a+y
and y = 0. Similarly y = 0 in the other case. Consequently R is a hemi-
ring, that is, a semiring with commutative addition.
The center of R is the set C = {x E R|yx = xy for every y ~ R}. The

following proposition is analogous to a theorem in ring theory [4].

PROPOSITION 3. Each idempotent element e of R is in C if and only if e
is the identity for some non-zero ideal of R.
We now are able to prove that any left ideal of R has DCC.

THEOREM 4. If A is a left ideal of R, then any left semi-ideal [ideal] of A
is also a left semi-ideal [ideal] of R.

PROOF. The proof is the same as the proof of the analogous ring theory
theorem.

COROLLARY. Any left ideal of R has DCC.
It is to be observed from Theorem 4 that, if B is a right semi-ideal

[ideal] of an ideal A, then B is a right semi-ideal [ideal] of R. This fact
will be useful to us later in this paper.
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4. Central idempotent elements

An idempotent of a hemiring is central if it belongs to the center of the
hemiring. Further, an idempotent is semiprimitive if it is central and if it
cannot be expressed as u+v where u and v are central idempotents with
uv = 0. The concepts of orthogonal and pairwise orthogonal idempotents
in hemirings are defined analogously as in rings. At this point two charac-
terizations of semiprimitives can be given.

PROPOSITION 5. A central idempotent e of R is semiprimitive if and only
if there does not exist a central idempotent u ~ e such that eu = u (that
is, e is the only central idempotent of R in eR).

PROOF. Let e be semiprimitive and suppose there is a central idempotent
u ~ e such that eu = u. For some v E R, v + u = e or u = v+e. If v + u
= e, then vu + u = vu+u2 = eu = u and hence uv = vu = 0. Thus v+u
= v2 + u, so that 03C52 = v. Clearly 03C5 ~ 0 and v E C. Consequently, v is
a central idempotent. Since v + u = e and uv = 0 we have a contradic-

tion to e being semiprimitive. If u = v + e, then ev + e = v + e, so that
ev = v. Also uv = 0, so that 0 = (v + e)v = v2+v and 0= u3v = v4
+ 3v3 + 3v2 + v = v4 + v which implies v2 = v4. Since v2 ~ C, V2 is a

central idempotent with e = v2 + u, a contradiction. The converse fol-
lows easily from the contrapositive.

Before giving the second characterization, two definitions are neces-
sary. A hemiring is simple if the only ideals it contains are (0) and itself.
An ideal of a hemiring is simple if it is simple as a hemiring.

PROPOSITION 6. A central idempotent e of R is semiprimitive if and
only if Re is simple.

PROOF. If e is semiprimitive, then it is the only central idempotent
of Re by Proposition 5. Let J be a non-zero ideal of Re. By the obser-
vation before Theorem 2, Re is an ideal, so that J is an ideal of R by
Theorem 4. Thus J = Ru, where u is a central idempotent. Since u E J
~ Re, u = e. Hence, J = Re and Re is simple. The converse is proved
the same as in ring theory.

THEOREM 7. Every central idempotent e of R which is not semiprimitive
is a sum of a finite number of pairwise orthogonal semiprimitive idempo-
tents.

PROOF. The ideal Re contains semiprimitive idempotents. Suppose u
and v are distinct semiprimitive idempotents of R in Re. By Proposition
6, Ru and Rv are simple ideals. If uv ~ 0, then Ru = Ru n Rv = Rv. By
Proposition 5, u = v which is a contradiction. Hence uv = 0.



83

Let M be the set of all semiprimitive idempotents of R in Re. The ele-
ments of M are pairwise orthogonal. Consider any finite sum of elements
of M, say lui = u. Clearly U2 = u = ue = eu. For some x ~ Re, x + u = e
or u = x + e. If x + u = e, then ux = 0 and as well xu = 0; with this
x = x2. Clearly x E C, so that Rx is an ideal in Re. If u = x + e, then
ex = x. Hence x + e = x2+2x+e and x2+x = 0. Also ux = xu = 0,
so that x2 = x2+x4+x3 = x4+x(x+x2 ) = x4. Since x2 E C, Rx2 is
an ideal in Re. Considering the set N of all these Rx or Rx’, as the case
might be, choose a minimal member of N. If it is not (0), then it is equal
to Rf, where f is a central idempotent of Re such that e = f + 03A3vi , v i ~ M,
or it is equal to Rf 2, where f2 is a central idempotent of Re such that f+e
= 03A3wi, wi E M. Considering the first case we observe that, by the corol-
lary to Theorem 4, Rf contains a minimal non-zero ideal K which is
also an ideal of R. By Theorem 2, K = Rv where v is a central idempo-
tent of R. Since K is simple, v is semiprimitive, and hence v E M.

Suppose v = vj for some j. Hence vj E Rf which implies vj = xf for
some x ~ R. Since e = f + 03A3vi , xvj = xfvj + x(03A3vi)vj = vj + xvj, so that
Vj = 0 which is a contradiction. Therefore v ~ v; for every i.
Take w = v+03A3vi; then w = y + e or y + w = e for some y ~ Re. As

before w2 = w = we = ew, and w E C. Suppose w = y + e ; then as

before y4 = y2, y2 E C, and hence Ry2 is an ideal of Re. Thus v+03A3vi =
y+f+03A3vi, so that v = y+f. Since Rf is an ideal, y ~ Rf. Therefore
Ry2 ~ Rf. Assume f E Ry2 ; then f = ry2 for some r E R. Since vy = 0,
v = vf = vry2 = 0, a contradiction. Thus f ft Ry2 and Ry2 -:/= Rf, a
contradiction.

Suppose then that y + w = e; then as before y2 = y, y E C, and hence
Ry is an ideal in Re, and as well y+v+03A3vi = f+03A3vi and y + v = f, so
that Ry ~ Rf. As well Ry =1= Rf, a contradiction. Consequently, for this
case the minimal member of N has to be (0).

Consider now the second case; again Rf 2 contains a non-zero ideal of
the form Rv where is a semiprimitive idempotent and hence in M.
If v = wj for some j, then wj E Rf 2 and hence wj = xf2 for some x E R.
Thence xwj = X(Iwi)wj = xfwj+xewj = xfwj+xwj and xfwj = 0.
Thus 0 = f(xfwj) = w2j = wj , a contradiction. Therefore v ~ Wi for
every i.

Take w = v+03A3vi; then w = y + e or y + w = e for some YE Re. As
before W2 = w = we = ew, and w ~ C. Suppose w = y + e; then as before
y4 = y2, y2 ~ C, and hence Ry2 is an ideal of Re. Thus v+03A3vi =
y+f+03A3vi, so that v=y+f. Since Rf is an ideal, y E Rf. Therefore
Ry2 ~ Rf. Assume f E Ry2; then f = ry2 for some r E R. Since vy = 0,
v = vf = vry2 = 0, a contradiction. Thus f ~ Ry2 and Ry2 1= Rf, a con-
tradiction.
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Suppose then that y + w = e ; then as before y2 = y, y E C, and hence
Ry is an ideal in Re, and as well y+v+03A3vi = f+03A3vi and y + v = f, so
that Ry 9 Rf. As well Ry ~ Rf, a contradiction. Consequentiy, for

this case the minimal member of N has to be (0).
Consider now the second case; again Rf2 contains a non-zero ideal

of the form Rv where v is a semiprimitive idempotent and hence in M.
If v = wj for some j, then w J E Rf2 and hence wj = xf2 for some x ~ R.
Thence xwj = x(03A3wi)wj = xfwj + xewi = xfwj + xwj and xfwj = 0. Thus
0 = f(xfwj) = wJ = wj, a contradiction. Therefore 03BD ~ Wi for every i.

Take w = v+03A3wi; then w = y + e or y+w = e for some y E Re. As
before w2 = w, we = w, and w E C. Suppose w = y+e; then y4 - y’,
y2 E C, and Ry2 is an ideal of Re. Since f2 +f = 0, v+03A3wi = e + y =
f2+f+e+y = f2 +03A3wi+y and hence v = f2+y. Since Rf2 is an ideal,
y E Rf 2. Therefore Ry2 ~ Rf 2. By assuming f2 E Ry2, f2 = ry2, r E R,
and thus, since vy = 0, v = vf2 = vry2 = 0, a contradiction. Therefore
Ry2 ~ Rf 2, a contradiction.

If y + w = e, then y2 = y, y E C, and Ry is an ideal in Re. As well
f+y+v+03A3wi =f+y+w = f+e = 03A3wi and y+v = f2+f+y+v = f2,
so that y E Rf2 . Thus Ry ~ Rf 2 and Ry ~ Rf2, a contradiction. Conse-
quently, for this case the minimal member of N has to be (0). Therefore e
is a finite sum of semiprimitive idempotents, as we wanted to prove.

5. Direct sums and a structure theorem

The concept of direct sum in hemirings is the same as in ring theory.
Hence we have the following theorem which is proved the same as in ring
theory:

PROPOSITION 8. If A1, ···, Am are distinct simple ideals of R and if
A = Al + ··· + Am , then A is their direct sum.
We conclude the section with the main theorem of the paper. It is a

generalization to hemirings of a well-known structure theorem discussed
by Artin, Nesbitt, and Thrall [1 ].

THEOREM 9. The hemiring R has only a finite number of non-zero simple
ideals and is their direct sum.

PROOF. By the corollary to Theorem 2, R contains an identity 1 which
is a central idempotent. If 1 is semiprimitive, then R is simple by Propo-
sition 6 and the proof is complete. Assume 1 is not semiprimitive. By
Theorem 7, 1 = lei where the ei are pairwise orthogonal semiprimitive
idempotents. Since R = R·1 = R(lei) 9 03A3Rei ~ R, R = 03A3Rei. By Prop-
osition 6, each Rei is a simple ideal. By Proposition 8, R is the direct
sum of Rei.
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Let I be a non-zero simple ideal of R. If RIR = (0), then I3 = (0), a
contradiction. Hence I = RIR. Thus I = RIR ~ I(03A3Rei) ~ ZIRei - I,
so that I = 03A3IRei. Some IRei ~ (0) since I ~ (0); hence I n Rei ~ (0)
which implies I = I n Rei = Rei . Therefore, R has only a finite number
of simple ideals and the proof is complete.
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