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1. Introduction, notations

Throughout this paper the following assumptions apply. Let X k =
(Xk1, ···, Xkd), k = 1, 2, ···, be independent strictly d-dimensional

random vectors with common probability distribution F and character-
istic function ç. (The bar distinguishes vectors from scalars and strict
d-dimensionality means that the support of F is not contained in a hyper-
plane of dimension lower than d.) The second moments of the X will
be finite and the first moment vector 03BC nonzero. We put Sn = X1 + ···
+Xn, h = 1, 2, ···,

where the exponent denotes convolution. The distribution function of

Xl l if Fl .
We consider the first entrance of the random walk {Sn} into the half

space {x : a1x1 + ··· + adxd ~ tl, where t &#x3E; 0. It is essential that the

half line x = cji, c &#x3E; 0, intersects the boundary of the half space. For
convenience of notation we assume that the xi-axis of our coordinate
system has been chosen in the direction of à. This implies that we have
to assume thrcughout this paper

Now let N(t) = min {n : Sn1 ~ tl, and let Rt be the joint probability
distribution of

where Z(t) = SN(t). It will be shown in section 3 that Rt for t ~ oo satis-
fies a local central limit theorem, if either F is nonarithmetic - i.e.

(ù : ~(03BC) = 1} = {0} - or X1k is arithmetic with span 1, k = 1, ···, d.
The approximating probability measure is the product of the well known
limiting distribution of Z1(t)-t and a normal distribution for Z2 (t),
···, Zd(t). The corresponding ’marginal’ result for Z2(t), ···, Z,(r) also
is derived.
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We will need the strict ascending ladder process with respect to the
xl-coordinate, i.e. the random walk Sni, Sn2, ··· in Rd, where nl, n2, ···
are the times at which a strict ascending ladder point occurs in the random
walk S11, S21, S 31’ .... We put

By Wald’s identity for expectations we have, since E{n1}  oo by (1.2),

By Hl we denote the probability distribution of Yl .
Let E denote the covariance matrix of the random variables X1j-

03BC-1103BCjX11, j = 2,..., d and 03B5ij the (i,j)-element of E-1. We put

where

If xl is kept fixed, 03BC03C1+11x-03C11L(x1, X2’...’ xd) considered as a function of
x2, ···, xd, is a (d-1 )-dimensional normal probability density. By Cd
we denote the class of continuous functions on Rd with compact support.
The indicator function of a set A is written IA .

Proofs are based on the results obtained in Stam [1 ].

2. Preliminary lemmas

LEMMA 2.1. If F is nonarithmetic and E|X11|03C1  oo, then for g E Cd

uniformly in X2, ..., xd .
This is theorem 3.1 of Stam [1 ], II. We also need theorem 3.2 of the

same paper:

LEMMA 2.2. If there is a Cartesian coordinate system such that the com-
ponents of X1 in this system are arithmetic with span 1 and their joint
characteristic function , satisfies the condition: 03B6(u) = 1 if u1, ···, Ud are
integer multiples of 203C0 and |03B6(u)|  1 elsewhere and if E|X11|03C1  00, then
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uniformly in x 2, ..., Xd, if x is restricted to lattice points of U.

LEMMA 2.3. If F satisfies the conditions of lemma 2.1 and g(x) =
I(a,b)(x1)g1(x) with g1 E Cd, then (2.1 ) holds for g.

PROOF. We may write g = h+h1 with h E Cd and Ih11 | ~ h2 E Cd. Then

Since L(x) is bounced, we may choose h, hl and h2 so that

Then

and the lemma follows from (2.2), (2.3), (2.4) and lemma 2.1.

LEMMA 2.4. The random variables Y1,..., Yd of (1.3) have finite second
moments. If 03BCj = 0, j ~ 2,

See theorems 1.2, 1.4, 1.5 of Nevels [2].

LEMMA 2.5. The covariance matrix of the random variables Yj - v-11vj Yl ,j = 2, ···, d, is E{n1} · E, where E is defined as in section 1.
PROOF. By (1.4) we have v-11vj = 03BC-1103BCj. So

where Wkj = Xkj-03BC-1103BCjXk1 has expectation zero. The lemma follows
from lemma 2.5 by considering the random walk with steps (Xki , Wk2,
..., Wkd).
LEMMA 2.6. If E|X11|03BB  00, where À &#x3E; 0, then E/Yl!Â  00.

PROOF. See Nevels [2], theorem 1.1.
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3. Local limit theorems for Rt

THEOREM 3.1. If F is nonarithmetic and E|X11|03C1  oo, we have for

g ~ Cd

uniformly in a2, ..., ad. Here

and qt is the (d-1)-dimensional normal density with covariance matrix
111 tE and means y 1 103BCj t, j = 2, ···, d.

PROOF. First we assume that X11 ~ 0 with probability 1. Since g E Cd,
it is sufficient to show that

uniformly in a2, ···, ad. We have

Here the first term tends to zero for t ~ oo, uniformly in a2, ···, ad ,
since E/Xl1IP  oo. The second term may be written

where à = (0, a2, ···, ad) and

By lemma 2.3, applied to the function I[-03BE1, 0)(x1)g(x+03BE) with Z fixed,
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(3.5) 039B(03BE, t, a) = ~(03BE, t, a)+03BC03C11L(t, a2 , ···, ad)~I[-03BE1,0)(z1)g(z+03BE)dz,
where limt~~ ~(03BE, t, a) = 0, uniformly in a2, ···, ad for fixed 03BE. Equiv-
alently

for fixed Z, where 03B6(03BE, t) = supa ~(03BE, t, a). We now write

Since f g(z - ) U(dz) is bounded in , we have by (3.4a) and the assump-
tion that E|X11|03C1  00,

To T4 we now apply (3.5) and (3.6) with the Lebesgue dominated con-
vergence theorem. It is noted that L is bounded by a constant and that

So (3.4a) and lemma 2.3 show that I[0,1 2t)(03BE1)039B(03BE, t, à) and therefore also
I[0,1 2t)(03BE1)03B6(03BE, t) is bounded by a constant. So

uniformly in a2, ···, ad’ where 03B3(03BE, t, à) is the second term on the right
in (3.5). Since y(ç, t, a) is bounded by a constant, (3.9) implies

uniformly in a2, ···, ad. Now

So by (1.5) and (1.6)

and (3.2) follows from (3.3), (3.4), (3.7), (3.8), (3.10) and (3.11).
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If P{X11  01 &#x3E; 0, we apply the part of the theorem proved above, to
the random walk arising by sampling the S,,-process at the strict ladder
times of the process {Sn1}. It is noted that the first entrance of {Sn} into
the half space {X1 ~ t} necessarily is a ladder point of {Sn1}. The theorem
now follows by lemma 2.5 and (1.4). Lemma 2.6 guarantees that the con-
dition on the absolute moment of order p of the xl-component is satisfied.

THEOREM 3.2. If F is nonarithmetic and E|X11|03C1  cc, we have for

h c- Cd - 1

uniformly in a2, ···, ad. Here qt is the same as in theorem 3.1.

PROOF. Since h ~ Cd-1, it is sufficient to show that, uniformly in
a2, ···, ad,

First we assume that X11 ~ 0. We then start the proof of (3.2) anew at
(3.3), where for g(x1, ···, xd) we now take h(x2, ···, xd). We obtain
(3.4), (3.5), (3.6), since lemma 2.3 applies to the function I[-03BE1,0)(03BE1)
h(x2 +Ç2’ ..., xd+03BEd) with Z fixed. To obtain (3.8) and (3.9) we have to
take into account the factor I[-03BE1,0)(x1-t) in (3.4a). This means that in
the integral in (3.4a) the variable xi is restricted to the interval [t - 03BE1, t).
We then have in T3

By lemma 2.3, for m ~ 1,

so

Therefore T3 ~ 0, uniformly, since E|X11|03C1  oo. For p = 1 and p = 1

we have to appeal to the existence of first and second moments. To apply
the Lebesgue dominated convergence theorem to T4 we note that the
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second term on the right in (3.5) is bounded by c3|03BE1| with c3 a constant.
In the same way as (3.14) we obtain

So |03B6(03BE, t)| ~ c6|03BE1| and (3.9) follows by the existence of first moments.
The relation (3.10) also follows and (3.11) is replaced by

The relation (3.12) now follows from the counterparts of (3.3), (3.4),
(3.7), (3.8), (3.10) and (3.11), if X11 ~ 0. The proof is concluded in the
same way as the proof of theorem 3.1.

THEOREM 3.3. Let F satisfy the conditions of lemma 2.2. For t &#x3E; 0 let

à(t) be a d-vector such that 0 ~ a1(t) ~ K and t+à(t) belongs to the
F-lattice. Then

uniformly in à(t) for fixed K. Here Et denotes the open interval (al (t), ~)
and qt the same normal density as in theorem 3.1.

COROLLARY. If X11, ···, Xld are integer valued such that ~(u) = 1 if
u1, ···, ul are integer multiples of 2n and 1 cp(u)1  1 elsewhere, and if
E|X11|03C1  oo, then

uniformly in k2, ···, kd, if h, k1, ···, kd are integers with h &#x3E; 0, kl ~ 0.

PROOF. First assume X11 ~ 0 with probability 1. We have

where the first term is dealt with by the existence of EX03C111

where Z runs through points of the F-lattice. Because of the second factor
we may write
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By lemma 2.2 we have for fixed Z

where 11 --+ 0 as t ~ oo, uniformly in a(t) if 0 ~ a1(t) ~ K, if e is kept
fixed. The proof now proceeds in the same way as with theorem 3.1.
We write T2 T3 + T4 where the sum is taken over the sets {03BE1 ~ 1 2t}
and {a1(t)  03BE1  1 2t}, respectively. Handling of T3 and T4 requires the
same estimations as in the proof of theorem 3.1.
The lattice counterpart of theorem 3.2 is restricted to integer valued

X11, ···, X1d, since under the more general assumptions of theorem 3.3
the lattice description of Z2(t), ’ ’ ’, Zd(t) is difficult.

THEOREM 3.4. If X11 , ..., Xid are integer valued, such that 9(ù) = 1 if
u1, ···, Ud are integer multiples of 2n and |~(u)|  1 elsewhere, and if
E|X11|03C1  oo, then

uniformly in k2, ..., kd. Here h, k2, ···, kd are integers and qt is the same
normal density as in theorem 3.1.

PROOF. First take P{X11 ~ 01 = 1. We have

where the first term tends to zero uniformly in (k2, ···, kd) as h ~ ~
since E|X11|03C1  oo and

where L’and L" are subject to the restrictions il  h, il + j1 ~ h,
i, +j, = kr, r = 2, ..., d. So

By lemma 2.2 we have for fixed j1, ··, jd and h-j1 ~ i1  h -1

with limh~~ ~ = 0, uniformly in k2, ···, kd .
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The relation (3.15) now follows with (1.5) and (1.6) if passing to the
limit in (3.16) under the sum over j1, ···, jd is justified. This is done by the
same methods as in the proof of theorem 3.2.

If P{X11  0} &#x3E; 0 we consider the random walk at the ladder times

of the process {Sn1}.

Summary

Let X1, X2, ··· be independent strictly d-dimensional random vectors,
with common distribution, with finite second moments and positive xl-
component of the first-moment vector. Let Sn = X1 + ··· + Xn, n =
1, 2, ···, N(t) = min {n: Sn1 ~ t} and Z(t) = SN(t).

If E|X11|03C1  oo, where p = 1 2(d-1), the joint distribution of Z1(t)-t,
Z2(t), ···, Zd(t) satisfies a local central limit theorem for t ~ cc. The
approximating probability measure is the product of the well known
limiting distribution for Z1 (t) - t and a normal distribution for Z2(t), ···,
Zd(t). The difference is o(t - P) as in a local central limit theorem for sums
of independent (d-1)-vectors.
The theorem is stated and proved for nonarithmetic F and for F re-

stricted to a (rotated) cubic lattice with span 1. A special case of the global
version was proved by the author in Zeitschr. für Wahrsch. th. u. verw.
Geb. 10 (1968), 81-86.
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