COMPOSITIO MATHEMATICA

A.J. STAM

Local central limit theorem for first entrance of a random walk into a half space

Compositio Mathematica, tome 23, nº 1 (1971), p. 15-23 <http://www.numdam.org/item?id=CM_1971_23_1_15_0>

© Foundation Compositio Mathematica, 1971, tous droits réservés.

L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

LOCAL CENTRAL LIMIT THEOREM FOR FIRST ENTRANCE OF A RANDOM WALK INTO A HALF SPACE

by

A. J. Stam

1. Introduction, notations

Throughout this paper the following assumptions apply. Let $\overline{X}_k = (X_{k1}, \dots, X_{kd}), \ k = 1, 2, \dots$, be independent strictly *d*-dimensional random vectors with common probability distribution *F* and characteristic function φ . (The bar distinguishes vectors from scalars and strict *d*-dimensionality means that the support of *F* is not contained in a hyperplane of dimension lower than *d*.) The second moments of the \overline{X}_i will be finite and the first moment vector $\overline{\mu}$ nonzero. We put $\overline{S}_n = \overline{X}_1 + \dots + \overline{X}_n, n = 1, 2, \dots$,

(1.1)
$$U(A) = \sum_{m=1}^{\infty} F^{m}(A),$$

where the exponent denotes convolution. The distribution function of X_{11} if F_1 .

We consider the first entrance of the random walk $\{\overline{S}_n\}$ into the half space $\{\overline{x}: a_1x_1 + \cdots + a_dx_d \ge t\}$, where t > 0. It is essential that the half line $\overline{x} = c\overline{\mu}, c > 0$, intersects the boundary of the half space. For convenience of notation we assume that the x_1 -axis of our coordinate system has been chosen in the direction of \overline{a} . This implies that we have to assume throughout this paper

(1.2)
$$\mu_1 > 0.$$

Now let $N(t) = \min \{n : S_{n1} \ge t\}$, and let R_t be the joint probability distribution of

$$Z_1(t)-t, \ Z_2(t), \cdots, Z_d(t),$$

where $\overline{Z}(t) = \overline{S}_{N(t)}$. It will be shown in section 3 that R_t for $t \to \infty$ satisfies a local central limit theorem, if either F is nonarithmetic – i.e. $\{\overline{u}: \varphi(\overline{u}) = 1\} = \{0\}$ – or X_{1k} is arithmetic with span 1, $k = 1, \dots, d$. The approximating probability measure is the product of the well known limiting distribution of $Z_1(t) - t$ and a normal distribution for $Z_2(t)$, $\dots, Z_d(t)$. The corresponding 'marginal' result for $Z_2(t), \dots, Z_d(r)$ also is derived. We will need the strict ascending ladder process with respect to the x_1 -coordinate, i.e. the random walk $\overline{S}_{n_1}, \overline{S}_{n_2}, \cdots$ in R_d , where n_1, n_2, \cdots are the times at which a strict ascending ladder point occurs in the random walk $S_{11}, S_{21}, S_{31}, \cdots$. We put

(1.3)
$$\overline{Y} = \overline{S}_{n_1}.$$

By Wald's identity for expectations we have, since $E\{n_1\} < \infty$ by (1.2),

(1.4)
$$\bar{v} \stackrel{\text{dr}}{=} E\{\overline{Y}\} = \bar{\mu}E\{n_1\}.$$

By H_1 we denote the probability distribution of Y_1 .

Let *E* denote the covariance matrix of the random variables $X_{1j} - \mu_1^{-1}\mu_j X_{11}$, $j = 2, \dots, d$ and ε_{ij} the (i, j)-element of E^{-1} . We put

(1.5)
$$Z(x_1, \dots, x_d) = \exp\left[-\frac{1}{2}\mu_1 x_1^{-1} \sum_{i=2}^d \sum_{j=2}^d \varepsilon_{ij} (x_i - \mu_1^{-1} \mu_i x_1) (x_j - \mu_1^{-1} \mu_j x_1)\right],$$

(1.6)
$$L(x_1, \dots, x_d) = \mu_1^{-1} (2\pi)^{-\rho} (\text{Det } E)^{-\frac{1}{2}} Z(x_1, \dots, x_d),$$

where

(1.7)
$$\rho = \frac{1}{2}(d-1).$$

If x_1 is kept fixed, $\mu_1^{\rho+1} x_1^{-\rho} L(x_1, x_2, \dots, x_d)$ considered as a function of x_2, \dots, x_d , is a (d-1)-dimensional normal probability density. By C_d we denote the class of continuous functions on R_d with compact support. The indicator function of a set A is written I_A .

Proofs are based on the results obtained in Stam [1].

2. Preliminary lemmas

LEMMA 2.1. If F is nonarithmetic and $E|X_{11}|^{\rho} < \infty$, then for $g \in C_d$

(2.1)
$$\lim_{x_1\to\infty} \left\{ x_1^{\rho} \int g(\bar{z}-\bar{x}) U(d\bar{z}) - \mu_1^{\rho} L(\bar{x}) \int g(\bar{z}) d\bar{z} \right\} = 0,$$

uniformly in x_2, \dots, x_d .

This is theorem 3.1 of Stam [1], II. We also need theorem 3.2 of the same paper:

LEMMA 2.2. If there is a Cartesian coordinate system such that the components of \overline{X}_1 in this system are arithmetic with span 1 and their joint characteristic function ζ satisfies the condition: $\zeta(\overline{u}) = 1$ if u_1, \dots, u_d are integer multiples of 2π and $|\zeta(\overline{u})| < 1$ elsewhere and if $E|X_{11}|^{\rho} < \infty$, then

$$\lim_{x_1 \to \infty} \{ x_1^{\rho} U(\{\bar{x}\}) - \mu_1^{\rho} L(\bar{x}) \} = 0,$$

uniformly in x_2, \dots, x_d , if \bar{x} is restricted to lattice points of U.

LEMMA 2.3. If F satisfies the conditions of lemma 2.1 and $g(\bar{x}) = I_{[a,b]}(x_1)g_1(\bar{x})$ with $g_1 \in C_d$, then (2.1) holds for g.

PROOF. We may write $g = h + h_1$ with $h \in C_d$ and $|h_1| \leq h_2 \in C_d$. Then

$$\left| \begin{array}{c} x_{1}^{\rho} \int g(\bar{z} - \bar{x}) U(d\bar{z}) - \mu_{1}^{\rho} L(\bar{x}) \int g(\bar{z}) d\bar{z} \\ x_{1}^{\rho} \int h(\bar{z} - \bar{x}) U(d\bar{z}) - \mu_{1}^{\rho} L(\bar{x}) \int h(\bar{z}) d\bar{z} \\ x_{1}^{\rho} \int h_{2}(\bar{z} - \bar{x}) U(d\bar{z}) \\ \end{array} \right| + \mu_{1}^{\rho} L(\bar{x}) \int h_{2}(\bar{z}) d\bar{z}.$$

Since $L(\bar{x})$ is bounced, we may choose h, h_1 and h_2 so that

(2.3)
$$\mu_1^{\rho}L(\bar{x})\int h_2(\bar{z})dz < \varepsilon/4.$$

Then

(2.4)
$$\begin{aligned} \left| x_1^{\rho} \int h_2(\bar{z} - \bar{x}) U(d\bar{z}) \right| &\leq \mu_1^{\rho} L(\bar{x}) \int h_2(\bar{z}) dz \\ &+ \left| x_1^{\rho} \int h_2(\bar{z} - \bar{x}) U(d\bar{z}) - \mu_1^{\rho} L(\bar{x}) \int h_2(\bar{z}) d\bar{z} \right| \end{aligned}$$

and the lemma follows from (2.2), (2.3), (2.4) and lemma 2.1.

LEMMA 2.4. The random variables Y_1, \dots, Y_d of (1.3) have finite second moments. If $\mu_j = 0, j \ge 2$,

(2.6) $\operatorname{cov}(Y_j, Y_k) = E\{n_1\} \operatorname{cov}(X_{1j}, X_{1k}), \quad j, k = 2, \dots, d.$ See theorems 1.2, 1.4, 1.5 of Nevels [2].

LEMMA 2.5. The covariance matrix of the random variables $Y_j - v_1^{-1}v_jY_1$, $j = 2, \dots, d$, is $E\{n_1\} \cdot E$, where E is defined as in section 1.

PROOF. By (1.4) we have $v_1^{-1}v_j = \mu_1^{-1}\mu_j$. So

$$Y_j - v_1^{-1} v_j Y_1 = \sum_{k=1}^{n_1} W_{kj},$$

where $W_{kj} = X_{kj} - \mu_1^{-1} \mu_j X_{k1}$ has expectation zero. The lemma follows from lemma 2.5 by considering the random walk with steps $(X_{k1}, W_{k2}, \dots, W_{kd})$.

LEMMA 2.6. If $E|X_{11}|^{\lambda} < \infty$, where $\lambda > 0$, then $E|Y_1|^{\lambda} < \infty$. PROOF. See Nevels [2], theorem 1.1. 17

A. J. Stam

3. Local limit theorems for R_t

THEOREM 3.1. If F is nonarithmetic and $E|X_{11}|^{\rho} < \infty$, we have for $g \in C_d$

$$\lim_{t\to\infty} t^{\rho} \left| \int g(x_1, x_2 - a_2, \cdots, x_d - a_d) R_t(d\bar{x}) - \int g(x_1, x_2 - a_2, \cdots, x_d - a_d) \beta(x_1) q_t(x_2, \cdots, x_d) d\bar{x} \right| = 0,$$

uniformly in a_2, \dots, a_d . Here

(3.1)
$$\beta(x_1) = 0, x_1 \leq 0, \beta(x_1) = v_1^{-1} \{ 1 - H_1(x_1) \}, x_1 > 0,$$

and q_t is the (d-1)-dimensional normal density with covariance matrix $\mu_1^{-1}tE$ and means $\mu_1^{-1}\mu_j t$, $j = 2, \dots, d$.

PROOF. First we assume that $X_{11} \ge 0$ with probability 1. Since $g \in C_d$, it is sufficient to show that

(3.2)
$$\lim_{t \to \infty} \left| t^{\rho} \int g(x_1, x_2 - a_2, \cdots, x_d - a_d) R_t(d\bar{x}) - t^{\rho} q_t(a_2, \dots, a_d) \int \beta(x_1) g(\bar{x}) d\bar{x} \right| = 0,$$

uniformly in a_2, \dots, a_d . We have

$$t^{\rho} \int g(x_{1}, x_{2} - a_{2}, \cdots, x_{d} - a_{d}) R_{t}(d\bar{x})$$

$$(3.3) = t^{\rho} \int I_{[t, \infty)}(x_{1}) g(x_{1} - t, x_{2} - a_{2}, \cdots, x_{d} - a_{d}) F(d\bar{x})$$

$$+ t^{\rho} \sum_{m=1}^{\infty} \int \int I_{(-\infty, t)}(x_{1}) I_{[t, \infty)}(x_{1} + \xi_{1}) g(x_{1} + \xi_{1} - t, x_{2} + \xi_{2} - a_{2}, \cdots, x_{d} + \xi_{d} - a_{d}) F^{m}(d\bar{x}) F(d\bar{\xi}).$$

Here the first term tends to zero for $t \to \infty$, uniformly in a_2, \dots, a_d , since $E|X_{11}|^{\rho} < \infty$. The second term may be written

(3.4)
$$T_2 = \int \Lambda(\bar{\xi}, t, \bar{a}) F(d\bar{\xi}),$$

where $\bar{a} = (0, a_2, \cdots, a_d)$ and

(3.4a)
$$\Lambda(\bar{\xi}, t, \bar{a}) = t^{\rho} \int I_{[-\xi_1, 0)}(x_1 - t)g(x_1 + \xi_1 - t, x_2 + \xi_2 - a_2, \cdots, x_d + \xi_d - a_d)U(d\bar{x}).$$

By lemma 2.3, applied to the function $I_{[-\xi_1,0)}(x_1)g(\bar{x}+\bar{\xi})$ with $\bar{\xi}$ fixed,

(3.5)
$$\Lambda(\bar{\xi}, t, \bar{a}) = \eta(\bar{\xi}, t, \bar{a}) + \mu_1^{\rho} L(t, a_2, \cdots, a_d) \int I_{[-\xi_1, 0)}(z_1) g(\bar{z} + \bar{\xi}) d\bar{z},$$

where $\lim_{t\to\infty} \eta(\xi, t, \bar{a}) = 0$, uniformly in a_2, \dots, a_d for fixed ξ . Equivalently

(3.6)
$$\lim_{t\to\infty}\zeta(\xi,t)=0,$$

for fixed $\bar{\xi}$, where $\zeta(\bar{\xi}, t) = \sup_{\bar{a}} \eta(\bar{\xi}, t, \bar{a})$. We now write

(3.7)

$$T_{2} = T_{3} + T_{4},$$

$$T_{3} = \int I_{[\frac{1}{2}t, \infty)}(\xi_{1})\Lambda(\bar{\xi}, t, \bar{a})F(d\bar{\xi}),$$

$$T_{4} = \int I_{[0, \frac{1}{2}t]}(\xi_{1})\Lambda(\bar{\xi}, t, \bar{a})F(d\bar{\xi}).$$

Since $\int g(\bar{z}-\bar{y})U(d\bar{z})$ is bounded in \bar{y} , we have by (3.4a) and the assumption that $E|X_{11}|^{\rho} < \infty$,

(3.8)
$$T_3 \leq c_1 t^{\rho} \{ 1 - F_1(\frac{1}{2}t) \} \to 0.$$

To T_4 we now apply (3.5) and (3.6) with the Lebesgue dominated convergence theorem. It is noted that L is bounded by a constant and that

$$t^{\rho}I_{[0,\frac{1}{2}t)}(\xi_1) \leq 2^{\rho}(t-\xi_1)^{\rho}, \quad 0 \leq \xi < \frac{1}{2}t.$$

So (3.4a) and lemma 2.3 show that $I_{[0,\frac{1}{2}t)}(\xi_1)A(\xi, t, \bar{a})$ and therefore also $I_{[0,\frac{1}{2}t)}(\xi_1)\zeta(\bar{\xi}, t)$ is bounded by a constant. So

(3.9)
$$\lim_{t\to\infty}\left[T_4-\int I_{[0,\frac{1}{2}t]}(\xi_1)\gamma(\xi,t,\bar{a})F(d\xi)\right]=0,$$

uniformly in a_2, \dots, a_d , where $\gamma(\xi, t, \bar{a})$ is the second term on the right in (3.5). Since $\gamma(\xi, t, a)$ is bounded by a constant, (3.9) implies

(3.10)
$$\lim_{t\to\infty}\left[T_4-\int\gamma(\xi,t,\bar{a})F(d\xi)\right]=0,$$

uniformly in a_2, \dots, a_d . Now

$$\gamma(\bar{\xi}, t, \bar{a}) = \mu_1^{\rho} L(t, a_2, \cdots, a_d) \int I_{[0, \xi_1]}(y_1) g(\bar{y}) d\bar{y},$$
$$\int \gamma(\bar{\xi}, t, \bar{a}) F(d\bar{\xi}) = \mu_1^{\rho} L(t, a_2, \cdots, a_d) \int \{1 - F_1(y_1)\} g(\bar{y}) d\bar{y}.$$

So by (1.5) and (1.6)

(3.11)
$$\int \gamma(\bar{\xi}, t, \bar{a}) F(d\bar{\xi}) = t^{\rho} q_t(a_2, \cdots, a_d) \int \beta(y_1) g(\bar{y}) d\bar{y},$$

and (3.2) follows from (3.3), (3.4), (3.7), (3.8), (3.10) and (3.11).

19

[5]

If $P\{X_{11} < 0\} > 0$, we apply the part of the theorem proved above, to the random walk arising by sampling the \overline{S}_n -process at the strict ladder times of the process $\{S_{n1}\}$. It is noted that the first entrance of $\{\overline{S}_n\}$ into the half space $\{x_1 \ge t\}$ necessarily is a ladder point of $\{S_{n1}\}$. The theorem now follows by lemma 2.5 and (1.4). Lemma 2.6 guarantees that the condition on the absolute moment of order ρ of the x_1 -component is satisfied.

THEOREM 3.2. If F is nonarithmetic and $E|X_{11}|^{\rho} < \infty$, we have for $h \in C_{d-1}$

$$\lim_{t\to\infty}t^{\rho}\left|\int h(x_2-a_2,\cdots,x_d-a_d)R_t(d\bar{x})\right.\\\left.-\int h(x_2-a_2,\cdots,x_d-a_d)q_t(x_2,\cdots,x_d)\,dx_2\cdots dx_d\right|=0,$$

uniformly in a_2, \dots, a_d . Here q_t is the same as in theorem 3.1.

PROOF. Since $h \in C_{d-1}$, it is sufficient to show that, uniformly in a_2, \dots, a_d ,

(3.12)
$$\lim_{t\to\infty} t^{\rho} \left| \int h(x_2 - a_2, \cdots, x_d - a_d) R_t(d\bar{x}) - q_t(a_2, \cdots, a_d) \right| \\ \times \int h(x_2, \cdots, x_d) dx_2 \cdots dx_d = 0.$$

First we assume that $X_{11} \ge 0$. We then start the proof of (3.2) anew at (3.3), where for $g(x_1, \dots, x_d)$ we now take $h(x_2, \dots, x_d)$. We obtain (3.4), (3.5), (3.6), since lemma 2.3 applies to the function $I_{[-\xi_1, 0)}(\xi_1)$ $h(x_2 + \xi_2, \dots, x_d + \xi_d)$ with $\overline{\xi}$ fixed. To obtain (3.8) and (3.9) we have to take into account the factor $I_{[-\xi_1, 0)}(x_1 - t)$ in (3.4a). This means that in the integral in (3.4a) the variable x_1 is restricted to the interval $[t - \xi_1, t]$. We then have in T_3

(3.13)
$$\Lambda(\bar{\xi}, t, \bar{a}) \leq t^{\rho} \int I_{[0,t]}(x_1) |h(x_2 + \xi_2 - a_2, \cdots, x_d + \xi_d - a_d)| U(d\bar{x}).$$

By lemma 2.3, for $m \ge 1$,

$$\int I_{[m, m+1)}(x_1) |h(x_2 + \xi_2 - a_2, \cdots, x_d + \xi_d - a_d) U(d\bar{x}) \leq c_2 m^{-\rho},$$

so

(3.14)
$$\Lambda(\bar{\xi}, t, \bar{a}) \leq t^{\rho} \{ c_0 + c_2 \sum_{m=1}^{[t+1]} m^{-\rho} \}.$$

Therefore $T_3 \rightarrow 0$, uniformly, since $E|X_{11}|^{\rho} < \infty$. For $\rho = \frac{1}{2}$ and $\rho = 1$ we have to appeal to the existence of first and second moments. To apply the Lebesgue dominated convergence theorem to T_4 we note that the

20

second term on the right in (3.5) is bounded by $c_3|\xi_1|$ with c_3 a constant. In the same way as (3.14) we obtain

$$I_{[0,\frac{1}{2}t)}(\xi_1)\Lambda(\bar{\xi},t,\bar{a}) \leq c_4 t^{\rho} \sum_{[t-\xi_1]}^{[t+1]} m^{-\rho} \leq c_5 |\xi_1|.$$

So $|\zeta(\xi, t)| \leq c_6 |\xi_1|$ and (3.9) follows by the existence of first moments. The relation (3.10) also follows and (3.11) is replaced by

$$\int \gamma(\bar{\xi}, t, \bar{a}) F(d\bar{\xi}) = t^{\rho} q_t(a_2, \cdots, a_d) \int h(y_2, \cdots, y_d) dy_2 \cdots dy_d$$

The relation (3.12) now follows from the counterparts of (3.3), (3.4), (3.7), (3.8), (3.10) and (3.11), if $X_{11} \ge 0$. The proof is concluded in the same way as the proof of theorem 3.1.

THEOREM 3.3. Let F satisfy the conditions of lemma 2.2. For t > 0 let $\bar{a}(t)$ be a d-vector such that $0 \leq a_1(t) \leq K$ and $t + \bar{a}(t)$ belongs to the F-lattice. Then

$$\lim_{t\to\infty}t^{\rho}|R_t\{\bar{a}(t)\}-v_1^{-1}H_1(E_t)q_t(a_2(t),\cdots,a_d(t))|=0,$$

uniformly in $\bar{a}(t)$ for fixed K. Here E_t denotes the open interval $(a_1(t), \infty)$ and q_t the same normal density as in theorem 3.1.

COROLLARY. If X_{11}, \dots, X_{1d} are integer valued such that $\varphi(\bar{u}) = 1$ if u_1, \dots, u_d are integer multiples of 2π and $|\varphi(\bar{u})| < 1$ elsewhere, and if $E|X_{11}|^{\rho} < \infty$, then

$$\lim_{h\to\infty} h^{\rho} |R_{h}(\bar{k}) - v_{1}^{-1} H_{1}((k_{1}, \infty)) q_{h}(k_{2}, \cdots, k_{d})| = 0,$$

uniformly in k_2, \dots, k_d , if h, k_1, \dots, k_d are integers with $h > 0, k_1 \ge 0$.

PROOF. First assume $X_{11} \ge 0$ with probability 1. We have

$$t^{\rho}R_{t}\{\bar{a}(t)\} = t^{\rho}P\{\bar{S}_{1} = t + \bar{a}(t)\} + T_{2},$$

where the first term is dealt with by the existence of EX_{11}^{ρ}

$$T_{2} = t^{\rho} \sum_{m=1}^{\infty} P\{S_{m1} < t, \, \bar{S}_{m+1} = t + \bar{a}(t)\},$$

$$T_{2} = t^{\rho} \sum_{m=1}^{\infty} \sum_{\xi} P\{X_{m+1} = \bar{\xi}\} P\{S_{m1} < t, \, \bar{S}_{m} = t + \bar{a}(t) - \bar{\xi}\},$$

where ξ runs through points of the *F*-lattice. Because of the second factor we may write

$$T_2 = t^{\rho} \sum_{\xi_1 > a_1(t)} F(\{\bar{\xi}\}) U(\{t + \bar{a}(t) - \bar{\xi}\}).$$

21

By lemma 2.2 we have for fixed ξ

$$t^{\rho}U\{t+\bar{a}(t)-\bar{\xi}\} = \mu_1^{\rho}L(t, a_2(t), \cdots, a_d(t))+\eta,$$

where $\eta \to 0$ as $t \to \infty$, uniformly in $\bar{a}(t)$ if $0 \leq a_1(t) \leq K$, if $\bar{\xi}$ is kept fixed. The proof now proceeds in the same way as with theorem 3.1. We write $T_2 = T_3 + T_4$ where the sum is taken over the sets $\{\xi_1 \geq \frac{1}{2}t\}$ and $\{a_1(t) < \xi_1 < \frac{1}{2}t\}$, respectively. Handling of T_3 and T_4 requires the same estimations as in the proof of theorem 3.1.

The lattice counterpart of theorem 3.2 is restricted to integer valued X_{11}, \dots, X_{1d} , since under the more general assumptions of theorem 3.3 the lattice description of $Z_2(t), \dots, Z_d(t)$ is difficult.

THEOREM 3.4. If X_{11}, \dots, X_{1d} are integer valued, such that $\varphi(\bar{u}) = 1$ if u_1, \dots, u_d are integer multiples of 2π and $|\varphi(\bar{u})| < 1$ elsewhere, and if $E|X_{11}|^{\rho} < \infty$, then

(3.15)
$$\lim_{h\to\infty} h^{\rho} |P\{Z_2(h) = k_2, \cdots, Z_d(h) = k_d\} - q_h(k_2, \cdots, k_d)| = 0.$$

uniformly in k_2, \dots, k_d . Here h, k_2, \dots, k_d are integers and q_t is the same normal density as in theorem 3.1.

PROOF. First take $P\{X_{11} \ge 0\} = 1$. We have

$$h^{\rho}P\{Z_{2}(h) = k_{2}, \cdots, Z_{d}(h) = k_{d}\}$$

= $h^{\rho}P\{X_{11} \ge h, X_{12} = k_{2}, \cdots, X_{1d} = k_{d}\} + T_{2},$

where the first term tends to zero uniformly in (k_2, \dots, k_d) as $h \to \infty$ since $E|X_{11}|^{\rho} < \infty$ and

$$T_{2} = h^{\rho} \sum_{m=1}^{\infty} P\{S_{m1} < h, S_{m+1,1} \ge h, S_{m+1,r} = k_{r}, \qquad r = 2, \cdots, d\}$$
$$= h^{\rho} \sum_{m=1}^{\infty} \sum' \sum'' F^{m}\{i_{1}, \cdots, i_{d}\}F\{j_{1}, \cdots, j_{d}\},$$

where \sum' and \sum'' are subject to the restrictions $i_1 < h$, $i_1+j_1 \ge h$, $i_r+j_r = k_r$, $r = 2, \dots, d$. So

$$(3.16) \quad T_2 = h^{\rho} \sum_{j_1, \cdots, j_d} F\{j_1, \cdots, j_d\} \sum_{i_1 = h - j_1}^{h - 1} U\{i_1, k_2 - j_2, \cdots, k_d - j_d\}.$$

By lemma 2.2 we have for fixed j_1, \dots, j_d and $h-j_1 \leq i_1 < h-1$

$$U\{i_1, k_2-j_2, \cdots, k_d-j_d\} = \mu_1^{\rho} L(h, k_2, \cdots, k_d) + \eta,$$

with $\lim_{h\to\infty} \eta = 0$, uniformly in k_2, \dots, k_d .

The relation (3.15) now follows with (1.5) and (1.6) if passing to the limit in (3.16) under the sum over j_1, \dots, j_d is justified. This is done by the same methods as in the proof of theorem 3.2.

If $P{X_{11} < 0} > 0$ we consider the random walk at the ladder times of the process $\{S_{n1}\}$.

Summary

Let $\overline{X}_1, \overline{X}_2, \cdots$ be independent strictly *d*-dimensional random vectors, with common distribution, with finite second moments and positive x_1 component of the first-moment vector. Let $\overline{S}_n = \overline{X}_1 + \cdots + \overline{X}_n$, n = $1, 2, \cdots, N(t) = \min \{n: S_{n1} \ge t\}$ and $\overline{Z}(t) = \overline{S}_{N(t)}$.

If $E|X_{11}|^{\rho} < \infty$, where $\rho = \frac{1}{2}(d-1)$, the joint distribution of $Z_1(t)-t$, $Z_2(t), \dots, Z_d(t)$ satisfies a local central limit theorem for $t \to \infty$. The approximating probability measure is the product of the well known limiting distribution for $Z_1(t)-t$ and a normal distribution for $Z_2(t), \dots, Z_d(t)$. The difference is $o(t^{-\rho})$ as in a local central limit theorem for sums of independent (d-1)-vectors.

The theorem is stated and proved for nonarithmetic F and for F restricted to a (rotated) cubic lattice with span 1. A special case of the global version was proved by the author in Zeitschr. für Wahrsch. th. u. verw. Geb. 10 (1968), 81–86.

REFERENCES

A. J. Stam

 Renewal Theory in r Dimensions I, Comp. Math. 21 (1969), 383-399; II, Comp. Math. 23 (1971), 1-13.

K. NEVELS

[2] On Moments of Ladder Variables. Report T.W.-87, Mathematisch Instituut Rijksuniversiteit Groningen. (1970).

(Oblatum 20–X–69, 23–XI–70) Mathematisch Instituut der Rijksuniversiteit, Hoogbouw WSN, Universiteitscomplex Paddepoel, Postbus 800, Groningen