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LOCAL CENTRAL LIMIT THEOREM FOR FIRST ENTRANCE
OF A RANDOM WAILK INTO A HALF SPACE

by

A. J. Stam

1. Introduction, notations

Throughout this paper the following assumptions apply. Let X, =
(Xe1s " Xua)s k=1,2,---, be independent strictly d-dimensional
random vectors with common probability distribution F and character-
istic function ¢. (The bar distinguishes vectors from scalars and strict
d-dimensionality means that the support of Fis not contained in a hyper-
plane of dimension lower than d.) The second moments of the X; will
be finite and the first moment vector & nonzero. We put S, = X, + - - -
+X,,n=1,2-"",

)
(L1) U4) = Y, F(4),
m=1
where the exponent denotes convolution. The distribution function of
X, if Fy.

We consider the first entrance of the random walk {S,} into the half
space {X 1a;xy+ - +a,x; = t}, where ¢ > 0. It is essential that the
half line X = cji, ¢ > 0, intersects the boundary of the half space. For
convenience of notation we assume that the x,-axis of our coordinate
system has been chosen in the direction of @. This implies that we have
to assume thrcughout this paper

(1.2) Uy > 0.

Now let N(t) = min {n: S,; = t}, and let R, be the joint probability
distribution of
Zy(t)— 1, Zy(1), * * * Z4(1),
where Z(t) = Sy, . It will be shown in section 3 that R, for  — oo satis-
fies a local central limit theorem, if either F is nonarithmetic — i.e.
{u : (@) =1} = {0} - or Xy, is arithmetic with span 1, k = 1,---,d.
The approximating probability measure is the product of the well known
limiting distribution of Z;(¢)—t and a normal distribution for Z,(t),
-+, Zy(t). The corresponding ‘marginal’ result for Z,(t), - - -, Z,(r) also
is derived.
15



16 A.J. Stam [2]

We will need the strict ascending ladder process with respect to the
x,-coordinate, i.e. the random walk S, , S,,, - - - in R;, where ny, ny, - -
are the times at which a strict ascending ladder point occurs in the random
walk S}, S21, S31, - . We put

(1.3) Y=3S,,.

By Wald’s identity for expectations we have, since E{n,} < oo by (1.2),
_daf o _

(1.4) v = E{Y} = GE{n,}.

By H, we denote the probability distribution of Y.
Let E denote the covariance matrix of the random variables X, ;—
prtuiXyy,j =2+, dand g; the (i, j)-element of E~'. We put

Z(xl P xd)

a4
= exp [—3u, XI1_22 _Zzsij(xi_.ul_ pax ) (%=1 %) s
i=2 j=

(1.5)

(1.6) L(xy, -« Xg) = py '(2n) (Det E)"¥Z(x;, - -+, x,),
where
(1.7) p = 1(d-1).

If x, is kept fixed, pf " 1x7°L(x,, x,, - *, x;) considered as a function of
X5, " X4, 18 @ (d—1)-dimensional normal probability density. By C,
we denote the class of continuous functions on R; with compact support.
The indicator function of a set A is written I .

Proofs are based on the results obtained in Stam [1].

2. Preliminary lemmas

LemMMA 2.1. If F is nonarithmetic and E|X,|° < oo, then for ge C,

(2.1) lim {x’{fg(E—X)U(dE)—M{L(i)fg(i)dé} =0,
uniformly in x5, - -, x,.

This is theorem 3.1 of Stam [1], II. We also need theorem 3.2 of the
same paper:

LeEMMA 2.2. If there is a Cartesian coordinate system such that the com-
ponents of X, in this system are arithmetic with span 1 and their joint
characteristic function { satisfies the condition: {(#) = 1 if uy,- -+, u; are
integer multiples of 2r and |{(@)| < 1 elsewhere and if E\X{|° < o, then
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lim {x{U({=))— 4 LR} = O,

X1 ©

uniformly in x,, * * +, x4, if X is restricted to lattice points of U.

LemMA 2.3. If F satisfies the conditions of lemma 2.1 and g(X) =
Ia,1)(%1)g1(X) with g, € Cy, then (2.1) holds for g.

ProOF. We may write g = h+h, with he C, and |h;| £ h, € C;. Then

# [ gG-9uan) -1 1) [ o(2)az

=

+

(2.2) x4 jh(z —x)U(dz)—pf L() f h(z)dz

x4 fhz(z— X)U(dz) | +uf L(X) fhz(z) dz.

Since L(X) is bounced, we may choose 4, i; and 4, so that

(2.3) u{’L()‘c)fhz(Z)dz < ¢f4.
Then

x4 f hy(Z—X)U(dZ) | < uf L(%) f hy(Z) dz
x? f hy(2—%)U(dZ)— i L(X) f hy(2)dz

and the lemma follows from (2.2), (2.3), (2.4) and lemma 2.1.

(2.4)
+

LeMMA 2.4. The random variables Y, - - -, Y, of (1.3) have finite second
moments. If p; =0, j= 2,

(2.6) cov(Y;, Y) = E{ny}cov(Xy;, Xyp),  Jok=2,---d.
See theorems 1.2, 1.4, 1.5 of Nevels [2].

LEMMA 2.5. The covariance matrix of the random variables Y;— vy Ly, Y,
Jj=2,-,d, is E{n,} - E, where E is defined as in section 1.

ProOF. By (1.4) we have v 'v; = ui'p;. So
Yj—vl—lij1 =k21ij,

where W,; = X,;—u1 ‘1 X, has expectation zero. The lemma follows
from lemma 2.5 by considering the random walk with steps (Xi;, Wi,
Tt Wkd )'

LEMMA 2.6. If E|X,,|* < oo, where A > 0, then E|Y,|* < .

ProOF. See Nevels [2], theorem 1.1.
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3. Local limit theorems for R,

THEOREM 3.1. If F is nonarithmetic and E|X{,|° < oo, we have for
ge Gy

lim ¢

t—= 0

fg(xl s X3 —0Az, """ xd_ad)Rt(dJ_‘)_

fg(x1 s Xy =y, 0 Xg— ag)B(x1) (32, - s xg)dX | =0,
uniformly in a,, - -, a;. Here

(3.1) B(x)) =0, x; £0, B(x;) = vi {1 —H(x,)}, x, > 0,

and q, is the (d—1)-dimensional normal density with covariance matrix
ui “tE and means pi 'yt j =2, -, d.

Proor. First we assume that X;; = 0 with probability 1. Since g € C;,
it is sufficient to show that

lim
(3.2) 2o

tﬂfé)(’% » Xp—ay, "+, Xg—ag)R(dX)

~Paas . a) [ e ds| =0,

uniformly in a,, - * -, a;. We have
t”Jg(x1 s Xa— 0y, " "ty Xg—ay)R,(dX)
33) = t”fl[,’ o) (X1)g(x —t, X3 —ay, - - -, x4—a,)F(dX)
+tpm§1 ffl(_w,,)(xl)l[,, w)X1+EDG(xy + & —t X+ & —as, 0

xg+&;—ag)F"(dx)F(dE).

Here the first term tends to zero for ¢ — oo, uniformly in a,, -, a,,
since E[X4|” < oo. The second term may be written

where a = (0, a5, " - -, a;) and
(3.4a) A t,a) = t"’J\I[_gho)(x1 —)g(x+& —t, x3+E —ay, s

x,,+fd—ad)U(di).
By lemma 2.3, applied to the function I _;,, ¢y(x1)g(X +&) with & fixed,
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(3:5) A 13) =16 1 )+ LG 0, 00) [ T oz)a(+ a2

where lim,_,,, 7(¢, ¢, a) = 0, uniformly in a,, - -, a; for fixed . Equiv-
alently

(3.6) lim (&, t) = 0,

t—> 0
for fixed &, where {(, t) = supan(&, t,a). We now write
T, = T53+1,,

67) T, = [ L (€04 1 )FGE)

T, = JI[O,%t)(fl)A(E’ L ‘7)F(dé_)-
Since | g(Z—y)U(dz) is bounded 1n 7, we have by (3.4a) and the assump-
tion that E|X4|? < oo,
(3.8) T3 é cltp{].'_Fl '%t)} g 0.

To T, we now apply (3.5) and (3.6) with the Lebesgue dominated con-
vergence theorem. It is noted that L is bounded by a constant and that

*Io,30(¢1) = 2°(—¢,)', 0= &<t
So (3.4a) and lemma 2.3 show that Iy 4,,(&,)A(&, t, @) and therefore also
o, 30(€1)C(&, 1) is bounded by a constant. So

(39) tim | Tu- [, so(E(E 1 DR | = o,

t— o0

uniformly in a,, - - -, a,, where (&, #, @) is the second term on the right
in (3.5). Since y(&, ¢, a) is bounded by a constant, (3.9) implies

(3.10) iim [ 7.~ [& 12| =0,

uniformly in a,, - -+, a;. Now

V(Ea t ﬁ) =i L(t’ az,"* ad)fI[O,él)(yl)g(y)dy’
[ v aF@d) = wtr as, a0 Ju-Foe)as
So by (1.5) and (1.6)

(3.11) f Y& t, A)F(dE) = t°q,(ay, - - -, a;) fﬁ(yl)g(?) dy,
and (3.2) follows from (3.3), (3.4), (3.7), (3.8), (3.10) and (3.11).
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If P{X,, < 0} > 0, we apply the part of the theorem proved above, to
the random walk arising by sampling the S,-process at the strict ladder
times of the process {S,;}. It is noted that the first entrance of {S,} into
the half space {x, = ¢} necessarily is a ladder point of {S,,}. The theorem
now follows by lemma 2.5 and (1.4). Lemma 2.6 guarantees that the con-
dition on the absolute moment of order p of the x,-component is satisfied.

THEOREM 3.2. If F is nonarithmetic and E|X,|* < o0, we have for
he Cy_y

lim ¢*
t— o0

Jh(xZ—az P xd_ad)Rt(dg)
- Jh(xz"az’ Tt xa—aa)‘b(xz, CrnXg)dxy e dxy | =0,

uniformly in a,, - - -, a;. Here q, is the same as in theorem 3.1.
Proor. Since he C,_,, it is sufficient to show that, uniformly in

az,* ", 4a,

lim *
3.12) =

fh(xz"az, Tt xd_ad)Rt(dE)—qt(az: ey, ad)
th(xZ,"',xd)dXZ"'dxd =0.

First we assume that X;; > 0. We then start the proof of (3.2) anew at
(3.3), where for g(x,," -, x;) we now take h(x,, -, x;). We obtain
(3.4), (3.5), (3.6), since lemma 2.3 applies to the function I_;, (&)
h(xy+&,, -+, x4+ &) with € fixed. To obtain (3.8) and (3.9) we have to
take into account the factor I;_,, o)(x; —?) in (3.4a). This means that in
the integral in (3.4a) the variable x, is restricted to the interval [t—¢&, , ?).
We then have in T,

(3.13) A(E, t, E) § th‘I[o,t)(xl)lh(xz"‘éz—az, e, xd+fd—ad)|U(d)_c).
By lemma 2.3, form = 1,

fI[m,m+1)(x1)|h(x2+€2—a2a cn Xy E—ay)U(dX) < com™?,

SO
[t+1]1

(3.14) A t,a) £ *{co+cy Y m™P}.
m=1

Therefore T5 — 0, uniformly, since E|X;;|°? < 0. Forp =4%andp =1
we have to appeal to the existence of first and second moments. To apply
the Lebesgue dominated convergence theorem to T, we note that the
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second term on the right in (3.5) is bounded by c¢;]&,| with ¢; a constant.
In the same way as (3.14) we obtain

[t+1]

Io,35(EDAE 1, @) < c4 t"[ Zg ]m_" < csléyl
t—¢&1

So [¢(&, 1)| < c6lé4] and (3.9) follows by the existence of first moments.
The relation (3.10) also follows and (3.11) is replaced by

JY(E, t, ﬁ)F(dE) = tPQ:(az, R ad)jh(yZ’ Tt yd)dyZ O dyd

The relation (3.12) now follows from the counterparts of (3.3), (3.4),
(3.7), (3.8), (3.10) and (3.11), if X;; = 0. The proof is concluded in the
same way as the proof of theorem 3.1.

THEOREM 3.3. Let F satisfy the conditions of lemma 2.2. For t > 0 let
a(t) be a d-vector such that 0 < a,(t) < K and t+a(t) belongs to the
F-lattice. Then

lim tle,{a(t)}—VI1H1(Ez)qt(a2(t)> o al()l =0,

t— 0
uniformly in a(t) for fixed K. Here E, denotes the open interval (a(t), )
and q, the same normal density as in theorem 3.1.

COROLLARY. If Xy4, "+, Xy4 are integer valued such that o(ui) = 1 if
uy, -, uy are integer multiples of 2n and |@(ii)| < 1 elsewhere, and if
E|X,,|” < o0, then

lim #?|Ry(k)—vi 'H ((ky > ©))qu(kz, " " kg)l = O,

h—
uniformly ink,, -, kg, if h, ky, - - -, k; are integers with h > 0, k; = 0.
Proor. First assume X, = O with probability 1. We have
t"R{a(1)} = *P{S, = t+a()}+T5,

where the first term is dealt with by the existence of EX?,

T, =1t P{Spi <1t Susy = t+a(t)},
m=1
T, =1t Y P{Xp+1 = EP{S, <1, S, =t+a(t)—&},
13

where & runs through points of the F-lattice. Because of the second factor
we may write

=t 3 F{&YU({r+a()-2}.

&1>ai(t)
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By lemma 2.2 we have for fixed &
t?U{t+a(t)—E&} = pf L(t, ay(1), - - +, a ) +n,

where n — 0 as ¢ > oo, uniformly in a(¢) if 0 < a,(¢) < K, if & is kept
fixed. The proof now proceeds in the same way as with theorem 3.1.
We write T, = T3+ T, where the sum is taken over the sets {£, = ¢}
and {a,(t) < &; < 4t}, respectively. Handling of T and T, requires the
same estimations as in the proof of theorem 3.1.

The lattice counterpart of theorem 3.2 is restricted to integer valued
X1, " X14, since under the more general assumptions of theorem 3.3
the lattice description of Z,(t), - - -, Zy(¢) is difficult.

THEOREM 3.4. If X,,, * * *, X4 are integer valued, such that (i) = 1 if
Uy, "+, uy are integer multiples of 2n and |@(@)| < 1 elsewhere, and if
E|X,,|° < o0, then

(3.15) hlim RP|P{Zy(h) = k3, -+, Zy(h) = k}—qu(ks, -+, kg)| = 0.
uniformly ink,, -, k,. Here h, k,, - - -, k; are integers and q, is the same
normal density as in theorem 3.1.
Proor. First take P{X;; = 0} = 1. We have
hpP{Zz(h) = kz, MY Zd(h) = kd}
= h”P{X“ Zh Xi,=kys s Xig= kd}+T25
where the first term tends to zero uniformly in (k,, -, k;) as A — oo

since E|X;4|° < oo and

Tz = hp z P{Sml < h, Sm+1,1 g h, Sm+1,r = k,., r = 2, cty, d}
m=1

= h* z Z,Z”Fm{il’ ce id}F{jl, cee, jd},
m=1
where Y’ and )’ are subject to the restrictions iy <k, i;+j, Z h,
ir+jr = kr’ r= 2, Tt d. So
h-1
(3.16) T, = hp. Z _F{jl’ ty Ja) Z Uiy, ka=Jjzs " kq= ja}-
a 13

FEVRERI | i1=h—ji1

By lemma 2.2 we have for fixed j,, -, j;and h—j, £ i; < h—1
Uiy, ky—ja» s ka—Ja} = pfL(h, ky, - -+, kg)+,

with lim,_, , # = 0, uniformly in k,, - -, k,.
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The relation (3.15) now follows with (1.5) and (1.6) if passing to the
limit in (3.16) under the sum overj, , - * , j; is justified. This is done by the
same methods as in the proof of theorem 3.2.

If P{X,; < 0} > 0 we consider the random walk at the ladder times
of the process {S,,}.

Summary

LetX,,X,, - - - be independent strictly d-dimensional random vectors,
with common distribution, with finite second moments and positive x,-
component of the first-moment vector. Let S, =X+ --- +X,, n =
1,2,- -+, N(t) = min {n: S,y = ¢t} and Z(t) = Sy,-

If E|X,4|° < oo, where p = $(d—1), the joint distribution of Z;(¢)—¢,
Z,(2), -+ -, Z4(t) satisfies a local central limit theorem for # — co. The
approximating probability measure is the product of the well known
limiting distribution for Z,(¢)—t and a normal distribution for Z,(t), - - -,
Z,(t). The difference is o(t ~*) as in a local central limit theorem for sums
of independent (d— 1)-vectors.

The theorem is stated and proved for nonarithmetic F and for F re-
stricted to a (rotated) cubic lattice with span 1. A special case of the global
version was proved by the author in Zeitschr. fiir Wahrsch. th. u. verw.
Geb. 10 (1968), 81-86.
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