Compositio Mathematica

A. J. Stam

 Local central limit theorem for first entrance of

 Local central limit theorem for first entrance of a random walk into a half space

 a random walk into a half space}

Compositio Mathematica, tome 23, no 1 (1971), p. 15-23
http://www.numdam.org/item?id=CM_1971__23_1_15_0

L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numbam

LOCAL CENTRAL LIMIT THEOREM FOR FIRST ENTRANCE OF A RANDOM WALK INTO A HALF SPACE

by
A. J. Stam

1. Introduction, notations

Throughout this paper the following assumptions apply. Let $\bar{X}_{k}=$ $\left(X_{k 1}, \cdots, X_{k d}\right), k=1,2, \cdots$, be independent strictly d-dimensional random vectors with common probability distribution F and characteristic function φ. (The bar distinguishes vectors from scalars and strict d-dimensionality means that the support of F is not contained in a hyperplane of dimension lower than d.) The second moments of the \bar{X}_{i} will be finite and the first moment vector $\bar{\mu}$ nonzero. We put $\bar{S}_{n}=\bar{X}_{1}+\cdots$ $+\bar{X}_{n}, n=1,2, \cdots$,

$$
\begin{equation*}
U(A)=\sum_{m=1}^{\infty} F^{m}(A) \tag{1.1}
\end{equation*}
$$

where the exponent denotes convolution. The distribution function of X_{11} if F_{1}.

We consider the first entrance of the random walk $\left\{\bar{S}_{n}\right\}$ into the half space $\left\{\bar{x}: a_{1} x_{1}+\cdots+a_{d} x_{d} \geqq t\right\}$, where $t>0$. It is essential that the half line $\bar{x}=c \bar{\mu}, c>0$, intersects the boundary of the half space. For convenience of notation we assume that the x_{1}-axis of our coordinate system has been chosen in the direction of \bar{a}. This implies that we have to assume thrcughout this paper

$$
\begin{equation*}
\mu_{1}>0 \tag{1.2}
\end{equation*}
$$

Now let $N(t)=\min \left\{n: S_{n 1} \geqq t\right\}$, and let R_{t} be the joint probability distribution of

$$
Z_{1}(t)-t, Z_{2}(t), \cdots, Z_{d}(t)
$$

where $\bar{Z}(t)=\bar{S}_{N(t)}$. It will be shown in section 3 that R_{t} for $t \rightarrow \infty$ satisfies a local central limit theorem, if either F is nonarithmetic - i.e. $\{\bar{u}: \varphi(\bar{u})=1\}=\{0\}-$ or $X_{1 k}$ is arithmetic with span $1, k=1, \cdots, d$. The approximating probability measure is the product of the well known limiting distribution of $Z_{1}(t)-t$ and a normal distribution for $Z_{2}(t)$, $\cdots, Z_{d}(t)$. The corresponding 'marginal' result for $Z_{2}(t), \cdots, Z_{d}(r)$ also is derived.

We will need the strict ascending ladder process with respect to the x_{1}-coordinate, i.e. the random walk $\bar{S}_{n_{1}}, \bar{S}_{n_{2}}, \cdots$ in R_{d}, where n_{1}, n_{2}, \cdots are the times at which a strict ascending ladder point occurs in the random walk $S_{11}, S_{21}, S_{31}, \cdots$. We put

$$
\begin{equation*}
\bar{Y}=\bar{S}_{n_{1}} \tag{1.3}
\end{equation*}
$$

By Wald's identity for expectations we have, since $E\left\{n_{1}\right\}<\infty$ by (1.2),

$$
\begin{equation*}
\bar{v} \stackrel{\mathrm{df}}{=} E\{\bar{Y}\}=\bar{\mu} E\left\{n_{1}\right\} \tag{1.4}
\end{equation*}
$$

By H_{1} we denote the probability distribution of Y_{1}.
Let E denote the covariance matrix of the random variables $X_{1 j}-$ $\mu_{1}^{-1} \mu_{j} X_{11}, j=2, \cdots, d$ and $\varepsilon_{i j}$ the (i, j)-element of E^{-1}. We put

$$
\begin{align*}
& Z\left(x_{1}, \cdots, x_{d}\right) \\
& \quad=\exp \left[-\frac{1}{2} \mu_{1} x_{1}^{-1} \sum_{i=2}^{d} \sum_{j=2}^{d} \varepsilon_{i j}\left(x_{i}-\mu_{1}^{-1} \mu_{i} x_{1}\right)\left(x_{j}-\mu_{1}^{-1} \mu_{j} x_{1}\right)\right], \tag{1.5}\\
& L\left(x_{1}, \cdots, x_{d}\right)=\mu_{1}^{-1}(2 \pi)^{-\rho}(\operatorname{Det} E)^{-\frac{1}{2}} Z\left(x_{1}, \cdots, x_{d}\right), \tag{1.6}
\end{align*}
$$

where

$$
\begin{equation*}
\rho=\frac{1}{2}(d-1) \tag{1.7}
\end{equation*}
$$

If x_{1} is kept fixed, $\mu_{1}^{\rho+1} x_{1}^{-\rho} L\left(x_{1}, x_{2}, \cdots, x_{d}\right)$ considered as a function of x_{2}, \cdots, x_{d}, is a $(d-1)$-dimensional normal probability density. By C_{d} we denote the class of continuous functions on R_{d} with compact support. The indicator function of a set A is written I_{A}.

Proofs are based on the results obtained in Stam [1].

2. Preliminary lemmas

Lemma 2.1. If F is nonarithmetic and $E\left|X_{11}\right|^{\rho}<\infty$, then for $g \in C_{d}$

$$
\begin{equation*}
\lim _{x_{1} \rightarrow \infty}\left\{x_{1}^{\rho} \int g(\bar{z}-\bar{x}) U(d \bar{z})-\mu_{1}^{\rho} L(\bar{x}) \int g(\bar{z}) d \bar{z}\right\}=0 \tag{2.1}
\end{equation*}
$$

uniformly in x_{2}, \cdots, x_{d}.
This is theorem 3.1 of Stam [1], II. We also need theorem 3.2 of the same paper:

Lemma 2.2. If there is a Cartesian coordinate system such that the components of \bar{X}_{1} in this system are arithmetic with span 1 and their joint characteristic function ζ satisfies the condition: $\zeta(\bar{u})=1$ if u_{1}, \cdots, u_{d} are integer multiples of 2π and $|\zeta(\bar{u})|<1$ elsewhere and if $E\left|X_{11}\right|^{\rho}<\infty$, then

$$
\lim _{x_{1} \rightarrow \infty}\left\{x_{1}^{\rho} U(\{\bar{x}\})-\mu_{1}^{\rho} L(\bar{x})\right\}=0
$$

uniformly in x_{2}, \cdots, x_{d}, if \bar{x} is restricted to lattice points of U.
Lemma 2.3. If F satisfies the conditions of lemma 2.1 and $g(\bar{x})=$ $I_{[a, b)}\left(x_{1}\right) g_{1}(\bar{x})$ with $g_{1} \in C_{d}$, then (2.1) holds for g.

Proof. We may write $g=h+h_{1}$ with $h \in C_{d}$ and $\left|h_{1}\right| \leqq h_{2} \in C_{d}$. Then

$$
\begin{align*}
& \left|x_{1}^{\rho} \int g(\bar{z}-\bar{x}) U(d \bar{z})-\mu_{1}^{\rho} L(\bar{x}) \int g(\bar{z}) d \bar{z}\right| \leqq \\
& \left|x_{1}^{\rho} \int h(\bar{z}-\bar{x}) U(d \bar{z})-\mu_{1}^{\rho} L(\bar{x}) \int h(\bar{z}) d \bar{z}\right|+ \tag{2.2}\\
& \left|x_{1}^{\rho} \int h_{2}(\bar{z}-\bar{x}) U(d \bar{z})\right|+\mu_{1}^{\rho} L(\bar{x}) \int h_{2}(\bar{z}) d \bar{z}
\end{align*}
$$

Since $L(\bar{x})$ is bounced, we may choose h, h_{1} and h_{2} so that

$$
\begin{equation*}
\mu_{1}^{\rho} L(\bar{x}) \int h_{2}(\bar{z}) d z<\varepsilon / 4 \tag{2.3}
\end{equation*}
$$

Then

$$
\begin{align*}
\left|x_{1}^{\rho} \int h_{2}(\bar{z}-\bar{x}) U(d \bar{z})\right| & \leqq \mu_{1}^{\rho} L(\bar{x}) \int h_{2}(\bar{z}) d z \\
+ & \left|x_{1}^{\rho} \int h_{2}(\bar{z}-\bar{x}) U(d \bar{z})-\mu_{1}^{\rho} L(\bar{x}) \int h_{2}(\bar{z}) d \bar{z}\right| \tag{2.4}
\end{align*}
$$

and the lemma follows from (2.2), (2.3), (2.4) and lemma 2.1.
Lemma 2.4. The random variables Y_{1}, \cdots, Y_{d} of (1.3) have finite second moments. If $\mu_{j}=0, j \geqq 2$,

$$
\begin{equation*}
\operatorname{cov}\left(Y_{j}, Y_{k}\right)=E\left\{n_{1}\right\} \operatorname{cov}\left(X_{1 j}, X_{1 k}\right), \quad j, k=2, \cdots, d \tag{2.6}
\end{equation*}
$$

See theorems 1.2, 1.4, 1.5 of Nevels [2].
Lemma 2.5. The covariance matrix of the random variables $Y_{j}-v_{1}^{-1} v_{j} Y_{1}$, $j=2, \cdots, d$, is $E\left\{n_{1}\right\} \cdot E$, where E is defined as in section 1 .

Proof. By (1.4) we have $v_{1}^{-1} v_{j}=\mu_{1}^{-1} \mu_{j}$. So

$$
Y_{j}-v_{1}^{-1} v_{j} Y_{1}=\sum_{k=1}^{n_{1}} W_{k j}
$$

where $W_{k j}=X_{k j}-\mu_{1}^{-1} \mu_{j} X_{k 1}$ has expectation zero. The lemma follows from lemma 2.5 by considering the random walk with steps $\left(X_{k 1}, W_{k 2}\right.$, $\left.\cdots, W_{k d}\right)$.

Lemma 2.6. If $E\left|X_{11}\right|^{\lambda}<\infty$, where $\lambda>0$, then $E\left|Y_{1}\right|^{\lambda}<\infty$.
Proof. See Nevels [2], theorem 1.1.

3. Local limit theorems for $\boldsymbol{R}_{\boldsymbol{t}}$

Theorem 3.1. If F is nonarithmetic and $E\left|X_{11}\right|^{\rho}<\infty$, we have for $g \in C_{d}$

$$
\begin{aligned}
\lim _{t \rightarrow \infty} t^{\rho} & \mid \int g\left(x_{1}, x_{2}-a_{2}, \cdots, x_{d}-a_{d}\right) R_{t}(d \bar{x})- \\
& \int g\left(x_{1}, x_{2}-a_{2}, \cdots, x_{d}-a_{d}\right) \beta\left(x_{1}\right) q_{t}\left(x_{2}, \cdots, x_{d}\right) d \bar{x} \mid=0,
\end{aligned}
$$

uniformly in a_{2}, \cdots, a_{d}. Here

$$
\begin{equation*}
\beta\left(x_{1}\right)=0, x_{1} \leqq 0, \beta\left(x_{1}\right)=v_{1}^{-1}\left\{1-H_{1}\left(x_{1}\right)\right\}, \quad x_{1}>0 \tag{3.1}
\end{equation*}
$$

and q_{t} is the $(d-1)$-dimensional normal density with covariance matrix $\mu_{1}^{-1} t E$ and means $\mu_{1}^{-1} \mu_{j} t, j=2, \cdots, d$.

Proof. First we assume that $X_{11} \geqq 0$ with probability 1 . Since $g \in C_{d}$, it is sufficient to show that

$$
\begin{align*}
\lim _{t \rightarrow \infty} \mid t^{\rho} \int g\left(x_{1},\right. & \left.x_{2}-a_{2}, \cdots, x_{d}-a_{d}\right) R_{t}(d \bar{x}) \tag{3.2}\\
& -t^{\rho} q_{t}\left(a_{2}, \ldots, a_{d}\right) \int \beta\left(x_{1}\right) g(\bar{x}) d \bar{x} \mid=0
\end{align*}
$$

uniformly in a_{2}, \cdots, a_{d}. We have

$$
\begin{align*}
& t^{\rho} \int g\left(x_{1}, x_{2}-a_{2}, \cdots, x_{d}-a_{d}\right) R_{t}(d \bar{x}) \\
& =t^{\rho} \int I_{[t, \infty)}\left(x_{1}\right) g\left(x_{1}-t, x_{2}-a_{2}, \cdots, x_{d}-a_{d}\right) F(d \bar{x}) \tag{3.3}\\
& +t^{\rho} \sum_{m=1}^{\infty} \iint I_{(-\infty, t)}\left(x_{1}\right) I_{[t, \infty)}\left(x_{1}+\xi_{1}\right) g\left(x_{1}+\xi_{1}-t, x_{2}+\xi_{2}-a_{2}, \cdots,\right. \\
& \left.x_{d}+\xi_{d}-a_{d}\right) F^{m}(d \bar{x}) F(d \bar{\xi}) .
\end{align*}
$$

Here the first term tends to zero for $t \rightarrow \infty$, uniformly in a_{2}, \cdots, a_{d}, since $E\left|X_{11}\right|^{\rho}<\infty$. The second term may be written

$$
\begin{equation*}
T_{2}=\int \Lambda(\bar{\xi}, t, \bar{a}) F(d \bar{\xi}) \tag{3.4}
\end{equation*}
$$

where $\bar{a}=\left(0, a_{2}, \cdots, a_{d}\right)$ and

$$
\begin{array}{r}
\Lambda(\bar{\xi}, t, \bar{a})=t^{\rho} \int I_{\left[-\xi_{1}, 0\right)}\left(x_{1}-t\right) g\left(x_{1}+\xi_{1}-t, x_{2}+\xi_{2}-a_{2}, \cdots\right. \tag{3.4a}\\
\left.x_{d}+\xi_{d}-a_{d}\right) U(d \bar{x}) .
\end{array}
$$

By lemma 2.3, applied to the function $I_{\left[-\xi_{1}, 0\right)}\left(x_{1}\right) g(\bar{x}+\bar{\xi})$ with $\bar{\xi}$ fixed,

$$
\begin{equation*}
\Lambda(\bar{\xi}, t, \bar{a})=\eta(\bar{\xi}, t, \bar{a})+\mu_{1}^{\rho} L\left(t, a_{2}, \cdots, a_{d}\right) \int I_{\left[-\xi_{1}, 0\right)}\left(z_{1}\right) g(\bar{z}+\bar{\xi}) d \bar{z} \tag{3.5}
\end{equation*}
$$

where $\lim _{t \rightarrow \infty} \eta(\xi, t, \bar{a})=0$, uniformly in a_{2}, \cdots, a_{d} for fixed $\bar{\xi}$. Equivalently

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \zeta(\bar{\xi}, t)=0 \tag{3.6}
\end{equation*}
$$

for fixed $\bar{\xi}$, where $\zeta(\bar{\xi}, t)=\sup _{\bar{a}} \eta(\bar{\xi}, t, \bar{a})$. We now write

$$
\begin{align*}
T_{2} & =T_{3}+T_{4} \\
T_{3} & =\int I_{\left[\frac{1}{2} t, \infty\right)}\left(\xi_{1}\right) \Lambda(\bar{\xi}, t, \bar{a}) F(d \bar{\xi}) \tag{3.7}\\
T_{4} & =\int I_{\left[0, \frac{1}{2} t\right)}\left(\xi_{1}\right) \Lambda(\bar{\xi}, t, \bar{a}) F(d \bar{\xi})
\end{align*}
$$

Since $\int g(\bar{z}-\bar{y}) U(d \bar{z})$ is bounded in \bar{y}, we have by (3.4a) and the assumption that $E\left|X_{11}\right|^{\rho}<\infty$,

$$
\begin{equation*}
T_{3} \leqq c_{1} t^{\rho}\left\{1-F_{1}\left(\frac{1}{2} t\right)\right\} \rightarrow 0 \tag{3.8}
\end{equation*}
$$

To T_{4} we now apply (3.5) and (3.6) with the Lebesgue dominated convergence theorem. It is noted that L is bounded by a constant and that

$$
t^{\rho} I_{\left[0, \frac{1}{2} t\right)}\left(\xi_{1}\right) \leqq 2^{\rho}\left(t-\xi_{1}\right)^{\rho}, \quad 0 \leqq \xi<\frac{1}{2} t
$$

So (3.4a) and lemma 2.3 show that $I_{\left[0, \frac{1}{2} t\right)}\left(\xi_{1}\right) \Lambda(\bar{\xi}, t, \bar{a})$ and therefore also $I_{\left[0, \frac{1}{2} t\right)}\left(\xi_{1}\right) \zeta(\bar{\xi}, t)$ is bounded by a constant. So

$$
\begin{equation*}
\lim _{t \rightarrow \infty}\left[T_{4}-\int I_{\left[0, \frac{1}{2} t\right)}\left(\xi_{1}\right) \gamma(\bar{\xi}, t, \bar{a}) F(d \bar{\xi})\right]=0 \tag{3.9}
\end{equation*}
$$

uniformly in a_{2}, \cdots, a_{d}, where $\gamma(\bar{\xi}, t, \bar{a})$ is the second term on the right in (3.5). Since $\gamma(\bar{\xi}, t, a)$ is bounded by a constant, (3.9) implies

$$
\begin{equation*}
\lim _{t \rightarrow \infty}\left[T_{4}-\int \gamma(\bar{\xi}, t, \bar{a}) F(d \bar{\xi})\right]=0 \tag{3.10}
\end{equation*}
$$

uniformly in a_{2}, \cdots, a_{d}. Now

$$
\begin{aligned}
& \gamma(\bar{\xi}, t, \bar{a})=\mu_{1}^{\rho} L\left(t, a_{2}, \cdots, a_{d}\right) \int I_{\left[0, \xi_{1}\right)}\left(y_{1}\right) g(\bar{y}) d \bar{y} \\
& \int \gamma(\bar{\xi}, t, \bar{a}) F(d \bar{\xi})=\mu_{1}^{\rho} L\left(t, a_{2}, \cdots, a_{d}\right) \int\left\{1-F_{1}\left(y_{1}\right)\right\} g(\bar{y}) d \bar{y}
\end{aligned}
$$

So by (1.5) and (1.6)
(3.11) $\int \gamma(\bar{\xi}, t, \bar{a}) F(d \bar{\xi})=t^{\rho} q_{t}\left(a_{2}, \cdots, a_{d}\right) \int \beta\left(y_{1}\right) g(\bar{y}) d \bar{y}$,
and (3.2) follows from (3.3), (3.4), (3.7), (3.8), (3.10) and (3.11).

If $P\left\{X_{11}<0\right\}>0$, we apply the part of the theorem proved above, to the random walk arising by sampling the \bar{S}_{n}-process at the strict ladder times of the process $\left\{S_{n 1}\right\}$. It is noted that the first entrance of $\left\{\bar{S}_{n}\right\}$ into the half space $\left\{x_{1} \geqq t\right\}$ necessarily is a ladder point of $\left\{S_{n 1}\right\}$. The theorem now follows by lemma 2.5 and (1.4). Lemma 2.6 guarantees that the condition on the absolute moment of order ρ of the x_{1}-component is satisfied.

Theorem 3.2. If F is nonarithmetic and $E\left|X_{11}\right|^{\rho}<\infty$, we have for $h \in C_{d-1}$

$$
\begin{aligned}
& \lim _{t \rightarrow \infty} t^{\rho} \mid \int h\left(x_{2}-a_{2}, \cdots, x_{d}-a_{d}\right) R_{t}(d \bar{x}) \\
& \quad-\int h\left(x_{2}-a_{2}, \cdots, x_{d}-a_{d}\right) q_{t}\left(x_{2}, \cdots, x_{d}\right) d x_{2} \cdots d x_{d} \mid=0
\end{aligned}
$$

uniformly in a_{2}, \cdots, a_{d}. Here q_{t} is the same as in theorem 3.1.
Proof. Since $h \in C_{d-1}$, it is sufficient to show that, uniformly in a_{2}, \cdots, a_{d},

$$
\begin{align*}
& \lim _{t \rightarrow \infty} t^{\rho} \mid \int h\left(x_{2}-a_{2}, \cdots, x_{d}-a_{d}\right) R_{t}(d \bar{x})-q_{t}\left(a_{2}, \cdots, a_{d}\right) \tag{3.12}\\
& \times \int h\left(x_{2}, \cdots, x_{d}\right) d x_{2} \cdots d x_{d} \mid=0
\end{align*}
$$

First we assume that $X_{11} \geqq 0$. We then start the proof of (3.2) anew at (3.3), where for $g\left(x_{1}, \cdots, x_{d}\right)$ we now take $h\left(x_{2}, \cdots, x_{d}\right)$. We obtain (3.4), (3.5), (3.6), since lemma 2.3 applies to the function $I_{\left[-\xi_{1}, 0\right)}\left(\xi_{1}\right)$ $h\left(x_{2}+\xi_{2}, \cdots, x_{d}+\xi_{d}\right)$ with $\bar{\xi}$ fixed. To obtain (3.8) and (3.9) we have to take into account the factor $I_{\left[-\xi_{1}, 0\right)}\left(x_{1}-t\right)$ in (3.4a). This means that in the integral in (3.4a) the variable x_{1} is restricted to the interval $\left[\mathrm{t}-\xi_{1}, t\right)$. We then have in T_{3}

$$
\begin{equation*}
\Lambda(\bar{\xi}, t, \bar{a}) \leqq t^{\rho} \int I_{[0, t)}\left(x_{1}\right)\left|h\left(x_{2}+\xi_{2}-a_{2}, \cdots, x_{d}+\xi_{d}-a_{d}\right)\right| U(d \bar{x}) \tag{3.13}
\end{equation*}
$$

By lemma 2.3, for $m \geqq 1$,

$$
\int I_{[m, m+1)}\left(x_{1}\right) \mid h\left(x_{2}+\xi_{2}-a_{2}, \cdots, x_{d}+\xi_{d}-a_{d}\right) U(d \bar{x}) \leqq c_{2} m^{-\rho}
$$

so

$$
\begin{equation*}
\Lambda(\bar{\xi}, t, \bar{a}) \leqq t^{\rho}\left\{c_{0}+c_{2} \sum_{m=1}^{[t+1]} m^{-\rho}\right\} . \tag{3.14}
\end{equation*}
$$

Therefore $T_{3} \rightarrow 0$, uniformly, since $E\left|X_{11}\right|^{\rho}<\infty$. For $\rho=\frac{1}{2}$ and $\rho=1$ we have to appeal to the existence of first and second moments. To apply the Lebesgue dominated convergence theorem to T_{4} we note that the
second term on the right in (3.5) is bounded by $c_{3}\left|\xi_{1}\right|$ with c_{3} a constant. In the same way as (3.14) we obtain

So $|\zeta(\xi, t)| \leqq c_{6}\left|\xi_{1}\right|$ and (3.9) follows by the existence of first moments. The relation (3.10) also follows and (3.11) is replaced by

$$
\int \gamma(\bar{\xi}, t, \bar{a}) F(d \bar{\xi})=t^{\rho} q_{t}\left(a_{2}, \cdots, a_{d}\right) \int h\left(y_{2}, \cdots, y_{d}\right) d y_{2} . \cdots d y_{d}
$$

The relation (3.12) now follows from the counterparts of (3.3), (3.4), (3.7), (3.8), (3.10) and (3.11), if $X_{11} \geqq 0$. The proof is concluded in the same way as the proof of theorem 3.1.

Theorem 3.3. Let F satisfy the conditions of lemma 2.2. For $t>0$ let $\bar{a}(t)$ be a d-vector such that $0 \leqq a_{1}(t) \leqq K$ and $t+\bar{a}(t)$ belongs to the F-lattice. Then

$$
\lim _{t \rightarrow \infty} t^{\rho}\left|R_{t}\{\bar{a}(t)\}-v_{1}^{-1} H_{1}\left(E_{t}\right) q_{t}\left(a_{2}(t), \cdots, a_{d}(t)\right)\right|=0
$$

uniformly in $\bar{a}(t)$ for fixed K. Here E_{t} denotes the open interval $\left(a_{1}(t), \infty\right)$ and q_{t} the same normal density as in theorem 3.1.

Corollary. If $X_{11}, \cdots, X_{1 d}$ are integer valued such that $\varphi(\bar{u})=1$ if u_{1}, \cdots, u_{d} are integer multiples of 2π and $|\varphi(\bar{u})|<1$ elsewhere, and if $E\left|X_{11}\right|^{\rho}<\infty$, then

$$
\lim _{h \rightarrow \infty} h^{\rho}\left|R_{h}(\bar{k})-v_{1}^{-1} H_{1}\left(\left(k_{1}, \infty\right)\right) q_{h}\left(k_{2}, \cdots, k_{d}\right)\right|=0
$$

uniformly in k_{2}, \cdots, k_{d}, if h, k_{1}, \cdots, k_{d} are integers with $h>0, k_{1} \geqq 0$.
Proof. First assume $X_{11} \geqq 0$ with probability 1 . We have

$$
t^{\rho} R_{t}\{\bar{a}(t)\}=t^{\rho} P\left\{\bar{S}_{1}=t+\bar{a}(t)\right\}+T_{2}
$$

where the first term is dealt with by the existence of $E X_{11}^{\rho}$

$$
\begin{aligned}
& T_{2}=t^{\rho} \sum_{m=1}^{\infty} P\left\{S_{m 1}<t, \bar{S}_{m+1}=t+\bar{a}(t)\right\} \\
& T_{2}=t^{\rho} \sum_{m=1}^{\infty} \sum_{\xi} P\left\{X_{m+1}=\bar{\xi}\right\} P\left\{S_{m 1}<t, \bar{S}_{m}=t+\bar{a}(t)-\bar{\xi}\right\}
\end{aligned}
$$

where $\bar{\xi}$ runs through points of the F-lattice. Because of the second factor we may write

$$
T_{2}=t^{\rho} \sum_{\xi_{1}>a_{1}(t)} F(\{\bar{\xi}\}) U(\{t+\bar{a}(t)-\bar{\xi}\})
$$

By lemma 2.2 we have for fixed $\bar{\xi}$

$$
t^{\rho} U\{t+\bar{a}(t)-\bar{\xi}\}=\mu_{1}^{\rho} L\left(t, a_{2}(t), \cdots, a_{d}(t)\right)+\eta
$$

where $\eta \rightarrow 0$ as $t \rightarrow \infty$, uniformly in $\bar{a}(t)$ if $0 \leqq a_{1}(t) \leqq K$, if $\bar{\xi}$ is kept fixed. The proof now proceeds in the same way as with theorem 3.1. We write $T_{2}=T_{3}+T_{4}$ where the sum is taken over the sets $\left\{\xi_{1} \geqq \frac{1}{2} t\right\}$ and $\left\{a_{1}(t)<\xi_{1}<\frac{1}{2} t\right\}$, respectively. Handling of T_{3} and T_{4} requires the same estimations as in the proof of theorem 3.1.

The lattice counterpart of theorem 3.2 is restricted to integer valued $X_{11}, \cdots, X_{1 d}$, since under the more general assumptions of theorem 3.3 the lattice description of $Z_{2}(t), \cdots, Z_{d}(t)$ is difficult.

Theorem 3.4. If $X_{11}, \cdots, X_{1 d}$ are integer valued, such that $\varphi(\bar{u})=1$ if u_{1}, \cdots, u_{d} are integer multiples of 2π and $|\varphi(\bar{u})|<1$ elsewhere, and if $E\left|X_{11}\right|^{\rho}<\infty$, then

$$
\begin{equation*}
\lim _{h \rightarrow \infty} h^{\rho}\left|P\left\{Z_{2}(h)=k_{2}, \cdots, Z_{d}(h)=k_{d}\right\}-q_{h}\left(k_{2}, \cdots, k_{d}\right)\right|=0 \tag{3.15}
\end{equation*}
$$

uniformly in k_{2}, \cdots, k_{d}. Here h, k_{2}, \cdots, k_{d} are integers and q_{t} is the same normal density as in theorem 3.1.

Proof. First take $P\left\{X_{11} \geqq 0\right\}=1$. We have

$$
\begin{aligned}
h^{\rho} P\left\{Z_{2}(h)\right. & \left.=k_{2}, \cdots, Z_{d}(h)=k_{d}\right\} \\
& =h^{\rho} P\left\{X_{11} \geqq h, X_{12}=k_{2}, \cdots, X_{1 d}=k_{d}\right\}+T_{2},
\end{aligned}
$$

where the first term tends to zero uniformly in $\left(k_{2}, \cdots, k_{d}\right)$ as $h \rightarrow \infty$ since $E\left|X_{11}\right|^{\rho}<\infty$ and

$$
\begin{aligned}
T_{2} & =h^{\rho} \sum_{m=1}^{\infty} P\left\{S_{m 1}<h, S_{m+1,1} \geqq h, S_{m+1, r}=k_{r}, \quad r=2, \cdots, d\right\} \\
& =h^{\rho} \sum_{m=1}^{\infty} \sum^{\prime} \sum^{\prime \prime} F^{m}\left\{i_{1}, \cdots, i_{d}\right\} F\left\{j_{1}, \cdots, j_{d}\right\}
\end{aligned}
$$

where \sum^{\prime} and $\sum^{\prime \prime}$ are subject to the restrictions $i_{1}<h, i_{1}+j_{1} \geqq h$, $i_{r}+j_{r}=k_{r}, r=2, \cdots, d$. So

$$
\begin{equation*}
T_{2}=h^{\rho} \sum_{j_{1}, \cdots, j_{d}} F\left\{j_{1}, \cdots, j_{d}\right\} \sum_{i_{1}=h-j_{1}}^{h-1} U\left\{i_{1}, k_{2}-j_{2}, \cdots, k_{d}-j_{d}\right\} . \tag{3.16}
\end{equation*}
$$

By lemma 2.2 we have for fixed j_{1}, \cdots, j_{d} and $h-j_{1} \leqq i_{1}<h-1$

$$
U\left\{i_{1}, k_{2}-j_{2}, \cdots, k_{d}-j_{d}\right\}=\mu_{1}^{\rho} L\left(h, k_{2}, \cdots, k_{d}\right)+\eta
$$

with $\lim _{h \rightarrow \infty} \eta=0$, uniformly in k_{2}, \cdots, k_{d}.

The relation (3.15) now follows with (1.5) and (1.6) if passing to the limit in (3.16) under the sum over j_{1}, \cdots, j_{d} is justified. This is done by the same methods as in the proof of theorem 3.2.

If $P\left\{X_{11}<0\right\}>0$ we consider the random walk at the ladder times of the process $\left\{S_{n 1}\right\}$.

Summary

Let $\bar{X}_{1}, \bar{X}_{2}, \cdots$ be independent strictly d-dimensional random vectors, with common distribution, with finite second moments and positive x_{1} component of the first-moment vector. Let $\bar{S}_{n}=\bar{X}_{1}+\cdots+\bar{X}_{n}, n=$ $1,2, \cdots, N(t)=\min \left\{n: S_{n 1} \geqq t\right\}$ and $\bar{Z}(t)=\bar{S}_{N(t)}$.

If $E\left|X_{11}\right|^{\rho}<\infty$, where $\rho=\frac{1}{2}(d-1)$, the joint distribution of $Z_{1}(t)-t$, $Z_{2}(t), \cdots, Z_{d}(t)$ satisfies a local central limit theorem for $t \rightarrow \infty$. The approximating probability measure is the product of the well known limiting distribution for $Z_{1}(t)-t$ and a normal distribution for $Z_{2}(t), \cdots$, $Z_{d}(t)$. The difference is $o\left(t^{-\rho}\right)$ as in a local central limit theorem for sums of independent $(d-1)$-vectors.

The theorem is stated and proved for nonarithmetic F and for F restricted to a (rotated) cubic lattice with span 1 . A special case of the global version was proved by the author in Zeitschr. für Wahrsch. th. u. verw. Geb. 10 (1968), 81-86.

REFERENCES

A. J. Stam
[1] Renewal Theory in r Dimensions I, Comp. Math. 21 (1969), 383-399; II, Comp. Math. 23 (1971), 1-13.
K. Nevels
[2] On Moments of Ladder Variables. Report T.W.-87, Mathematisch Instituut Rijksuniversiteit Groningen. (1970).

(Oblatum 20-X-69,	Mathematisch Instituut der Rijksuniversiteit,
23-XI-70)	Hoogbouw WSN,
	Universiteitscomplex Paddepoel,
	Postbus 800,
	Groningen

