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Introduction

Problems connected with the foundations of mathematics led C. Spec-
tor to consider a certain kind of functional equation. The solution of this
functional equation is provided by a certain principle, the ’principle of
barrecursion". One problem with respect to this functional equation has
up to now remained open, namely to find a family F of functionals with
the property: if the parameters of the equation belong to F then there is a
solution which belongs to F. There is so to speak a weak and a strong ver-
sion of this problem: a) the weak version is that one given above, b) the
strong version requires that the elements of F are constructive in one sense
or the other. Here we propose a solution of the weak problem. More
precisely, we construct two families S’ and K. The first is in essence already
described in [2] but it has the disadvantage that its construction leads
beyond classical analysis. The second, K, is a more elaborate version of S
and its construction remains within the scope of classical analysis. A few
applications of these models are given.

I. A family of functionals of higher types

1.1. Syntax
Our notation follows loosely the one used in [4]. Types are inductively

given as follows: 1) 0 is a type, 2) if 03C31,···, 03C3s, i are types then (03C31,···,
(J’ s/1: ) is a type. For each type 03C3 there is a denumerable list of free variables

Xr, X03C32,···, Y03C31, Y03C32,···; for simplicity we often omit the superscripts.
For every type J there is also a denumerable list of bound variables

B03C31, B03C32, ···, B. In addition we have a symbol À, called abstraction opera-
tor and two kind of brackets, ( , ) and [, ].

1.2. Topologies defined by convergence
Let X be a set on which a notion of convergence, denoted by ~, is

given. By pn ~ p, n = 1, 2, ... we understand that the sequence pl, p2,
... converges against p ; we often simply write pn ~ p. We assume that -
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satisfies the following axioms: 1) if pn ~ p, if k1  k2 ... then

pki - p, 1 = 1, 2, ’ ’ ’, 2) if pn = p with the exception of finitely many
n’s then pn ~ p, 3) if pn, n = 1, 2, ... does not converge against p then
there is a list k1  k2  ·· · such that no subsequence of pk1 , pk2, ···
converges against p, 4) if pn ~ p, pn ~ q then p = q. The pair (X, - )
will be called an L-space. Such spaces have already been investigated
among others by Kuratowski [2, pg. 93]. We refer to axioms 1 )-4) as to
Kuratowski’s axioms. Below we have to consider different L-spaces
(X1, ~1), (X2 , ~2),···, then we often omit the superscripts in ~ 1,
~2,··· and write simply ~ since it will be clear from the context on what
space is supposed to operate.

1.3. Topologies on families of continuous functions
Let (Xi, ~) i = 1, ..., s and (Y, ~) be L-spaces. A mapping f from

Xl x ... x XS into Y is said to be continuous if f (xn1, ···, xns) ~ f(x1, ···,
xs) whenever xni ~ xi, n = l, 2, ’ ’ ’, i = 1, ..., s (with xn and xi all in
Xi for n = 1, 2, ’ ’ ’, i = 1, 2, ’ ’ ’, s). By C(Xl , ’ ’ ’, XS, Y) we denote
the set of continuous mappings from Xl x ... x XS into Y. On C(X1, ···,
Xs, Y) we introduce a notion of convergence according to [2 ] as follows:
if f and fn, n = 1, 2,... belong to C(Xl , ’ ’ ’, Xs, Y) then fn ~ f,
n = 1, 2, ··· iff fn(xn1, ···, xns) ~ f(x1,···, xs) for all xn and xi such that
xni ~ Xi’ n = 1,2, ..., i = 1, ···, S. As shown in [2], (C(X1,···,XS, Y), 
- ) thus defined satisfies axioms 1), 2), 3) above and it is trivial to verify
that axiom 4) is also satisfied. We call the convergence notion just defined
the convergence notion induced by (Xi, ~) i = l, ’ ’ ’, s and (Y, ~) on
C(X1, ···, Xs, Y).
1.4. Continuous functionals for each type
N is the family of natural numbers provided with the following notion

of convergence: xn ~ x iff Xn = x with the exception of finitely many n’s.
We put S(o) = N. Let J be (03C31, ···, 03C3s/03C4) and assume that L-spaces
(S(03C3i), ~), i = 1, ’ ’ ’, s and (S(03C4), ~) have already been defined. Then
we put S(J) = C(S(03C31), ···, S(6S), S(03C4)) and as notion of convergence
on S(6) we take the convergence notion induced by (S(03C3i), -), i = 1,
’ ’ ’, s and (S(03C4), ~) on S(u). Our first goal is to prove
THEOREM 1. The family S = Ua S( (J) is closed under primitive recursion.
THEOREM 2. S is closed under barrecursion of higher type.
The rather trivial proof of th. 1 will be sketched only, while the less

trivial, but still simple proof of th. 2 will be worked out in detail.

1.5. Some properties of S

a) In order to discuss some properties of S and also for later use we
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introduce below the notion of term. Prior to this we list a few functionals

which belong to S. b) Let F ~ S be of type (03C31, ···, 03C303C3/03C4) and 03BC1, ···, f.lt

a list of types. Then there is a G E S with: if Fi E S(03C3i), Gk E S(03BCk) then
G(F1, ···, Fs, G1, ···, Gt) = F(F1, ..., Fs). If 03C3t1, ···, 03C3ts is a permuta-
tion of 03C31, ···, us then there exists a F E S with: F(Ft1’...’ Fts) =
F(Fl , ’ ’ ’, Fs) for all Fi, i = 1, ···, s. The projections P’ E S are given
by: P03C3i(F1, ···, F,) = Fi where 1 ~ i ~ s. The successor function s is
defined as usual by s(x) = x + 1, where x runs over N. c) Let G be of type
(03C31, ···, 03C3s/03C4) and Fi of type (03BC1, ···, 03BCt/03C3i), i = 1, ..., s. Then there is
an H in S of type (,ul , ’ ’ ’, 03BCt/03C4) with the property: H(T1, ···, Tt) =
G(F1(T1,···,Tt),···,Fs(T1,···,Tt)) for all T i = 1,...,t. We say
that H is obtained from G, F1,···,Fs, by substitution. d) Let E03BC be type
p = ((03C31, ···, 03C3s/03C4), 07, , * .., 03C3s/03C4) whose value E(F, G1, ..., Gs) is given
by F(G1, ···, Gs). It is easy to verify that E, belongs to S : if F,, converges
against F and G" against Gi then Fn(Gn1, ···, Gs) converges against
F(G1, ···, Gs) in virtue of our definition of induced convergence notion
(see also [2], pg. 94). e) Now to the notion of term. The definition is in-
ductively : 1) if F ~ S(03C3) then Fis a term of type 03C3, 2) a free variable of
type J is a term of type 6, 3) if T is a term of type (03C31, ···, 03C3s/03C4), if Q is a
term of type 03C3i, i = 1, ..., s then T[Q1, ···, QS ] is a term of type 7:,

4) if T is a term of type i, B a bound variable of type p not occurring in T,
if Y is a free variable of type p then (ÂBSBT) is a term of type (03BC/03C4) (where
SBYT denotes here and below the result of replacing every occurrence of
Y in T by B). Next, let Z1, ’ ’ ’, ZN be a list of free variables of types
03C31,···, 6N respectively (with N = 0 admitted). We write T/Z1, ···, ZN
in order to indicate that the free variables of T occur among the Zi’s.
With each expression T/Z1, ···, ZN we associate an element (T/Z1, ···,
ZN)* belonging to S(03C31, ···, 0" N/7: ) where i is the type of T. The definition
is by induction according to the clauses below; by definition S(03C31, ···,
03C3N/03C4) denotes S( 7:) whenever N = 0. a) If T is F ~ S( 0") then (T/Z1, ···,
ZN)*(Fl , ’ ’ ’, FN) = F. fi) If T is Zi then (T/Zl , ’ ’ ’, ZN)* is P’ with
6 = (03C31, ···, 03C3N/03C3i). y) If T is (ÂBSBQ) with Y and B of type /1, Q of type
i and Y a free variable not occurring in Z1, ···, ZN then (T/Z1, ’ ’ ’, ZN)*
is the welldetermined element G E S of type (03C3i, ···, 03C3N/(03BC/03C4)) given by:
G(F1, ···, FN)(H) = (Q/Z1, ..., ZN,Y)*(F1, ···, FN, H). b) If T is

P[Q1, ···, Qs] and (PIZ1, - ···, ZN)* = G, (Qi/Z1, ···,ZN)* = H, then
(T/Z1, ’ ’ ’, ZN)* is the functional D E S given by: D(Fl , ’ ’ ’, F N)
G(Fl , ···, FN)(H1(F1 , ···, FN), ···, Hs(Fl’ ···, FN)) (that is, D is ob-
tained from G, H1, ···, Hs by substitution). If in particular there are no
free variables in T then we obtain for N = 0 : (P[Q1, ···, Qs])* =
P*(Q*1, ···, Q*s). Our assignment * has a few properties, described by
the following
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LEMMA 1. Let Zal’ ..., Zas be precisely the free variables occurring in T.
Then (T/Zal’ ···, Z03B1s)* (F03B11, ···, (TIZ1 ···, ZN)*(F1, ···, FN).
We omit the easy proof of the lemma which is by induction with respect

to the complexity of T. If in particular T is a constant term then (T/Z1,
..., ZN)*(Fl, ..., FN) does not depend on the Fi’s. We denote this value
by T*. For N = 0 we then have (T/Z1, ···, ZN)* = T*. We note in par-
ticular : if F E S then F* = F. We also have

LEMMA 2. Let T be a term whose free variables are among Zl, - ZN.
Let Q1, ···, Qs be terms without free variables and denote by To the
result of replacing each occurrence of Zi in T by QI, i = 1, ···, s. Then

This proof too is by a straightforward induction with respect to the
complexity of T and hence omitted. For s = N the lemma reduces to:
T* = (T/Z1, ’ ’ ’, ZN)*(Q*1, ···, Q*N). Without danger of confusion we
use the following notation at a few places: for F ~ S of type (03C31, ···,
03C3N/03C4) we write simply (03BBBF[Z1, ···, ZN, B]) in place of (03BBBF[Z1, ···,
ZN, B]/Z1,···,ZN)*.

f) For every type cr there is a distinguished element 0. E S( a) whose
inductive definition is as follows: 1) 00 = 0, 2) if a = (03C3i, ···, 6Sli)
then 003C3(F1, ···, Fs) = 0, for all Fi E S(03C3i). We often write 0 in place of
003C3 whenever it is clear from the context which type 0 is supposed to have.
g) For every J there is an element 03941 in S of type ((0/03C3), 0/(0/03C3)) whose
value for a e S(0/J) is given as follows: 1) 03941(03B1, n)(i) = a(i) for i  n,
2) 03941(03B1, n)(i) = 0 if n ~ i. We writ’e more suggestively: a(n) in place of
03941(03B1, n). h) For every type J there is an element d 2 in S of type ((0/03C3),
0, 03C3/(0/03C3)) whose value for 03B1 ~ S(0/03C3), a ~S(03C3) is given as follows:

1) 03942(03B1, n, a)(i) = a(i) if i  n, 2) A2(ot, n, a)(n) = a, 3) 03942(03B1, n, a)(i)
= 0 if i &#x3E; n. Without danger of confusion we often write a(n) * a in
place of 03942(03B1, n, a). i) There is a 03943 E S of type ((0/03C3), 0, (0/03C3)/(0/03C3))
whose value for a, fi in S(0/J) is given as follows: 1) 03943 (03B1, n, 03B2)(i) = a(i)
for i  n, 2) 03943(03B1, n, 03B2)(i) = fi(i-n) for i ~ n. We often write 03B1(n) * fi
in place of 0394A(03B1, n, 03B2). We write 03B1(n)*a*03B2 in place of 03943(03B1(n)*a,
n+1, 03B2) and a*03B2 instead of E(0) * a * 03B2. Note: 03B1(0)(i) = 0 for all i.

j) Of basic importance are the two lemmas listed below.

LEMMA 3. Let Y of type ((0/03C3)/0) be in S’. Then there isfor every a E S(0/03C3)
an n such that Y(a) = Y(03B2) whenever a(n) = P(n).

PROOF. Assume the contrary. Then there is an a with the property: for

every n there is a Pn E s(0/J) such that 03B2n(n) = a(n) and such that
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Y(03B2n) ~ Y(a). However Pn( n) = a( n), n = 1, 2, ... implies Pn ~ a and
hence Y(fl,,) = Y(a) with the exception of finitely many n’s. This contra-
dicts Y(03B2n) ~ Y(,Y), n = 1, 2, ···.

COROLLARY 1. For every oc there is an n such that Y(5(n) * 03B2) = Y(a)
for all 03B2.

COROLLARY 2. For every k and every a there is an n such that Y(03B1(n) * 03B2)
 n+k for all 03B2.

LEMMA 4. Let F be an arbitrary mapping from N into S(6). Then
F E yS’(O/6).
We omit the obvious proof.

REMARK. In this section we have mostly stated that some particular
functionals belong to S or if some functionals belong to S then some
others belong to S. The proofs are completely trivial and therefore we
have omitted them.

1.6. Proof of theorem 1

In order to prove theorem 1 we show that for every appropriate type
there is a functional J which satisfies the following equations:

(with type compatibility tacitly assumed). For simplicity we consider the
case where just one parameter is present, that is where s = 1. Now it is
evident that there exists a mapping J (of appropriate type) which satisfies
equations 1), 2); what we have to do is to convince ourself that J is indeed
an element of S. This is achieved if we can show: J(n, Fi, Gi, Hi) ~
J(n, F, G, H) whenever Fi ~ F, Gi -+ G, Hi ~ H for i = 1, 2, ···. We

prove this by induction with respect to N. If n = 0 then the statement
reduces to Gi(Fi) ~ G(F). But this is a consequence of our definition of
convergence. Now assume that continuity of J (with respect to G, H, F)
has been proved up to n. Now J(n+1, Fi, Gi, Hi) = Hi(n, Fi, J(n, Fi,
Gi, Hi)). But J(n, Fi, Gi, Hi) converges against J(n, F, G, H) by assump-
tion. Hence Hi(n, Fi, J(n, Fi, Gi, Hi)) converges against H(n, F, J(n, F,
G, H)) in virtue of the continuity of H, whence the statement follows.

II. S is closed against barrecursion of higher type

2.1. Parameters; the barrecursive equations

a) Below it is convenient to use the following notation: 1 ) if F E S is of
type (03C31, ···, 03C3s/03C4) then F(X103C31, ···, X6S) denotes a functional of type r
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depending on the parameters X103C31, ···, X:s’ 2) if F E S is of type (a 1, ...,
03C3s, 03BC/03C4) then 03BBBF(X103C31, ···, X:s’ B) denotes a functional H of type (03BC/03C4),
depending on X103C31, ···, X:s; for given values Gi, i = 1, ···, s H assumes
a certain value Ho given by the equation Ho(G) = F(G1, ···, G,, G)
for all G E S(03BC), 3) single parameters and lists of parameters will also be
denoted by such symbols as Z, z etc; lists of types will be denoted by
capital Greek letters E, 039B etc. Thus if we say that Z is of type 1 we mean
eg. that Z is X103C31, ···, X:s and that f is 03C31, ···, as. The lists Z and ¿ may
be empty. Below we often omit types and assume tacitly that all func-
tionals, variables and parameters appearing in equations or other con-
texts are provided in a compatible way with types.

DEFINITION 1. A functional ç E S is called a barrecursive functional if it

has the following properties: 1) qJ(Z, G, H, Y, x, 03B1(x)) = ~(Z, G, H, Y,
x, a), 2) for all functionals G, H, Y and all values of the parameters Z the
following equations are satisfied:

This equations are supposed to hold for all a E S and x. The natural
number k is arbitrary but fixed and the only constant which enters into
the equations. The types of Z, G, H, Y, a and x are in that order: E,
(E, 0, (0/03C3)/03C4), (1, 0, (0/03C3), (03C3/03C4)/03C4), (03A3, (0/03C3)/0), (0/03C3), 0.

NOTATION. In order not to overburden the notation we often write

cp(x, a) in place of ~(Z, G, H, Y, x, a).
Below we often have to study equations I, II with Z, G, H, Y held

constant. cp is then a function of x and a only. In this case we call cp a
solution of I, II with respect to G, H, Y and Z. If only G, H, Y are held
constant then we call cp a solution with parameters Z of I, II with respect
to G, H, Y. If finally Z, G, H, Y are considered as parameters then we call
cp a solution of I, II with Z, G, H, Y as parameters; cp is then by definition
a barrecursive functional.

There is a variant of definition 1, which will be of importance below,
namely

DEFINITION 2. Let G, H, Y, containing parameters Z, be given; their
types are as in def. 1. Then 9 is said to be a solution with parameters Z
up to 03B1(x) of I, II with respect to G, H, Y if the following holds: 1)
cp(Z, y, fi) = cp(Z, y, 03B2(y)), 2) for all arguments Z, y, 03B2 the following
equations are satisfied:
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otherwise.

REMARK. A solution ç of I*, II* is nothing else than a solution with

parameters Z of I, II but with respect to certain functionals G’, H’, Y’
different from G, H, Y. The parameters Z in I*, II* may of course be
absent. In connection with I*, II* we use the same terminology as with
I, II. A conparison of definitions 1, 2 shows: a solution ç up to E(0) of
I, II with respect to G, H, Y is a solution of I, II with respect to G, H, Y

according to def. 1.

2.2. Transfinite induction
Lemmas 3, 4 permit us to use the principle of bar induction with

respect to functionals Y ~ S of type ((0/03C3)/0).
DEFINITION 3. Let Y E S be of type «01(1)/0) and k an arbitrary number.

A finite sequence {f0,···,fx-1} of elements E S of type J is called
’secured’ with respect to Y, k (to Y if k = 0) iff the following holds: if
a E S(0/03C3) is such that a(i) = fi for i  x then Y(a)  x + k. We call

{f0, ···,fx-1} unsecured otherwise.

REMARK. In this connection we use a somewhat unprecise way of

speaking: we call 03B1(x) secured if {03B1(0), ···,03B1(x-1)} is secured, and
unsecured otherwise. Then we have the following principle of bar induc-
tion (or transfinite induction, as we sometimes say): if A(03B1(x)) holds for
all â(x) secured with respect to Y, k, if moreover (s)A (fl(y) * s) ~ A(03B2(y))
is true for all fl(y) then A(03B3(x)) holds for all  (x).
2.3. Some lemmas

LEMMA 5. Let F ~ S be of type (Z, (0/03C3)/03C4). Then F(Z, 03B1(x) * s) depends
continuously on all its arguments, that is on Z, a, s (and x).

PROOF. Follows from the fact that S is closed against substitution.

LEMMA 6. Let Fn n = 1, 2, ··· and F be of type (03A3, 03C3/03BC) and assume
Fn ~ F. Then ÀBFn[Z, B] ~ ABF[Z, B].

PROOF. We have to show: if Zn ~ Z then ÂBFn(Zn, B) ~ ÀBF(Z, B).
Hence let Xn ~ X be true. Then ÀBFn(Zn, B)(Xn) = Fn(Zn, Xn) and
ÀBF(Z, B)(X) = F(Z, X). But Fn(Zn, Xn) ~ F(Z, X) in virtue of Fn ~ F.
Hence the lemma follows.

REMARK. In virtue of our notation conventions we can read the last

lemma also as: ÀBFn(Zn, B) ~ ÀBF(Z, B) whenever Zn ~ Z.
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LEMMA 7: Let Fn, F in S be of type (1, 03C3/03BC) and let Zn, n = 1, 2, ···
and Z be particular values of the parameters. Assume that for all Xn ~ X
Fn(Zn, Xn) converges against F(Z, X). Then 2BFn(Z,,, B) ~ ÀBF(Z, B).

PROOF. This is a straightforward consequence of our definition of in-
duced convergence.

LEMMA 8. The system I, II of equations without parameters Z admits at
most one solution ~ with respect to G, H, Y.
The proof is by a straightforward bar induction with respect to Y, k

and is omitted. Of crucial importance is the following

LEMMA 9. Let Gn, Hn, Yn, n = 1, 2, ··· and G, H, Y be functionals (of
suitable types) without parameters Z having the following properties: 1)
for every n there is a solution qJn of I, II with respect to Gn, Hn, Yn, 2) there
exists a solution qJ of I, II with respect to G, H, Y, 3) Gn, Hn, Yn converge
against G, H, Y respectively. Then 9n ~ ~.

PROOF. We proceed by transfinite induction with respect to Y, k: if

an(x) converges against â(x) then qJn(x, 03B1n(x)) ~ ~(x, 5(x». Case 1: a(x)
is secured with respect to Y, k. Then 9(x, 03B1(x)) = G(x, a(x» by definition.
Since Yn ~ Y, an(x) ~ 03B1(x) it follows that Yn(an(x» = Y(03B1(x)) for

almost all n’s. Hence Yn(03B1n(x))  x + k for almost all n’s. Hence

(Pn(X, an(x») = Gn(x, an(x» for almost all n’s. But Gn(, an(x» --+ G(x,
03B1(x)) in virtue of Gn ~ G whence the statement follows. Case 2 : The state-
ment holds for all à(x) * a. We distinguish two subcases. Subcase 1:

Y(a(x»  x+k. Then we proceed as in Case 1. Subcase 2: Y(03B1(x)) ~
x+k. Then qJ(x, a(x» = H(x, a(x), 03BBs~(x, 03B1(x) * s)) by definition. As
before Yn(an(x» = Y(03B1(x)) for almost all n’s. Hence ~n(x, 03B1n(x)) is

Hn(x, an(x), 03BBs~n(x, an(x) * s)) for almost all n’s. The inductive assump-
tion is: for all a, if J3n(x+ 1) ~ 5-c(x) * a, then qJn(x+ 1, J3n(x + 1)) ~
~(x + 1, 03B1(x) * a). From this we infer: whenever an(x) --+ d(x) and an ~ a
then (p.(X+ 1, 5n(X) * an) ~ 9(x+ 1, 5(x) * a). According to lemma 7
(or 6) this implies: if 03B1n(x) ~ 03B1(x) then 03BBs~n(x+1, 03B1n(x) s) ~
ÀSqJ(x+ 1, 03B1(x) * s). In virtue of Hn ~ H this implies the convergence of
Hn(x, "n(X), 03BBs~n(x+ 1, 03B1n(x) * s)) against H(x, â(x), 03BBs~(x+ 1, 5c-(x) * s))
whence the statement follows.

LEMMA 10. Let Gn, Hn, Yn and G, H, Y be functionals of suitable types
all containing the parameters Z. Assume that the following holds: 1) for
every n, Z there exists a solution ~nZ of I, II with respect to Gn, Hn, Yn, Z,
2) for every Z there exists a solution qJz of I, II with respect to G, H, Y, Z,
3) Gn ~ G, Hn ~ H, Yn ~ Y. If Zn ~ Z then ~nzn ~ ~z.

PROOF. Consider Zn, n = 1, 2, ... and Z as fixed and assume Zn --+ Z.
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Define Gn, H., Yn’ and G’, H’, Y’ as follows: G’n(x, a) = Gn(Zn, x, a),
H’n(x, 03B1, 03BE) = Hn(Zn, x, 03B1, 03BE), Y’n(03B1) = Yn(Zn, 03B1), G’(x, a) = G(Z, x, 03B1),
H’(x, a, 03BE) = H(Z, x, a, ç), Y’(03B1) = Y(Z, a) for all x, a, ç. Then

Gn ~ G’, Hn’ ~ H’ and Yn’ Y’ in virtue of assumption 3). But ~nZn is a
solution of 1, II with respect Gn, Hn, Y’n while cpz is a solution of 1, II
with respect to G’, H’, Y’. Hence the statement follows from lemma 9.

LEMMA 11. Assume that for every G, H, Y and all values of the parameters
Z there exists a solution of I, II with respect to G, H, Y, Z. Then there
exists a solution cp(Z, G, H, Y, x, a) of I, II; in other words, a solution of
l, II with G, H, Y, Z as parameters exists (everything with respect to a
fixed compatible list of types).

PROOF. Denote by ~{G, H, Y, Z} the solution of 1, II with respect to
G, H, Y, Z. From the last lemma we infer: if Gn --+ G, Hn ~ H, Yn ~ Y
and Zn --+ Z then ~{Gn, Hn, Yn, Zn} ~ ~{G, H, Y, Z}. This means: if

Gn, Hn, Yn, Zn, an converges against G, H, Y, Z, a then ~{Gn, Hn, Yn, Znl
(x, an ) ~ ~{G, H, Y, Z}(x, a). Hence by defining cp(Z, G, H, Y, x, a) =
~{G, H, Y, Z}(x, a) for all G, H, Y, Z, x, a we get the desired solution
cp of 1, II with G, H, Y, Z as parameters.

COROLLARY. Under the assumptions of lemma 11 it follows that the bar-
recursive functional (of a certain type) exists.

PROOF. This is but a restatement of lemma 11.

Hence theorem 2 is proved as soon as we can prove

THEOREM 3. For every G, H, Y without parameters and every 03B1(x) there
exists a solution ~ of I, II up to 03B1(x), that is a solution ofI*, II* with respect
to G, H, Y and 03B1(x).

PROOF. We proceed by induction with respect to Y, k. Case 1: 03B1(x) is
secured with respect Y, k, that is Y(03B1(x)* 03B2)  x+k for all 03B2. Put

~(y, fi) = G(x + y, i(x) * J3(y». Then Y(03B1(x) * J3(y»  x+k ~ x + k + y
and cp thus defined is indeed a solution up to 03B1(x) of 1, II with respect to
G, H, Y. Case 2 : Now assume that 03B1(x) is such that for every z of type 03C3
the following assumption holds: there exists a solution cp z of 1, II up to
03B1(x) * z. We want to construct a solution cp ofl, II up to 5(x). By assump-
tion cpz satisfies the following conditions: 1) ~Z(y, fi) = ~z(y, J3(y»,
2) 1*: ~z(y, J3(y» = G(x + y + 1, cX(x) * z * J3(y» if Y(03B1(x) * z * J3(y»
 x+y+k+ 1, and Il*: = H(x+y+ 1, 03B1(x) * z * 03B2(y), 03BBs~z(y+ 1,
03B2(y) * s)) otherwise. Define G, ,  as follows: 1) G(z, y, fi) = G(x +y + 1,
03B1(x)*z*03B2(y)), 2) (z,y, fi, 03BE) = H(x+y+ 1, 03B1(x)*z*03B2(y), 03BE), 3) (z, 03B2) =
Y(03B1(x) * z * 03B2). The functionals G, il,  are clearly in S. Now cpz is clearly
a solution of 1, II with respect to G, il, f z but with x + k + 1 in place of
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k. In virtue of lemma 10 we have: if zn ~ z, Pn ~ 03B2 then ~zn(y, Pn) ~
CPz(y, 03B2). Define (o as follows: cp(z, y, 03B2) = cpz(y, 03B2). Obviously (o E S.
It follows in particular that (z, 0, 0) depends continuously on z and hence
that 03BBs(s, 0, 0) is an element of S (eg. by specializing lemma 6). Now we
define a functional ç as follows: a) ~(y+ 1, z * 03B2) = (z, y, 03B2(y)),
03B21) cp(O, 03B2) = G(x, a(x» if Y(5(x»  x+k, 03B22) ~(0, 03B2) = H(x, "(X),
03BBs(s, 0, 0)) if Y(03B1(x)) ~ x+k. That cp thus defined is an element in S
follows immediately from the fact that (o is in S. It remains to verify that
cp is indeed a solution up to a(x) of I, II. We distinguish four cases.
A : y &#x3E; 0 and Y(a(x) * f1(y»  x + y + k. Then fl(y) can be written as
z * 03B3(y-1). We have: Y(03B1(x) * z * 03B3(y-1))  (x+1)+(y-1)+k. Ac-
cording to our inductive assumptions about CPz, written in terms of (o,
we have: (z, y-1, 03B3(y-1)) = G(5(x) * z * 03B3(y-1), x+1+y-1). Using
definition a) of cp we infer that equation I* is indeed satisfied by ~.
B : y &#x3E; 0 and Y(a(x) * 03B2(y)) ~ x + y + k. Again we write J3(y) in the form
z * 03B3(y-1). Thus Y(a(x) * z * 03B3(y-1)) ~ x+1 +y-1 +k holds. In view
of our inductive assumption about CPz, written in terms of (o, we
have : (z, y-1, 03B3(y-1)) = H(x+1+y-1 , 03B1(x) x z * x 03B3(y-1), 03BBs(z, y,
03B3(y-1) * s)). Using again definition a) of 9 we infer that equation II* is
satisfied by ç. C : y = 0 and Y(5(x»  x + k. According to 03B21) we have
~(0, 0) = G(x, 03B1(x)), that is cp is indeed a solution of I*. D : y = 0 and
Y(03B1(x)) ~ x+k. By definition 03B22) we have ~(0, 0) = H(x, a(x),
03BB03C3(s, 0, 0)). Now ~(1, z * fi) = (o(z, 0, 0) according to a), therefore

~(1, E(0) * z) = cp(z, 0, 0). Hence ç(0, 03B1(0)) = H(x, 03B1(x), Àsç (1, a(O)
* s)). That is, cp is indeed a solution up to 03B1(x) of I, II with respect to
G, H, Y.

III. Application to an equational calculus

3.1. Syntax

a) In what follows we set up an equational calculus, more or less along
the lines of [3], pg. 225. In order to save symbols we use the elements of S
and the terms constructed with the aid of them as basic symbols of the
calculus. The calculus is only apparently nonconstructive; the reader will
easily recognize that the calculus defined below can be explained in an
entirely finitistic way. We begin with the construction of a subset E of
terms by means of the inductive clauses below. Tl ) S0 ~ E, T2) the suc-
cessorfunction s, given by s(i) = i + 1, is in E, T3) free variables are in E,
T4) the barrecursive functionals of all types, determined by the barresur-
sive equations I, II with k = 0, belong to E, T5) the induction functionals
of all types belong to E, T6) if Ti of type 03C3i, i = 1, ···, s and T of type
(03C31, ···, 03C3s/03C4) are in E then T[T1, ···, Ts] is in E, T7) if T is in E then
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(03BBSBXT) is in E, T8) if T is in E and if its free variables are among Zl, ...,
ZN then (7/Zi, ’ ’ ’, ZN)* is in E. It is easy to see that all primitive recur-
sive functionals of Goedels system T belong to E. In particular all func-
tionals listed under f )-k) in I, 1.5, belong to E. Without danger of confu-
sion we often write 03B1[t] in place of Jijoc, t] and 03B1[t] * q in place of
03942[03B1, t, q] (for terms t, oc, q of appropriate types). Let  be a new sign.
By an equation we understand an expression T  R with T, R terms in E
of the same type. Let Z1, ···, ZN be the free variables which occur in T
or in R. Here and below we denote by 7/Qi ? ’ ’ ’? QN the result obtained
by replacing every occurrence of Zi in T by Qi, i = 1, ’ ’ ’, N:, similarly
with R/Q1, ’ ’ ’, QN. The equation T ~ R is said to be true if (T/F1, ...,
F N)* = (R/F1, ···, FN)* for all Fi E S (where Fi and Qi have the same
type as Zi). We now take some equations as axioms, according to the
clauses below. eq 1 : s[t ] = t+1 is an axiom (t of type 0). eq 2: J[O, F, G,
H] = G [F] and J[t+ 1, F, G, H] = H[t, F, J [t, F, G, H]] are axioms,
with F a list of one or more terms as parameters. eq 3: Let the free varia-
bles of T ~ E be among Zl, ..’, ZN. Then (T/Z1, ···, ZN)* [Q1, ..’, QN]
= T/Q 1, ’ ’ ’, QN is an axiom, where the Qi’s are arbitrary terms (of the
right types of course) and where T/Q1, ···, QN has the same meaning
as above. eq 4: Let X be a free variable different from Z1, ···, ZN. Let T
be a term whose free variables are among Z1, ···, ZN, X; let Q1,···,
QN, Q be arbitrary terms. Then ((03BBBSBXT)/Q1, ···, QN)[Q] --’ T/Q1, ···,
QN, Q is an axiom. eq 5 : T ~ T is an axiom.

Besides the axioms, we have also the rules of inference R, Bl, B2.

R 1: If Tl ~ T2 and a ~ b have been proved then we are permitted to
infer T’1 ’-- T2 where Fi ’-- T2 is obtained from Tl = T2 by replacing an
occurrence of a by b or conversely.

B1: If Y [F, 03B1[t]]+q+1 ~ t has been derived then

can be derived. Here F denotes a list (of type I) of one or several terms as
parameters; oc is a term of type (0/03C3) for suitable (1, t and q are terms of
type 0 and ~, G, H, Y are assumed to have the correct type structures.

B2 : If Y [F, 03B1[t] ~ t + q has been derived, then

can be derived.
In order to indicate that an equation t == q is provable from our axioms

by means of the given rules we write 1- t == q. The equational calculus thus
obtained is denoted by E. The main theorem, which connects truth and
provability is
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THEOREM 4. If F T ~ R then T == R is true.
To put it in more familiar terms, theorem 4 states that S is a model of

E. The proof of th. 4 is not trivial in the proper sense but it requires only
routine verifications which are based heavily on lemmas 1, 2; since the
proof is quit lengthy we omit it in order to save space.

3.2. Reducible terms

a) By a constant we understand from now on a constant term of length
one, that is an element of S. A constant term is a term without free

variables. As in [3] we introduce

DEFINITION 4. 1) A constant term t of type 0 is reducible if there is a
number m such that r- t ~ m holds. 2) A constant term T of type (03C31, ···,
03C3s/03C4) is reducible if for all reducible terms Q1, ···, ? 6s of types 03C31, ···, us
respectively T[Q1, ···, QS ] is reducible (all terms belonging to E by
assumption). Thus, reducible terms do not contain free variables. Our
aim is to prove the following

THEOREM 5. All constant terms are reducible.

PROOF. Our proof follows very closely the considerations in [3]. We
proceed in steps. 1) If F a ~ b with a, b constant terms, if b is reducible,
then a is reducible. We proceed by induction with respect to types. If 0 is
the type of a, b then I- b ~ m for some m by assumption. Hence by rule
R: r- a ~ m,. Thus a is reducible. Assume the statement to be true for

types 03C31, · .., as, 03C4 and let a, b have type (03C31, ···, 03C3s/03C4); let c1, ···, cs be
reducible terms of types 03C31, ···, us respectively. From a[c1, ···, cs]
a[cl, c,] and r- a ~ b we infer by rule R:  a[c1, ···, cs] ~ b[c1,
···, cs ]. Since b is reducible by assumption, b[c1, ···, cs is reducible and
hence a[c1, ···, cs] is reducible according to the induction hypothesis.
Thus a is reducible in virtue of the arbitrariness of the ci’s. 2) Let T be a
constant term of type (0, 03C31, ···, 03C3s/03C4). If T[n, Q1, ···, 6J is reducible
for all reducible terms Qi of type 03C3i, i = 1, ···, s and every n then T is
reducible. Let Q1, ···, 6s be reducible; let t of type 0 be reducible.
Hence F t ~ m for some m. Therefore T[t, Q1, ···, QS ] = T[m, Q1, ···,
Qs] by rule R. Using our assumption and clause 1) it follows that

T [t, Q1, ···, Qs] is reducible. 3) Let T be a term such that every constant
occurring in T is reducible. If Q1, ···, QN are reducible terms then
T/Q1, ···, QN is reducible (with T/Q1, ···, QN the result of replacing
Zi by Qi, i = 1, ···, N where the free variables in T are among Z1, ···,
ZN). We proceed by induction with respect to the length of T. Case 1:

T has length 1. Then the statement is obvious. Case 2: T is composed
according to clause 3) of term formation (I, 1.5). Let T eg. be P[L]; put
P1 = PlQ1, ’ ’ ’, QN, L, = L/Q1, ···, QN . By assumption P1, L1 and
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hence P1[L1] are reducible. Thus the statement holds in virtue of the
arbitrariness of the Qi’s. Case 3 : T is 03BBBSBXP where X is a free variable
different from Z1, ’ ’ ’, ZN . Put P1 = PIQ1, - - -, QN and T1 = T/Q1, ···,
QN. Obviously Tl = 03BBBSBXP1. We have to show that Tl [L] is reducible

for every reducible L. Now (03BBBSBXP1)[L] ~ S;P1 is an axiom, hence

provable. Since P has less symbols than T it follows from the inductive
assumption that SLXP1 is reducible, and hence from clause 1) above that
Tl [L is reducible. In virtue of the arbitrariness of Q1, ···, QN , L the
statement holds also in this case. 4) In order to prove that every constant
term is reducible it follows from 3) that it is sufficient to prove that every
constant is reducible. This is done in the same way as in [3 ], that is first
we show that the basic constants s, J, ç are reducible and afterwards by
an induction over the clauses defining E that every constant which is de-
fined in terms of previous ones, is reducible. The only clause among those
defining E, which introduces a new constant in terms of others already
defined is T8). The verification that s, the induction functionals J, and
(T/Z1, ..., ZN)* are reducible, provided the constants of Tare reducible,
is exactly the same as in [3] and hence omitted. It follows from this that
all primitive recursive functionals are reducible; we mention in particular
d 1, A 2, 03943 and 003C3 (1, 1.5). Hence we concentrate on the proof that the
barrecursive functionals are reducible. Let ç be a fixed bar recursive

functional. In virtue of 2) we have to show: if F, G, H, Y and a are redu-
cible terms then qJ[F, G, H, Y, n, a] is reducible for all n. For simplicity
we have assumed that G, H, Y and hence ç contain exactly one extra
parameter (F); the case of more parameters is treated in exactly the same
way. Let F, G, H, Y be arbitrary but fixed reducible terms; the type of Y
is supposed to be (p, (0/J)/0), that of F hence Il. We are through if we can
prove A): for every 11, if a is reducible then ç [F, G, H, Y, n, a is reducible.
Before proceeding further, we note that the following statement B) holds:
for every constant term a, (Y[F, 03B1[n]])* = Y*(F*, 03B1*(n)). This is an im-
mediate consequence of our definition of (T[Q1, ···, Qs]/Z1, ···, ZN)*
for the case where no free variables occur in T, 61, ’ ’ ’, Qs and where
N = 0. Now define YF as follows: YF(03BE) = Y*(F*, ç) for all 03BE E S(Oju).
Clearly YF E S. Now let P be the one place predicate, whose range of
definition is the set of finite sequences of elements from S(u) and which
applies to fo, ’ ’ -, fn-1 (in signs P(f0, ···, fn-1&#x3E;)) if and only if the
following holds : if a is a reducible term such that 03B1*(i) = f for i  n then
~[F, G, H, Y, n, a is reducible. The proof of A ) thus reduces to the proof
of C): for all f0, ···, fn-1 E S(03C3), the statement P(f0, ···,fn-1&#x3E;) is

true. We prove C) by barinduction over YF, 0.
I. Let , f0, ···, fn-1 be secured with respect to YF : if 03BE(i) = fi for i  n

then YF(03BE)  n. Let oc be a reducible term such that a*(i) = fi for i  n.
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Then Y*(F*, 03B1*(n))  n. But Y*(F*, 03B1(n)) = (Y[F,03B1[n]])* by B).
Since Y, F, 03941, a, n are all reducible it follows that Y [F, 03B1[n]] is reducible

(03B1[n] being an abbreviation for 03941[03B1, n ]), that is I- Y [F, 03B1(n]] ~ m for
some m. Since every provable equation is true, necessarily m  n and
hence we obtain by some primitive recursive manipulations t- Y[F, a[n]] 
+j+1 ~ n. From rule B we obtain: ~[F, G, H, Y, n, a ] ~ G [F, n,
5[n]]. However G, F, n, 03B1[n] are all reducible hence the righthandside of
the last equation is reducible and hence according to clause 1) the left-
handside is reducible, what settles this case.

II. Now assume that for all/e S(03C3) the statement P(f0,···,fn-1,f&#x3E;)
holds. We have to infer P(f0, ···, fn-1&#x3E;). That is, we have: for all

f ~ S( 0"), if fi is a reducible term with 03B2*(i) = fi for i  n and p*(n) = f
then ~[F, G, H, Y, n+1, 03B2] is reducible. Now let a be an arbitrary re-
ducible term with a*(i) = fi, i = 0, ’ ’ ’, n- 1. From this we infer a): if a
is a reducible term of type 6 then 03942[03B1, n, a] (that is 03B1[n] * a) is reducible.
It follows from our inductive assumption, applied to f0, ···, fn-1, a* &#x3E;
that ~[F, G, H, Y, n+1, 03B1[n]* a ] is reducible. We have thereby used
that (03B1[n] * a)*(i) = fi, i  n and (03B1[n] * a)*(n) = a* holds. Now

(03BBB~[F, G, H, Y, n+ 1, oc[n] * B])[b] ~ g[F, G, H, Y, n + 1, 03B1[n] * b] is an
axiom (eq 4). If b is reducible then the righthandside is reducible accord-
ing to our arguments above, hence we infer from clause 1) that the left-
handside is reducible for all reducible terms b. Hence 03BBB~[F, G, H, Y,
n + 1, 03B1[n]* B] is itself reducible. As before we infer that Y [F, a[n]] is
reducible. We distinguish two cases. Case 1 : (Y[F, 03B1[n]])*  n. Then we

infer exactly as under 1 that ~[F, G, H, Y, n, 03B1] is reducible. Case 2:

(Y[F, 03B1[n]])* ~ n. Using the same reasoning as under 1 we infer that
Y [F, 03B1[n]] ~ n+j is provable for some j. By means of rule B2 we infer
r- cp [F, G, H, Y, n, a] ~ H[F, n, i [n], 03BBB~ [F, G, H, Y, n+1, 03B1 [n] * B]].
However H, F, a[n], G, Y are all reducible and 03BBB~[F, G, H, Y, n + 1,
03B1[n] * B] has just been proved to be reducible, hence the righthandside of
the last equation is reducible, and so the lefthandside according to 1)
which concludes the proof.
The reader recognizes that the definition of barrecursive functionals

has not been fully formalized within our calculus. Despite this the cal-
culus is already strong enough to ’compute’ the values of the constant
terms of type 0 (in E). It is not difhcult to see that our calculus is essen-
tially contained in Spectors L4 (apart from a slightly more general type
structure). Moreover L 4 has essentially the same constant terms as our
equational calculus (03BB-abstraction can be defined within 03A34). Hence we
obtain the

COROLLARY. For every constant term T of type 0 of Spectors system L4
there is a number m such that 03A34  T = m holds.
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IV. Constructive elements

4.1. The subset of constructive elements.

In the last chapter we have developed a certain calculus in order to
evaluate the constant terms of the set E. In this chapter we will evaluate the
constant terms of E by means of an other method which is more general
and which will serve as basis for the next chapter. By induction with
respect to types we introduce for each J a subset C( (J) of S(J), called the
constructive elements of type 6, and with each JE C(6) we associate a
certain nonempty set G( f ) of natural numbers, called the Goedelnumbers
of f.

DEFINITION 5. a) C(O) = S(0) = N and for n ~ N we put G(n) = {n}.
b) Assume that C(ui) - S(Qi) and C(z) z S(i), i = 1, ···, s is already
known and that for each f ~ ~ i C(03C3i) ~ C(i) a nonempty set G(f) of
natural numbers, (the Goedelnumbers of f) is given. By definition a
functional f E S(03C3), 03C3 = (03C31, ···, 03C3s/03C4), belongs to C(6) if and only if the
following conditions are satisfied: 1) if gi ~ C(6i), i = 1, ···, s, then

f(g1, ..., gs) ~ C(03C4), 2) there is a partial recursive function 03BC with the
property: if ei E G(gi), i = 1, ···, s, then 03BC(e1, ···, es) is defined and in
G(f(g1, ···, gs)). A number e belongs to F(f) iff it is the Goedelnumber
of a partial recursive function J1 which satisfies clause 2) above. So much
for the definition. The set C = Ua C( (J) is called the set of constructive
functionals.

4.2. Closure properties of C.
The main properties of C are described by

THEOREM 6. 1) C is closed against À-abstraction, 2) C is closed against
substitution, 3) C is closed against permutation (1, 1.5. a)). 4) the projec-
tions, the functionals E, 0, 03941, 03942, A3 and the successor functions belong
to C, 5) the induction functionals J of all types belong to C, 6) the bar-
recursive functionals cp of all types belong to C.
The proofs of 1 )-5) reduce to quite elementary applications of the

fixed point theorem and will be omitted. The only nontrivial part of the
theorem is 6). In the proof of 6) below, we will make use of 1 )-5)
whenever we find it necessary.

PROOF oF 6). Let cp be a barrecursive functional of suitable type. In
order to prove 6) we have to prove two things: 1 ) If Z, G, H, Y, a are in C
then cp(Z, G, H, Y, n, a) is in C, 2) there is a partialrecursive function
J1(z, g, h, j, n, a) with the property: if z, g, h, j, a are the Goedelnumbers
of Z, G, H, Y, a respectively, then M(ZI g, h, j, n, a) is a Goedelnumber of
(p(Z, G, H, Y, n, a). Here z denotes a list of Goedelnumbers z1, ···, z.
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associated with the members Fl , ’ ’ ’, Fs of the list Z of parameters. We
proceed in steps.

A. As follows from 3) of the theorem, 03941 and d 2 belong to C. Let d and
k be fixed Goedelnumbers of 4 1 and d 2 respectively. Next, let Z, G, H, Y
be elements from C whose types are 1, 03C31 = (1, 0, (0/03C3)/03C4), o-2 =

(E, 0, (0/03C3), (03C3/03C4)/03C4) and 03C33 = (03A3, (0/03C3/0); hence ~ has type (03A3, 0"1’ 0"2,
0-3,0, (0/03C3)/03C4). The list G, H, Y will be abbreviated by F. Let z, g, h, j be
the Goedelnumbers of Z, G, H, J; we denote the list g, h, j by t.

B. According to a well known theorem in recursion theory there exists
a primitive recursive function 0 with {~(e, z, t, x, a)}(s) = {e}(z, t,
{d}({k}(a,x,s),x+1),x+1).

C. Below, the following will be used: 03942(03B1, x, r) = 03942(03941(03B1, x), x, r).
D. Now we are looking for a Goedelnumber e of a partialrecursive

function {e}(z, t, a, x) which satisfies the following conditions:

(U) (e) (z, t, a, x) = {g}(z, x, a) if {j}(z, a)  x+k,

(V) (e) (z, t, a, x) = {h}(z, x, a, ~ (e, z, t, x, a)) if x+k ~ {j}(z, a).

According to the fixed point theorem there exists a Goedelnumber e
having the following properties: 1) if {j}(z, a) and {g}(z, x, a) are defined
and if {j} (z, a)  x+k then {e}(z, t, a, x) is defined and equal to

{g}(z, x a), 2) if {j}(z, a) and {h}(z, x, a, ~ (e, z, t, x, a)) are defined and
x+k ~ {j}(z, a) then {e}(z, t, a, x) is defined and its value equal to

{h}(z, x, a, ~ (e, z, t, x, a)).
E. Define Y’ of type ((0/03C3)/0) as follows: Y’(03B1) = Y(Z, 03B1) for all a.

Below we prove by barinduction over Y’ the following statement

P(f0, ···, fn-1&#x3E;) for all finite sequences f0,···,fn-1 of elements

fi E S(03C3), i = 1, ···, n 1: if 03B1 ~ C(0/03C3), if a(1) = fi for i  n, if a ~ G(03B1)
then ~(Z, G, H, Y, n, 03B1) is constructive and {e}(z, t, {d}(a, n), n) a

Goedelnumber of it.
F. Before coming to the proof of P(f0, ···, fn-1&#x3E;) we note that clause

6) follows as soon as we have proved P(f0, ···, fn-1&#x3E;) for all finite
sequences f0, ···, fn-1. To see this, it is sufficient to apply a second time
the theorem mentioned under B): there exists a primitive recursive func-
tion 0393(x,y) such that {0393(x, y)} (z, t, n, a) = {x}(z, t, {y}(a, n)). Then
0393(e, d) is a Goedelnumber of ~.

G. Now to the proof of P(f0, ···, fn-1&#x3E;). Assume a E C(O/a),
a E G(03B1) and 03B1(i) = fi for i  n. Case 1: f0, ···, fn-1 is secured with

respect to Y’, k. This means Y’(03B1(n))  n + k, that is Y(Z, 5(n»  n + k.
Since Y, Z, « and so 03B1(n) are constructive it follows that {j}(z, {d}(a, n))
is defined and equal to Y(Z, a(n», hence smaller than n + k. On the other
hand, g is Goedelnumber of the constructive element G, hence {g}
(z, n, {d}(a, n)) is defined and a Goedelnumber of G(Z, n, â(n)), which
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is constructive. By definition cp(Z, F, n, a(n» is equal to G(Z, n, 03B1(n)),
hence it is constructive. Moreover it follows from the fixed point proper-
ties of e that {e}(z, t, {d}(a, n), n) is defined and equal to {g}(z, n, {d}
(a, n)). Thus P(f0, ···. fn-1&#x3E;) holds in this case. Case 2: Assume that
for all f ~ S(03C3) P(f0, ···, fn-1, f&#x3E;) is true. Subcase 1 : Y’(03B1(n))  n + k.

Then we proceed as under case 1. Subcase 2: Y’(03B1(n)) ~ n + k. Then we
conclude as before that {j}(z, {d}(a, n)) is defined and ~ n + k. By defini-
tion ~(Z, F, n, 03B1(n)) = H(Z, n, (î(n), 03BBs~(Z, F, n+ 1, 03B1(n) * s)). Accord-
ing to our inductive assumption, the following statement 1 holds for
every f ~ S(03C3): if fi E C(0/03C3) is such that 03B2(i) = fi, i  n and fl(n) = f
then ~(Z, F, n+1, 03B2(n+1)) is constructive and {e}(z, t, {d}(b, n + 1),
n+1) a Goedelnumber of it, where b is any Goedelnumber of fi. Since a
is constructive we infer from C): if u E C(Q) then 03942(03B1, n, u) E C(0/03C3),
that is 03942(03941(03B1, n), n, u) E C(O/u). If m is any Goedelnumber of u, then
{k}({d}(a, n), n, m) is a Goedelnumber of 03942(03941(03B1, n), n, u), that is of
03942(03B1, n, u). If we replace 03B2 in statement 1 by A2 (a, n, u) and b by {k}
({d}(a, n), n, m) then it follows that cp(Z, F, n + 1, 5(n) * u) is constructive
with {e}(z, t, {d}({k}({d}(a, n), n, m), n + 1), n + 1) as a Goedelnumber.
Using the identity presented under B) it follows that {~(e, z, t, n, {d}
(a, n))}(m) is a Goedelnumber of cp(Z, F, n+ 1, â(n) * u). Hence 03BBB~(Z,
F, n + 1, a(n) * B) belongs to C(03C3/03C4) and ~(e, z, t, n, {d}(a, n)) is a Goe-
delnumber of it. Since H is constructive it follows that H(Z, n, â(n),
03BBB~(Z, F, n+ 1, a(n) * B)) is constructive and that q = {h}(z, n, {d}
(a, n), 0(e, z, t, n, {d}(a, n))) is one of its Goedelnumbers. Hence it fol-
lows that {e}(z, t, {d}(a, n), n) is defined and equal to q, that is a Goedel-
number of H(Z, n, a(n), 03BBB~(Z, F, n+ 1, 03B1(n) * B)). That is ~(Z, G, H,
Y, n, lt(n)) is constructive and {e}(z, g, h, j, {d}(a, n), n) indeed a Goedel-
number of it.

COROLLARY. If T is a constant term belonging to E then T* E C.
The proof of this corollary requires only little additional work: it

amounts to show that (T/Z1, ..., ZN)* E C provided the constants of T
are in C. This however is an easy consequence of clauses 1)-5) of theorem
6; we omit the details.

V. Barrecursion and classical analysis

5.1. Remarks on the topological structure of S
It was the aim of Spector to give a consistency proof of classical analysis

via barrecursion of higher types. Conversely, one should expect that
barrecursion itself is not stronger than classical analysis. If we look at
our model S then we see that it is not suitable for this purpose since it
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was constructed within whole Zermelo-Fraenkel set theory. Looking at
the definition of S it is not at all clear how to reduce this model to classical

analysis. The following reason supports this view: the functionals of
higher types are themselves objects which are not directly accessible to
classical analysis, since the power set has to be used in their definition.
Thus S would be accessible to classical analysis only if we could reduce
S in some way or the other to the countable. To this end one would try
to prove among others that S(u) has a countable basis. That is we are
obliged to study the topological structure of S. Now the author was
unable to prove anything of significance about this topological structure;
in particular he was not able to prove that S(03C3) has a countable basis.
Hence something else had to be tried. An indication of what can be done
is given by

THEOREM 7. Let S(03C3)* be the following subset of S(u) : f ~ S(u)* iff
there exists a sequence f0, f1, ··· of elements from C(03C3) such that fn ~ f.
Then S* = Ua S(03C3)* is a model for barrecursion of higher type.
The proof of this theorem is not straightforward, however we omit it

because it is very similar to the proof of another theorem to be given
below. Rather than to give further comments on theorem 7 we pass to
the construction of another model K = Ua K(a), which can be reduced
to classical analysis. The reader will recognize that theorem 7 serves as
a guide to the construction of K(u).
5.2. Remarks on classical analysis

Standard systems of classical analysis are systems whose basic language
is that of second order arithmetic and which are obtained from formal

number theory by suitably formalized versions of the following axiom
schemas: 1) bar induction of type 0, 2) transfinite induction of type 0,
3) comprehension axiom, 4) axiom of choice. There is another system of
classical analysis, which is equivalent to any of the systems listed above,
namely ZF-, that is Zermelo-Frânkel minus powerset axiom. This fact
is discussed at some length by G. Kreisel in the introduction to chapter 1
of the Stanford report, vol. 1 ([5]). If we add Goedels axiom V = L to
ZF -, then we obtain the theory ZF - + V = L which can be interpreted
in ZF-. The author has not found a published proof of this fact, however
it seems to be contained implicitly in the literature, as the author learned
from G. Kreisel (communication by letter). Anyway, a routine inspection
of [0] shows, that Goedels construction can be used in a straightforward
way to obtain a reduction of ZF - + V = L to ZF - . Actually we could
perform the construction to be presented below without the aid of V = L;
in this case however we would have to replace equality by an equivalence
relation and this would increase work and space considerably. Another
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remark about the reduction of the announced model K to ZF - + V = L

is appropriate. To this end, define h by 1) h(O) = 1, 2) h((03C31, ···, 03C3s/03C4))
= Li h«(Ji)+h(1:). Now we cannot prove within ZF - + V = L a state-
ment like ’K is closed against primitive recursion and barrecursion’.
However, as will be seen, we can prove in ZF - + V = L for every N the
statement ’~03C3 K(03C3), h(6) ~ N, is closed against primitive recursion and
barrecursion provided that the types 6 which have to be considered
satisfy h(03C3) ~ N’. Finally a few words about the formalization itself.
We do not present a formalization of a proof of the last statement within
ZF- + V = L in the proper sense of the word; this would require too
much space and work. We will present the arguments in an intuitive

fashion, but in such a way that it will be clear to the reader that the proof
could be reproduced within the system ZF- + V = L.

DEFINITION 6. The order Od(x) of any element is the smallest ordinal
oc such that Fc oe = x ([0]).
5.3. The model K = U K(6)

a) By induction with respect to types we introduce for each 03C3 a class

K(03C3), a subset C(03C3) ~ K(6), for each f ~ C(03C3) a nonempty set G(f) of
natural numbers, the Goedelnumbers of f, and finally a convergence
notion --+ (1’ mostly written simply as ~, if no danger of confusion arises.

CASE 1 : 6 = 0. Then K(0) = C(O) = set of natural numbers and for
n E C(O) we put G(n) = {n}. By definition ni --+ n, i = 1, 2, ··· if ni = n
with the exception of finitely many i’s.

CASE 2: J = (03C31, ···, 03C3s/03C4). Assume that for every type /1 from the set
{03C31, ···, us, 03C4} we have defined a class K(/1), a subset C(03BC), for each
f E C(03BC) a nonempty set G(f) of Goedelnumbers and a convergence
notion ~, having the following properties: 1) axioms 1 )-4) of Kuratowski
hold for - (I, 1.2), 2) for every f E K(p) there is a sequence fi E C(/1),
i = 1, 2, ... such that fi --+1, i = 1,2,..., 3) if f ~ f’ then G(f ) n
G(f’) = 0. By C(03C3)’ we denote the set of mappings from C(03C31) x ... x
C(6S) into C( 1:) which have the properties a), 03B2), y) listed below. a) For
f E C(6)’ there exists a partial recursive function 0(xl, xs) such that
0(el, es) is defined and in G(f(f1,···,fs)) whenever fi E C(03C3i) and
ei E G( fi). 03B2) For f ~ C(03C3)’ and every s-tupel f1, ···,fs&#x3E; E K(03C31) x... x
K(03C3s) there is a g in K(03C4) having the property: if fni ~ fi, n = 1, 2, ...,
i = 1, ..., s and if fni E C(03C3i) for all i, n then f(fn1, ···, fns) - g. Accord-
ing to Kuratowski’s axiom 4) and property 2) of the K(03BC)’s it follows that
there exists exactly one such g. Furthermore it follows from axioms 1 )-3)
of Kuratowski that if f1, ···, fs happen to be in C(03C31), ···, C(03C3s)
respectively that then necessarily f(f1, ···, fs) = g. Hence we can extend
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fin an unambiguous way to whole K(03C31) ··· K(03C3s). The element g,
uniquely determined by f1, ···, fs is denoted by f(f1, ···, fs), that is 1 is
the just mentioned extension off y)1 is continuous on K( u 1) x ’ ’ ’ x K( us)
that is if fni ~ fi, n = 1, 2, ···, i = 1, ···, s then f(fn1, ···, fns) ~
f(f1, ···,fs). A number e is called a Goedelnumber of f if e is the Goedel-
number of a partialrecursive function 1J which satisfies the clauses stated
under a); the set of Goedelnumbers of f is again denoted by G(f). Before
proceeding further we note the

LEMMA 12. FoY f,, f’ E C(03C3)’, if f ~ f’ then G(f ) n G(f’) = 1J.

PROOF. Assume e e G(f ) n G(f’) and f ~ f’. Then there are ele-

ments fi e C(03C3i), i = 1, ···, s such that f(f1, ···, fs) ~ f’(f1, ···, fs).
Assume ei e G( fi), i = 1, ..., s. Then {e}(e1, ···, es) e G(f(f1, ···,fs))
~ G(f’(f1, ···,fs)), contradicting assumption 3) about the C(j1. )’s.
An immediate consequence of this is

COROLLARY. C(6)’ is a set.
Next we define a class K(03C3)’. As elements we take the denumerable

sequences G = {F1, F2, ···} of elements from C(6)’ having properties
u), v) listed below.

u) For every s-tupel f1, ···, fs&#x3E; E K(61 ) x ’ ’ ’ xK(us) there exists a
g e K(03C4) with the property : whenever r.n ~ fi, n = 1, 2, ···, i = 1 ... s
then Fn(fn1, ···, fns) ~ g. According to axiom 4) of Kuratowski the
element g is uniquely determined by f1, ···, fs). Hence we may denote
it by G(f1, ···,fs).

v) G is continuous, that is if fni ~ fi, n = 1, 2, ..., i = 1, ···, s then

G(fn1, ···, fns) ~ G(f1, ···, fs). Two elements from K(03C3)’ will be called
equivalent, in symbols G1 ~ G2 if G1(f1, ···, fs) = G’2(/i, ’ ’ ’,/.) for
all f1, ···, fs from K(03C31), ···, K(us) respectively. That ~ is indeed an

equivalence relation is easily seen. Now wc can define K(03C3). By definition
K(03C3) is that subclass of K(03C3)’ which contains from every equivalence
class precisely one element, namely that one of lowest order. Prior to
the definition of C(03C3) we note in this connection

LEMMA 13. If FE C(u)’ then G = {F, F, ···} is in K(03C3)’ and

G(f1, ···, fs) = F(f1, ···,fs) for all fi ~ K(03C3i), i = 1, ..., s.
We omit the obvious proof. Now to C(03C3). As C(03C3) we take the subset

of K( u) given as follows: a sequence P = {F1, F2, ···} from K( u)
belongs to C(03C3) if and only if P is equivalent to a sequence {F, F, ···}
for some F ~ C(03C3)’. As set G(P) of Goedelnumbers of such a P e C(03C3)
we take the set G(F). Finally, it remains to define ~ on K(03C3). We put
Gn ~ G, n = 1, 2, ··· (Gn, G E K(03C3)) if and only if Gn(fn1, ···, fns) ~
G(f1, ···,fs) for all fni, fi such that fni ~ fi, n = 1, 2, ···, i = 1, ···, s.
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This concludes the definition of the objects K(03C3), C(03C3) and ~.
b) It remains to verify that they have properties 1), 2), 3).

LEMMA 14. K(a), C(03C3), ~ and G(x) haue properties 1),2),3).

PROOF. a) First we note that K(a) is a class, whose elements are (or
rather represent) continuous mappings from K(03C31) x... x K(as) into
K( 1’). The convergence notion ~ on K(u) is that one given by Kuratowski
in [2], pg. 94. The proof that ~ indeed satisfies the axioms 1), 2), 3) of
Kuratowski is word by word the same as that one given in [2], pg. 94.
Hence let us verify 4). Assume Gn - G and Gn -+ G’. Then we infer in
particular that for any s-tupel f1, ···, fs from K(03C31), ···, K(as) respectiv-
ely Gn(f1, ···, fs) ~ G(f1, ···,fs) and Gn(f1, ···,fs) ~ G’(f1, ···, fs)
holds. Since 4) holds in K( 1’) we conclude G(f1, ···, fs) = G’(f1, ···,fs),
that is G ~ G’. Hence both are in the same equivalence class. Hence they
are equal.

b) In order to verify 2), let G = {F1, F2, ···} be an element of K(6),
with Fi by definition in C(03C3)’. Then, by definition Fn(fn1, ···,fns) ~
G(f1, ···, fs) for all s-tuples fn1, ···, fns and f1, ···, fs from K(03C31) x
··· K(03C3s) such that fni ~ fi, n = 1,2,..., i = 1,...,s. Now let Pn
be the unique element from C(03C3) with the property: Pn ~ {Fn, Fn, ···}.
According to lemma 13 we have Pn(f1, ···, fs) = Fn(f1, ···, fs) for all
fi E K(03C3i), i = 1, ···, s. Therefore Pn(fn1, ···, fns) ~ G(f1, ···,fs) for all
fni, fi ~ K(03C3i) with fni ~ fi, i = 1,...,s, n = 1,2,.... Hence Pn ~ G
by definition.

c) Finally we consider 3). Let G 1, G2 be two elements from C(o’) with
G1 ~ G2. By definition there exists elements Fl , F2 in C(6)’ such that
G1 ~ {F1, F1, ···}, G2 ~ {F2, F2, ···} holds. Also by definition

G(G1 ) = G(F1), G(G2) = G(F2). It is clear that Fi = F2 would imply
G 1 = G2 by lemma 13. Hence F1 ~ F2. From lemma 12 we infer

G(F1) n G(F2) = ~, which concludes the proof.

REMARKS. If we formalize the definition of K(a), C(o-), --+ a within

ZF - + V = L then K(a) is a class; more precisely there is for each cr a
formula K03C3(x) with exactly one free variable expressing that x is an ele-
ment of K(u). The class C(03C3) however, being the range of a certain func-
tion (G-1), whose domain is a subset of natural numbers, turns out to
be a set. The elements of K(03C3) are not functions in the proper sense of
the word; but there is a formula V03C3(x, yl , ’ ’ ’, yS, t) without other free
variables, than those indicated, which expresses that x is an element from

K(03C3) and that t is the value of x for the arguments y1, ···, ys . The con-
vergence notion ~03C3 finally is represented by a formula L03C3(x, y) with
precisely x, y as free variables, the first of which runs over denumerable
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sequences of elements from K(03C3) while the second runs over elements
from K(03C3); the formula expresses that the denumerable sequence ’x’

converges against the element y.

5.4. Some properties of K = U K(03C3)
In this section we list some properties of K in the form of statements

denoted by Lü, LI, .... Since most of these properties are easy conse-
quences of the definition of K we omit the proofs in many cases or content
ourselves with a hint.

LO: If G(f1, ···fs) = G’(f1, ···,fs) for all f1, ···,fs then G = G’.

PROOF. Obvious from our construction of K(03C3).
L1: If G ~ C(03C3) with u = (Q1, ’ ’ ’, 03C3s/03C4) then G(f1, ···, fs) ~ C(03C4) for

fi ~ C(03C3i), i = 1, ···, s.
This is an immediate consequence of the definition of C(u).
L2: Let a be an arbitrary mapping from the set N of natural numbers

into K(6). Then there is a unique element Ga E K(0/6) with Gx(n) = a(n),
nEN.

PROOF. Let f be an arbitrary but fixed element from C(6). Put ot(i) = fi
and let fi", n = 1, 2, ’ ’ ’, be a list of elements from C(u) such that
f n ~ fi, n = 1, 2, ... for all i. Define a mapping ocn from N into C(u) as
follows: 1) if i  n then 03B1n(i) = fni, 2) if i ~ n then 03B1n(i) = fnn. One
easily verifies an E C(0/03C3)’. Consider G = {03B11, 03B12, ···}. It follows from
the definition of K(0/03C3)’ that G is an element thereof; moreover it follows
from the definition of G and the an’s that G(m) = a(m) holds for all m.
Then Ga is obviously the element of smallest order equivalent to G.

NOTATION. Without danger of confusion we write a in place of G03B1.

L3: Let YE K be of type ((0/03C3)/0). Then there exists for every a E K(0/03C3)
an n 6 N such that the following holds: if fi E K(0/03C3) and 03B2(i) = x(i ) for
i  n then Y(03B2) = Y(a).

PROOF. Assume the contrary. Then there exists for every n a Pn with
03B2n(i) = 03B1(i) for i  n and Y(03B2n) ~ Y(a). But this implies Pn ~ a accord-
ing to the definition of ~ in K(0/03C3). This in turn implies Y(fin) = Y(a)
for allmost all n’s, contradicting Y(fin) * Y(a), n = 1, 2, ···.

L4: Each functional F ~ K(03C31, ···, us/1:) is continuous with respect to
~03C3i, i = 1, ···, s and ~03C4.

PROOF. Obvious, since this is one of the conditions which has to be
satisfied by elements F from K(03C31, ···, 03C3s/03C4).
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L5 : F(f1, ···, fs), considered as a function of F, f1, ···, fs is continuous
with respect to ~03C3, ~03C3i, i = 1, ..., sand ~03C4.

PROOF. Obvious, since ~03C3 has been defined in that way that the state-
ment is true (where 03C3 = (03C31, ···, 03C3s/03C4)).

L6: Let L(x1, ···, xs, y) be a relation (or rather a formula) and
03C31, ···, Us, 1: types having the following properties : 1) for every s-tupel
fi e K(03C3i), i = 1, ..., s there exists exactly one g e K(03C4) with

L(f1, ···, fs, g), 2) if fiE C(03C3i), i = 1,...,s and L(f1, ···, fs, h) then
h ~ C(03C4), 3) if fni ~ fi, n = 1, 2, ···, i = 1, ···, s and L(fn1, ···, fns, hn)
then hn --+ h, 4) there exists a partialrecursive function ~ such that
~(e1, ···, es) is defined and in G(h) whenever fi e C(o-i), and ei e G(fi),
i = 1, ···, s. Then there exists a G in C(6) with the property :
G(f1, ···, fs) = h iff L(fl, ···, fs, h) (with 03C3 = (03C31, ..., 6S/i))’

PROOF. Define the mapping F from C(03C31) x ’ ’ ’ x C(03C3s) into C(03C4) as
follows: F(f1, ···, fs) = h iff L(f1, ···, fs, h) holds. One easily verifies
that F satisfies 03B1), 03B2), 03B3) in the definition of C(03C3)’; hence F ~ C(03C3)’.
Similarly we infer: F(f1, ···, fs) = h iff L(f1, ···, fs, h) (with F as
before the extension of F to whole K( U 1) x ’ ’ ’ x K(03C3s)). It is evident that
the G in question is the element of smallest order equivalent to

{F,F,···}.

L7 : Let L(x1, ···,xs,y) be a relation having properties 1), 3) of L6
and the following additional property a) : there exists a sequence Gn e C(03C3)
such that Gn(fn1, ···, fns) ~ g whenever fni ~ fi, n = 1, 2, ···, i = 1,
···, s. Then there is a C ~ K(03C3) such that G(f1, ···,fs) = h iff

L(f1, ···, fs, h).

PROOF. Let Fn e C(03C3)’ (03C3 = (03C31, ···, 03C3s/03C4)) be such that Gn ~
{Fn, Fn, ···}. From 2), 4) of L6 and 03B1) of L7 we easily infer that

{F1, F2, ···} is in K(03C3)’. The G we are looking for is the element of
smallest order equivalent to {F1, F2, ···}.

L8 : If F ~ C(03BC1, ···, 03BCt, 03C31, ···,03C3s/03C4), if fi ~ C(03BCi), i = 1, ···, t, then
F(f1’ ...,ft, xl , ’ ’ ’, xs), considered as a function of xl , ’ ’ ’, xs alone
is in C(03C31, ···, 03C3s/03C4).

PROOF. The straightforward proof is via L6, taking for L(x1, ···, Xs, y)
the relation F(f1, ···,fs, x1, ···, xs) = y

L9: If F ~ K(03BC1, ···, 03BCt, 03C31, ..., 03C3s/03C4), fi e K(03BCi), i = 1, ···, t then

F(fl , ’ ’ ’, ft, xl , ’ ’ ’, xs), considered as a function of xl , ’ ’ ’, xs alone,
is in K(03C31, ···, 03C3s/03C4).
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PROOF. Let fni and Fn be elements from C(03BCi) and C(03BC1, ···, /lt,
03C31, ···,03C3s/03C4) respectively such that fni ~ fi, Fn ~ F, n = 1, 2, ···,
i = 1,..., t, holds. Let Gn E C(03C31, ···, 03C3s/03C4) be such that Gn(h1, ···, hs)
= Fn(fn1, ···, fnt, h1, ···, hs) for all hl , ’ ’ ’, hs; that such Gn exist follows
from L8. Let L be the relation: F(f1, ···,ft, x1, ···, xs) = y. One
quickly verifies that L satisfies 1), 3) of L6 and that L and the Gn’s satisfy
03B1) of L7. Then apply L7.

L10: If F ~ C(03BC, 03C31, ···, 03C3s/03C4) then there is a G e C(03C31, ···, 03C3s/(03BC/03C4))
such that G(f1, ···,fs(h) = F(h, f1, ···, fs) for all fi and h.
PROOF. Let L(x1, ···, xs, y) be the relation (z)(y(z) = F(z, x1, ···, xs)).

From L8, L9 we infer that 1), 2) of L6 are satisfied. Assume fni ~ fi,
n = 1, 2 ... i = 1, ···, s; let G and Gn be such that G(u) = F(u,f1, ···,fs)
and Gn(u) = F(u,fn1, ···, fns) hold for all u (in K(03BC)). Then Gn --+ G iff
Gn(hn) ~ G(h) for all hn ~ h. Hence assume hn ~ h. Then F(hn,fn1, ···, fns)
~ F(h,f1, ···, fs) according to the continuity of F. Hence Gn ~ G in
virtue of the arbitrariness of the hn’s and h. Thus 3) of L6 is satisfied. The
verification of 4) is an easy exercise in recursion theory and omitted.
The existence of G is ensured by L6.

NOTATION. We denote the G in L10 by 03BBBF[B, xl , ’ ’ ’, xj.

L11: If F ~ K(03BC, 03C31, ···, 03C3s/03C4) then there is a G ~ K(03C31, ···, 03C3s/(03BC/03C4))
(also denoted by 03BBBF[B, x1, ···, xs]) such that G(f1, ···, fs)(h) =
F(h,f1, ···,fs) for all f1, ···, fs, h.

PROOF. Let L(x1, ···, xs, y) be (z)(y(z) = F(z, x1, ···, xS)). Accord-
ing to L9 clause 1) of L6 is satisfied. Clause 3) of L6 follows in the same
way as in the proof of L10. In order to verify a) of L7 assume
Fn E C(03BC, 03C31, ···, 03C3s/03C4) and Fn --+ F and put Gn = 03BBBFn[B, x1, ···, xs];
we claim that L and Gn satisfy a) of L7. To this end assume fin ~ fi,
n = 1, 2, ···, i = 1, ···, s and L(f1, ···,fs, G), that is, G(u) =
F(u, f1, ···, fs) for all u. We have to prove: Gn ~ G. Hence assume
!ln ~ h. Then Gn(hn) = Fn(hn,.Îi, .. ’,.Îs ) ~ F(h,f1, ···,fs) = G(h), that
is Gn ~ G holds indeed. The statement now follows from L7.
Along these lines we can develop the whole theory of Goedels primitive

recursive functionals. We omit the details of construction which do not

present any difficulties and content ourself by stating the main result.

THEOREM 8. K = U K(03C3) and C = U C(03C3) are closed under substitu-
tion and À-abstraction. The primitive recursive functionals from Goedels
system T all belong to C = U C( 0"). Among these we mention in particular
P, E, 0, 11 l’ 11 2, 03943 and the induction functionals J. K and C are closed
under perriiutation.

This theorem will be used below several times without explicit mention.
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5.5. The barrecursive functionals are in C = U C(6)
a) In order to show that the barrecursive functionals belong to C we

retain the notions, notations and definitions used in chapters I, II and IV
as they stand. The barrecursive equations in particular (I and II) and the
definition of solution remains the same as before and parameters are
handled in the same way; similarly with the equations I*, 11* and solu-
tions up to a(x), etc. The proofs of the lemmas and theorems are often
mere repetitions of other proofs given earlier. Therefore we will only
work out those parts which require new arguments and treat the other
parts summarily.

b) Next a remark concerning bar induction. According to L2, all

mappings from N into K(6) belong to K(0/J); according to L3 all

functionals of type ((0/03C3)/0) are continuous. It follows from this that

barinduction with respect to functionals of type ((0/03C3)/0) is available in
ZF - + V = L. This will be of basic importance below.

c) For later use we note a few additional lemmas.

L12: If Fn, n = 1, 2, ··· and F are of type (03BC, 03C31, ···, 03C3s/03C4) and if
Fn ~ F then 03BBBFn[B, x1, ···, xs] ~ 03BBBF[B, x1, ···, xsl.

L13: With Fn, F as in L12, if fni ~ fi, n = 1, 2, ···, i = 1, ..., s then

03BBBFn [B, fin, ···, fns] ~ ÀB F [B, f1, ···, fs].

L14: If F ~ K is of type (03A3, (0/03C3)/03C4) then F(Z, 03B1(x) * s) depends
continuously on all arguments.

L15: Let Fn, n = 1, 2, ··· be a family of elements from K(03C31, ···, 03C3s/03C4).
Then there is a G E K(0, 03C31, ···, 03C3s/03C4) such that G(n, x1, ···, xs) =
Fn(x 1, ···, xs).
The proof of L15 is very similar to that of L2; we omit it.

L16: The system I, II of equations without parameters and with
G, H, Y held constant admit at most one solution.
The proof is by a straightforward transfinite induction.

L17: Let Gn, Hn, Yn and G, H, Y, n = 1, 2, ... be functionals of suit-
able types without parameters Z, having the following properties: 1) for
every n there is a solution ~n of I, II with respect to Gn, Hn, Yn, 2) there
is a solution ç of I, II with respect to G, H, Y, 3) Gn --+ G, Hn ~ H,
Yn --+ Y. Then ~n ~ ~.
PROOF. Exactly the same as that of lemma 9.

L18: Let Gn, Hn, Yn and G, H, Y, n = 1, 2, ··· be functionals of suit-
able types, all containing parameters Z. Assume that the following holds :

1) for every Z, n there exists a solution çQ of I, II with respect to
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Gn , Hn , Yn , Z, 2) for every Z there exists a solution cpz of I, II with

respect to G, H, Y, Z, 3) Gn, Hn , Yn converge against G, H, Y respectively.
If Zn ~ Z then ~nzn ~ cpz.

PROOF. Follows from L17 as L10 from L9.

d) The major tool which we need in addition to the considerations of
chapters II and IV is provided by a theorem, which is formulated below.
In this theorem d and k are Goedelnumbers of the constructive elements

03941 and A 2 respectively which both belong to C; Z is a list of parameters
belonging to C and z is a list of Goedelnumbers associated with them.
The functionals G, H, Y are assumed to belong to C and to have g, h, j
as Goedelnumbers; the list g, h, j is abbreviated by t.

THEOREM 9. There exists a Goedelnumber e of a partialrecursive function
which has the following property. Let Z be a list ofparameters, all belonging
to C and G, H, Y functionals of appropriate types belonging to C. Let z be
a list of Goedelnumbers of the parameters Z and g, h, j Goedelnumbers of
G, H, Y respectively. Assume that there exists a solution 9(x, a) of the
barrecursive equations I, II with respect to G, H, Y and Z. Then cp belongs
to C and (e) (z, t, {d}(a, n)), n) is a Goedelnumber of cp(x, a) if a E C(O/u)
and a a Goedelnumber of a (with t denoting g, h,j).

PROOF. The partialrecursive function is the same as that one constructed
with the aid of the fixed point theorem in part D of the proof of theorem 6,
clause 6). The verification that e thus constructed has the properties
required by our theorem, is by transfinite induction with respect to Yo, k
where Yo is given as follows: Y0(03BE) = Y(Z, 03BE) for all 03BE. The details of
this transfinite induction are exactly the same as those presented in the
proof of theorem 6), clause 6); hence we omit it.
As consequence of this theorem we obtain

THEOREM 10. Let G, H, Y be functionals from C, containing the list Z
of parameters. Assume the following : for every value of Z there exists a
solution cpz of the barrecursive equations l, II with respect to G, H, Y, Z.
Then there exists a solution cp E C with parameters Z of I, II with respect
to G, H, Y with the property: cp(Z, x, 03B1) = cpz(x, a).

PROOF. Let L(Z, oc, x, y) be the relation ’there is a solution cpz of 1, II
with respect to G, H, Y, Z and cpz(x, a) = y’. We show that L satisfies
1 )-4) of L6. 1) is satisfied in virtue of L16 and the assumptions of the
theorem. Clause 2) on the other hand is a consequence of theorem 9.
The existence of the partialrecursive function required by clause 4) is
easily inferred from the partialrecursive function provided by theorem 9.
Clause 3) finally is a particular case of L17. The existence of cp is thus
guaranteed by L6.
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The last among the preliminary theorems needed is

THEOREM 11. Let Gn , Hn , Yn and G, H, Y have the following properties:
1 ) they contain no parameters, 2) Gn ~ G, Hn ~ H, Yn ~ Y, 3 ) for every
n there exists a solution qJn of equations I, II with respect to Gn, Hn, Yn,
4) Gn, Hn, Yn belong to C. Then there exists a solution qJ up to â(x) of I, II
with respect to G, H, Y for every a(x).

PROOF. The proof is by transfinite induction with respect to Y, k.
Case 1: 03B1(x) is secured. Put ~(y, 03B2) = G(x + y, a(x) * f1(y». The state-
ment is then easily verified. Case 2 : The statement holds for all 03B1(x)* a.
By the barinductive assumption there exists a solution qJa(Y, fi) for every
a of:

Let L(a, y, fi, z) be the predicate ’there exists a solution qJa of I*, II* and
z = qJa(Y, f1(y»)’. We apply L7 to L, with a, y, f3 in place of x1, ···, x,
and z in place of y. From L16 and L18 we infer that 1), 3) of L6 are
satisfied. In order to verify a) of L7 let â"(x) be a sequence of constructive
elements converging against 03B1(x). For x, an fixed denote qJn(x+ y+ 1,
03B1n(x) * a 03B2(y)) by 0. : n(a, y, fl) = ~n(x+y+1, 03B1n(x) * 03B1 * 03B2(y)).
Since Gn, Hn, Yn are constructive by assumption 4) one immediately
infers from theorem 9 that qJn and hence n is constructive. We show
that the sequence (on and L satisfy a) of L7. Define Gn , H’n, Y’ as follows:
1) Y’n(03B1,03B2) = Yn(03B1n(x) * a * 03B2), 2) G’n(a, y, 03B2) = Gn(x+y+1, 03B1n(x) * a *
f1(y», 3) Hn(a, y, fi, 03BE) = Hn(x+y+1, 03B1n(x) * a * f1(y), 03BE). Define

G’, H’, Y’ similarly but with G, H, Y in place of Gn, Hn, Yn respectively
on the righthandside of 1 )-3). It follows from assumption 2) that
G’n ~ G’, Hn’ ~ H’ and Y’n ~ Y’ holds. Obviously (On is a solution of

I, II with respect to Gn , Hn , Yri with a as parameter. qJa on the other

hand is a solution of I, II with respect to G’, H’, Y’ and a. It follows
from L18 that the following holds: if an ~ a, fin - fl then (On(an, y, fin) ~
~a(y, 03B2). Hence On, n = 1, 2, ···· and L satisfy indeed a) of L7. Hence
we infer from L7 that there is a cp E K such that 0(a, y, 03B2) = z iff

L(a, y, 03B2, z). Now define qJ as follows : a) qJ(y+ 1, a * 03B2) = cp(a, y, 03B2),
bl) ç(0, j8) = G(x, a(x» iff Y(â(x))  x+k, b2) ç(0, 03B2) = H(x, 03B1(x),
Âs(o(s, 0, 0)) otherwise. The verification that ç thus defined is indeed
a solution up to 03B1(x) of I, II with respect to G, H, Y is now precisely
the same as in the proof of theorem 2.
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For x = 0 we obtain the

COROLLARY 1. Let Gn, Hn, Yn and G, H, Y not contain parameters.
Assunie: 1) Gn ~ G, Hn ~ H, Yn ~ Y, 2) Gn, Hn, Yn are all in C, 3) for
every n there exists a solution qJn of I, II with respect to Gn, Hn, Yn . Then
there exists a solution of I, II with respect to G, H, Y.

COROLLARY 2. Let G, H, Y be elements from C containing parameters Z.
Assume that .for all constructive values of Z there exists a solution ~z of
I, II with respect to G, H, Y. Then there exists a solution qJ with parameters
Z of I, II with respect to G, H, Y; this solution belongs to C.

PROOF. Let Z be arbitrary and let Zn , n = 1, 2, ... be a sequence of
values of the parameters, all belonging to C; assume Zn ~ Z. By assump-
tion there exists a solution ~n of I, II with respect to G, H, Y, Zn. Define
Gn, H", Yn without parameters as follows: 1) Gn(x, 03B1) = G(Zn, x, 03B1),
2) Hn(x, 03B1, 03BE) = H(Zn, x, 03B1, 03BE), 3) Yn(a) = Y(Zn, oc). Define G’, H’, Y’
without parameters as follows: 1 ) G’(x, os) = G(Z, x, a), 2) H’(x, Y, 03BE) =
H(Z, x, a, ç), 3) Y’(x, 03B1) = Y(Z, x, o). In virtue of the continuity of
G, H, Y we have Gn ~ G’, Hn --+ H’, Yn ~ Y’. The elements Gn, Hn, Yn
are clearly all in C since the Zn’s are in C. Obviously ~n is a solution of
I, II with respect to Gn , Hn, Yn. But now we are precisely in the situation
of the last corollary, that is we can infer that a solution ç’ of I, II with
respect to G’, H’, Y’ exists. Hence a solution q’ of I, II with respect to
G, H, Y and Z exists. Since Z was arbitrary we infer that for every Z a
solution çz of I, II with respect to G, H, Y, Z exists. But G, H, Y are
constructive and so the theorem follows from theorem 10.

The main result from which everything else follows is

THEOREM 12. Let G, H, Y be constructive without parameters. If 5(x) is
constructive then there exists a solution qJ up to 5(x) of I, II with respect
to G, H, Y.

PROOF. We proceed by transfinite induction with respect to Y, k.
Case 1 : a( x) is secured. Then we proceed as under case 1 in the proof of
theorem 2. Case 2: for every constructive a the statement of the theorem

holds, that is there exists a solution qJa of:

Define
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cX(x) * a * fl(y), 03BE). The elements G’, H’, Y’ are obviously constructive
(since 03B1(x) is constructive by assumption) and for constructive a qJ a is a
solution of I, II with respect to G’, H’, Y’ and a. But this are precisely
the assumptions stated in corollary 2) of theorem 11. Hence, according
to this corollary there exists a single solution 0 E C with a as parameter
of I, II with respect to G’, H’, Y’. In other words, cp (a, y, 03B2), considered
as function of y, 03B2 only, is a solution up to a(x) * a of I, II with respect
to G, H, Y and this for every a, not only for constructive ones. Now
define 9 as follows: a) ~(y+1, a * 03B2) = (a,y,03B2), b1) ~(0, fi) =
G(x, 03B1(x)) if Y(03B1(x))  x+k, b2) w(o’ 03B2) = H(x, &#x26;(X), 03BBs(s, 0, 0))
otherwise. The verification that ç thus defined is indeed a solution up
to 03B1(x) of I, II with respect to G, H, Y is again the same as in the proof of
theorem 2.

COROLLARY 1. If G, H, Y are constructive without parameters then there
exists a solution qJ of I, II with respect to G, H, Y which belongs to C.

PROOF. Put x = 0 in the last theorem and apply the theorem.

THEOREM 13. If G, H, Y are arbitrary without parameters then there
exists a solution qJ of I, II with respect to G, H, Y.

PROOF. Let Gn, Hn, Yn be a sequence of elements from C which con-
verge against G, H, Y respectively and then combine corollary 1 of

theorem 11 with corollary 1 of theorem 12.

Now we come to the final result.

THEOREM 14. The barrecursive functionals belong to C.

PROOF. Let L(Z, G, H, Y, y) be the relation expressing: ‘y is the solu-
tion of I, II with respect to G, H, Y, Z’. According to L16 and the last
theorem 1) of L6 holds. Clause 2) of L6 is satisfied in virtue of theorem 9.
The partial recursive function required by 4) of L6 is provided by the
partial recursive function mentioned in theorem 9. Clause 3) of L6
finally follows from L18. Hence there is a ~ ~ C such that

~(Z, G, H, Y, x, oc), considered as a function of x, a only, is a

solution of I, II with respect to G, H, Y, Z. That is the barrecursive
functionals exist and belong to C.

5.6. Remarks

The theory of functionals ~03C3 K(u) can be developed in ZF- + V = L
in the sense mentioned in 5.2. A meticulous formalization would require
lengthy work but we hope that it is clear from our intuitively presented
theory that such a formalization is possible in principle. In order to
formulate a particular consequence of this, let 03A3N4 be Spectors system
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restricted to formulas containing only variables and constants of types
o- with h( (J’) ~ N. With the aid of a suitable truth definition it is not dif-
ficult to prove with the aid of the model K

THEOREM 15. In ZF- + V = L we can prove the consistency of 1 N

5.6. Some strange extensions of classical analysis
The particular formalization of classical analysis which we have in

mind is the system Z03C3+DC03C3, considered in appendix 1 of [1]. The
language of this system contains variables for functionals of all types.
Z03C3 is just classical number theory, formulated within that language.
DC03C3 is the axiom of dependent choices, which looks as follows:

(X, Y, Z variables of type 03C3).

THEOREM 16. K and S are models of Z03C3+DC03C3.

PROOF. Assume eg. that A(X, Y) has only X, Y free and that

(X)(EY)A(X, Y) is true in K. Let F be in K(03C3). Define Fn as follows:
1) Fo = F, 2) Fn+1 is an element such that A(Fn, Fn+1) is true; the

existence of such an Fn+ 1 follows from the truth of (X)(EY)A(X, Y).
Consider the mapping Ê(x) from N into K(03C3) given by: Ê(n) = Fn .
Then clearly Ê(O) = F and A(P(n), (n+ 1)) is true for all n. According
to L2 Ê belongs to K(0/03C3). Hence the righthandside of DC03C3 is indeed
satisfied. Similarly with S in place of K.
Next let Y be a variable of type ((0/03C3)/0). Let Eqa(U, V) be a for-

mula with exactly two free variables U, V, both of type 6, defined as
follows: 1) Eqo(U, V) is U = V, 2) if a = (0-1, " ’, 03C3s/03C4) then Eq,,(U, V)
is (X1, ···, Xs)Eq03C4(U(X1, ···, Xs), V(X1, X,». Briefly, Eqa(U, V)
expresses that U, V are equal. Finally let Ct03C3(Y) be the formula

(03BE)(Ex)(~)(Eq03BC(03BE(x), ~(x)) ~ Y(ç) = Y(~)), (with J1 = (0/03C3)); hence

Ct6(Y) expresses the continuity of Y. Since both in S and K functionals
of type ((0/03C3)/0) are continuous it follows that (Y)CT03C3(Y) is true in

both models. Hence we have

THEOREM 17. Z, + DCa + (Y)Cta(Y) is consistent.
With the aid of K one can reduce the consistency of Z03C3 + DC03C3 +

(Y)Cta(Y) to the consistency of ZF- + V = L; there are of course

simpler ways to obtain such a reduction. We can go even further and add
to Z03C3+DC03C3 a denumerable list of axioms which in their essence state
that every functional is an element of K ; the result is a rather strange
extension of classical analysis (Z03C3 + DC03C3 + K) in which we can develop
the whole theory presented in this chapter. The consistency of Za + DC, +
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K can again be reduced to that of ZF - + V = L. We content ourselves
with these indications since the interest of Z03C3 + DC03C3 + K lies only in its
curiosity.
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