
COMPOSITIO MATHEMATICA

CHARLES PUGH

MICHAEL SHUB
Ergodic elements of ergodic actions
Compositio Mathematica, tome 23, no 1 (1971), p. 115-122
<http://www.numdam.org/item?id=CM_1971__23_1_115_0>

© Foundation Compositio Mathematica, 1971, tous droits réservés.

L’accès aux archives de la revue « Compositio Mathematica » (http:
//http://www.compositio.nl/) implique l’accord avec les conditions géné-
rales d’utilisation (http://www.numdam.org/conditions). Toute utilisation
commerciale ou impression systématique est constitutive d’une infrac-
tion pénale. Toute copie ou impression de ce fichier doit contenir la
présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=CM_1971__23_1_115_0
http://http://www.compositio.nl/
http://http://www.compositio.nl/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


115
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1. Introduction

A question naturally arising in dynamical systems is: does a flow {~t}
have the same nonwandering set as most of the time t maps, ç) This and
similar questions for recurrency (Poisson stability) we are unable to
answer. For ergodicity, however, representation theory of S1 and Stone’s
theorem lead to an affirmative answer:

If {~t} is an ergodic flow then each map qJt, except for a countable set
of t-values, is ergodic (See § 2 for definitions).
The proof of this was supplied to us by J. Auslander and Parthasarathy.
In this paper we ask the corresponding question for group actions and

answer it completely in the case of Rk-actions. (For other group actions
we have partial results and some counter-examples). The analysis is not
diScult.

We employ the representation theory of separable locally compact
abelian groups, and it seems strange that such simple facts were apparent-
ly unknown to the ergodic theorists. Our analysis of Rk-actions, k ~ 1,
uses the characterization of cyclic representations not Stone’s theorem,
as can be found in [2]. We are indebted to R. Palais and H. Levine for
conversations leading to the proof of the theorem and to W. Parry for
our interest in ergodic theory.

2. Definitions and the main result

Let G be a group and (M, Il) a measure space. An action of G on
(M, Il) is a homomorphism p : G - Auto (M, 03BC). The elements of Auto
(M, Il) are the measurable bijections of M onto itself with measurable
inverses. If G has a topology, the homomorphism p is required to be
continuous in the sense that

* Supported by the sloan Foundation and NSF GP8007.
** Nato Postdoctoral fellow.



116

be continuous. We shall denote the operator on L2(M, 03BC), f ~ f  pg,
as p* g.
The action p : G ~ Auto (M, Il) is said to be ergodic iff
1. p(g) is measure-preserving for each g E G.
2. If f ~ L2(M, p) is invariant (i.e. 03C1*(g)f = f for each g E G) then f is

constant.

As is standard, ’equal’ means ’equal almost everywhere’ and ’constant’
means ’equal to a constant-function almost everywhere’. In terms of
p* : le means that p* : G ~ Un(L2(M, 03BC)), the unitary operators on
L2(M, y).
An element g of G is said to be ergodic if pg is measure preserving

and 03C1*g has cnly constant invariant functions.
We are interested in knowing when an ergodic action has ergodic

elements without much restriction on (M, Jl) or p. We have proved the
following

THEOREM 1. If Rk acts ergodically on (M, 03BC), M(M)  oo, and L2 (M, y)
is separable, then all the elements of Rk, off a countable of family hyper-
planes, are ergodic.
When we speak of planes, lines, etc., we do not assume that they

contain the origin. A more general group is discussed in § 6.
Rk acts on itself naturally by translation 03C1(g) : y H y + g. Factoring by

zk gives the natural action of Rk on Tk, the k-torus. Theorem 1 generalizes
the fact that under this natural action every element of Rk, off a countable
family of hyperplanes, acts ergodically on T . In this case we can identify
the hyperplanes as those points y E Rk whose components y 1, ..., yk are
rationally dependent. Unfortunately we can’t give such a neat determina-
tion of the non-ergodic elements for a general action of Rk.
As some of our work is valid for groups G more general than Rk, we

shall only assume

abelian Hausdorff

G is

locally compact separable

03BC(M)  ~ L2 (M, li) separable

p : G - Auto (M, p) is ergodic.

We recall that a unitary representation of G is a homomorphism r
sending G into the group of unitary operators on some separable Hilbert
space H. Continuity of (g, h) H (rg)(h) is required. Then p* : G -
Un(L2(M, Jl» is a unitary representation of G.
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3. Cyclic representations

The representation r : G - Un(H) is cyclic if there is a nonzero vector
v E H such that the only closed subspace of H containing the orbit of v,
{(rg)(v) : g E G} is H itself. To any cyclic representation r : G - Un(H)
there corresponds a unique normalized Borel measure p on the character
group, 6 = Hom(G, S1), such that r is unitarily equivalent to the
’direct integral’ representation m : G - Un(L2(G, 03B2)) defined by

See [2]. Thus for a fixed g E G, we have the unitary operator L2(, 03B2) ~
L2(G, 03B2) defined by m(g) f H ·, g&#x3E;f(·).
Now let us return to the ergodic action p : G - Auto(M, Il) and the

induced unitary representation p* : G ~ Un(M, 03BC). The space L2(M, 03BC)
may be written as the countable direct sum (of orthogonal closed sub-
spaces)

where C is the one dimensional space of constant functions and 03C1* G is

a cyclic representation on Hi. That is each p* g leaves Hi invariant and
(restriction to Hi) o p* : G - Hi is cyclic. For in C~ we choose any
vector V ~ 0 and look at Hi, the smallest closed subspace of L2(M, Il)
containing its orbit. As p* is a unitary representation, it leaves Cl
invariant and so Hi 1 C. Since L2(M, Il) is separable (by assumption)
Zorn’s lemma lets us proceed inductively to define such an invariant
splitting C E9 Hl E9 H2 ~ ··· = L2(M, y).

Let us write p*i for (restriction to Hi) o p* : G - Hi.
For each i the representation 03C1*i is unitarily equivalent to the direct

integral representation mi on L2(G, Pi) for some unique normalized
Borel measure Plon G ; m i : G ~ Un(L2 (G, 03B2i)) defined by

LEMMA 1. If e is the identity element of G then 8 has zero f3i-measure
for each i.

PROOF. If Pi(8) &#x3E; 0 then let E be the characteristic function of 8. In

L2(, 03B2i), E ~ 0 because 03B2i(03B5) ~ 0. But (m i g)E = ·, g&#x3E; E(.) and

evaluated on any v E G this is

Thus (mig)E = E for all g E G and so E would be a nonzero invariant
vector for all the operators mig. But the inverse of the conjugacy
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hi : Hi --+ L2(, 03B2i) carries E on to h-1i(E), a nonzero invariant vector
of p* i . Since h-1i(E) lies in Hi and Hi-1. C, h-1i(E) is nonconstant.

Thus p* has a nonconstant invariant function in L2(M, y), contradicting
the fact that p is ergodic. Hence 03B2i(03B5) = 0, proving the lemma.
For any g E G let

and for any x E G let

4. A criterion for non ergodicity

The next lemma distinguishes those elements g E G which are not
ergodic.

LEMMA 2. If go E G is not an ergodic element for the action p then
03B2i(ker g0) &#x3E; 0 for some i.

PROOF. That go is not ergodic means p* go : L2(M, 03BC) ~ L2(M, 03BC)
has a nonconstant invariant function, say w. The invariant cyclic de-
composition L2(M, 11) = C (Di i Hi gives w = c+ Zi wi and wi ~ 0 for
some i. Then w, is a nonzero invariant vector of p* go lying in Hi. That
is, wi is a nonzero invariant vector of 03C1*ig0, the restriction of p* go to

Hi. But p* is cyclic and so is conjugate to the representation mi : G ~
Un(L’(0, 03B2i)) defined by

The conjugacy hi makes

commute. The conjugate of wi, hi W = f, is a nonzero invariant vector
of mig0. But since we know the formula defining mig0, this says that

in L2(G, 03B2i). Since f ~ 0 in L2(, 03B2i), the factor 1- y, g0&#x3E; vanishes on
a set of positive 03B2i-measure. That is {~ E 0 : ~, g0&#x3E; = 1} = ker go has
positive 03B2i-mesaure.
As an immediate corollary we have
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PROPOSITION. The ergodic action p has

(a) some ergodic elements, if G is not the union of its proper closed
subgroups

(b) a Baire set of ergodic elements if G is compact and every proper
closed subgroup is nowhere dense

(c) a contralinear Baire set of ergodic elements if G = Tk.

PROOF. If g E G is non ergodic then 03B2i(ker g) &#x3E; 0 for some i and ker g
contains a nonzero element x, by Lemma 1, so g E ker (X). This ker X
is a proper closed subgroup of G.

(a) From this, (a) is clear.

(b) If G is compact, 6 is countable [3] and so each nonergodic g E G
is contained in some ker (x) where x ranges over a countable set. The
countable union of these nowhere dense subsets, ker (x), includes all
non ergodic elements and its complement is the asserted Baire set.

(c) If G is Tk then each ker (x) is a hyperplane for x E  = Zk.

By contralinear we mean the complement of the family of rationally
dependent sub-tori.

REMARK. For (b), (c) we did not have to use the characterization of a
cyclic representation, since in the compact case we may decompose p*
into a direct sum of irreducible, 1-dimensional representations.

5. G = Rk and the proof of Theorem 1

Now we shall let G = Rk. Since Rk - Rk, we shall be working with
normalized Borel measures P on Rk. For any such P let

f!JJ 0 = the set of points P E Rk with 03B2(P) &#x3E; 0.

Pn = the set of n-planes P c Rk with 03B2(P) &#x3E; 0 but containing no
element of Pm, m  n.

This makes ’9k+ 1 = 0. Let P = P0 ~ ... u Pk.

LEMMA 3. É9 is at most countable.

PROOF. If P, P’ E f!JJn are not identical then 03B2(P n P’) = 0 since

P n P’ is a lower dimensional plane in each. Thus, if P1, ···, Pm E f!JJ n
are distinct then

Since 03B2(Rk) = 1 there can therefore be no more than m planes P e Y.
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having measure 1/m. Letting m - oo we exhaust all of PJJn by finite
sets; hence Y is at most countable.
As remarked before, Rk is it own character group where x, y) =

e21ty(x,y) and (x, y) is the usual dot product in Rk; (We think always of
x ~  = Rk, y ~ G = Rk). Then

ker (x) = {y ~ Rk : x,y&#x3E; = 1} = {y ~ Rk : (x, y) ~ Z} .
LEMMA 4. I,f’ 03B2(0) = 0 and B = {y E Rk : 03B2(ker y) &#x3E; 01 then B is

contained in countably many hyperplanes.

PROOF. Since 03B2(ker y) &#x3E; 0, ker y must contain an element P of Y and
since 03B2(0) = 0 such a P ~ 0 may be chosen. All the elements x ~ P have
y in their kernels; that is x ~ ker y « y E ker x. Hence for each y E B
there exists P E PJJ such that y E nxEP-0 ker x. Since P ranges over the
countable set PJJ, independant of y E B, the lemma is proved.

PROOF oF THEOREM 1. For each normalized Borel measure 03B2i on Rk as
above, the set Bi given in lemma 4 is contained in countably many hyper-
planes. For 03B2i(0) = 0 is satisfied by Lemma 1. By Lemma 2, if y ~ Rk is
not ergodic then y E Bi for some i and the theorem is proved.

Now we give examples of some groups which can act ergodically
without having any ergodic elements.

EXAMPLE 1. Give the rationals Q the discrete topology and let p : Q -
Auto(S1, d03B8) be defined by rotation

The action is ergodic because if f were a nonconstant invariant function
for all the operators p*(p/q) it would be an L2 function which was period-
ic of every rational period. Such an f cannot exist by taking its Fourier
expansion. However, each 03C1*(p/q) has invariant functions e2"it H e2niqmt
m being any positive integer.

EXAMPLE 2. Let m ~ 2 and n ~ 1 be integers and let k = mn. Let
G = Z. @ Zk and M = Z. 0 Zm . Define p : G ~ Auto(M, 11) by

where + is taken in Z. and t’ is first reduced mod m. The measure y
on Zm (D Z. equals 11m2 on each point. The action p is ergodic because
in fact it is transitive. However, for any g = (t, t’) E G there is an in-
variant function for p*g which is the characteristic function f, of
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T = {(t, t’), (2t, 2t’), ···, (mt, mt’)} ~ M. The set T is invariant by pg,
so its characteristic function is invariant by p* g. Since T has m elements
and M has m2 elements, , f is non constnat in L2(M, 03BC).

In example 2, Zm Ee Zk may be replaced by any group G surjecting
continuously onto Zm 0 Zk:

So if G is of the form Rk x Tn x F when Fis a finitely generated abelian
group then we have answered the question of ’ergodicity ~ ergodic
elements’ negatively if F is not cyclic. The case when F is cyclic easily
reduces to the study of G = Rk x Z, for which we prove a generalization
of theorem 1.

THEOREM 2. If G = Rk x Z acts ergodically on (M, Il) then all elements
g E Rk  {1}, off a countable union of hyperplanes in Rk  {1}, are ergodic.

Since any Abelian Lie group generated by a compact neighborhood of
the identity can be expressed Rk x Tn x F where F is a finitely generated
discrete group, Theorems 1, 2 and Example 2 answer the question: when
does ergodicity of the G action imply the existence of ergodic elements
for such a group G? The product decomposition follows from [3 ] and [4].

PROOF oF THEOREM 2. Instead of the planes P E Pn consider translates
of closed connected subgroups of 6 = Rk x S1 having dimension n,

positive 03B2 measure, and containing no elements of P0 ~···~ Pn-1.
By the same argument Y = P0 ~···~ ÇJJk+ 1 is countable. (It is only
necessary to observe that the intersection P n P’ has dimension  n if

P, P’ E Yn are distinct.) If g E Rk  {1} is not ergodic then 03B2i(ker g) &#x3E; 0

for one of the measures 03B2i arising in § 3. Since 03B2i(03B5) = 0, there exist
P E Pi, P ~ e, P c ker g, and x E P, ~ ~ 8, can be chosen. We have
x = (x, e203C0i03BE) with x ~ Rk and 0 ~ 03BE  1. Then 9 E ker (x) and

Now if x ~ 0 then it is clear that Rk  {1} n ker x is a countable family
of hyperplanes. But if x = 0 then ker (x) n Rk x {1} = 0 since ç =1= 0 and
0 ~ 03BE  1. [Note that if we had dealt, with say Rk x {2} we would have
considered {(2y, 2) : (x, y)+203BE E Z}. If x ~ 0 then this is a countable
family of hyperplanes. But if x = 0 it is possible for 03BE to equal 1/2 and
the set to be all of Rk x {2}. ] See also example 3 below.

Since each non ergodic g E Rk {1} belongs to a countable family of
hyperplanes ~~~P-03B5 ker (x) n Rk {1} and these P are chosen always
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from the sequence of countable families P1, P2, ···, the totality of
hyperplanes necessary to contain {g ~ Rk  {1} : g is not ergodic} is at
most coutable.

EXAMPLE 3. This example was shown to us by K. Sigmund. Ergodicity
of an action p : Z - Auto(M, p) is equivalent to ergodicity of p( ± 1 ).
Here we observe that p(n) may fail to be ergodic for all n other than :t 1.
This shows that our concentration on the nonergodic element lying in
Rk  {1} was necessary.

Let M = Z2 Z3 ··· = 03A0p~ Zp,  = the primes. Let y, be the nor-
malized measure on Zp, /lp(S) = cardinality (S)/p and let 03BC = 03A0p~B mp .
This makes (M, p) a normalized measure space and L2 (M, p) separable.
The action p : Z - Auto(M, 03BC) defined by p(n) : (zp) r+ (zp+pn) is

ergodic but p(n) is not ergodic unless n = ±1. Ergodicity of p follows
from some standard ergodic theory [1 ]. Non ergodicity of 03C1(n), n ~ ± 1,
is clear since p(n) leaves invariant each of the q sets of measure 1/q,
S0 = {(Zp) ~ 03A0Zp : zq = 0}, ···, Sq-1 = {(zp) e Hzp : zq = q-1} where
q is a prime dividing n.
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