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THE TOPOLOGICAL SPHERICAL SPACE FORM PROBLEM I

by
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Wolters-Noordhoff Publishing
Printed in the Netherlands

This paper is intended as a first step towards the classification of closed

piecewise linear of topological manifolds covered by S2n-1. Alternatively
we concern ourselves with free topological actions by a finite group on
S2n -1, Such a group necessarily has periodic cohomology, and the present
state of knowledge can be summarised as follows:

(1) The finite group 03C0 has periodic cohomology if and only if every
subgroup of order p2 (any prime p) is cyclic.

(2) 03C0 acts freely and orthogonally on a sphere if and only if every
subgroup of order pq ( p, q primes not necessarily distinct) is cyclic.

(3) If n acts freely on a sphere, then Milnor [6] has proved that every
subgroup of order 2p (p any prime) is cyclic.

The pq-condition is the only known sufficient condition for free topologic-
al actions. Moreover starting from any orthogonal action one can use the
s-cobordism theorem to construct infinitely many free actions which are
topologically distinct. Since there are only finitely many distinct orthog-
onal actions, the topological classification of the quotient spaces is a
much deeper problem than the geometric. At present complete answers
are known only for Z2 and the cyclic groups of odd order, [16], [17] and
[18]. Nothing new on existence has been produced in the last twelve
years. But see T. Petrie, Bull. Amer. Math. Soc. 76 (1970), 1103-1106.
Our investigation starts from the work of R. G. Swan [11 ] on periodic

resolutions for groups with periodic cohomology, together with the
observation that the quotient complex Y of a topological realisation
satisfies Poincaré duality. Indeed a minor strengthening of Swan’s

argument shows that Y is a simple Poincaré complex in the sense of [17 ].
This is contained in § 1 and § 2. Our main theorem (§ 3) shows that the
structure group of the normal fibration of Y can be reduced from G to

PL, and hence that we may try and replace Y by a closed manifold using
the techniques of surgery. Although we concentrate on the piecewise
linear case, since this is more familiar, our arguments are actually easier
in the topological category. This is important from the point of view of
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classification, since L. Siebenmann has recently shown that surgery of
topological manifolds is possible [7].

In a further paper we propose to classify the odd and ’mod 2’ parts of
the normal invariants, and to resolve some cf the surgical problems which
arise. In particular we hope to recover Milnor’s theorem about the non-
existence of free dihedral actions on S2n-1.
A certain amount of notation will be used without further comment.

*(03C0, A) denotes the Tate cohomology of a finite group n, obtained by
splicing a ’positive’ to a ’negative’ resolution by means of the norm [2].
In particular Hp(n, A) = -p-1(03C0, A), p ~ 1.

C*(Y) &#x26; C*(Y) denote (co)chains with coefficients in the group ring
of 03C01(Y), subject to the conventions introduced in [14] &#x26; [15].

G/PL is the classifying space for piecewise linear bundles fibre homo-
topically equivalent to a reducible fibration; G/Top is defined similarly,
see [9], [4]. The homotopy groups may be read off from the table:

Z(2) = Z[1 3, 1 5, ···, 1/p, ···], the integers localised at the prime 2, and
03A6 denotes Euler’s function.

Finally our debt to the book of Wolf, [19] will be clear to any reader.
Wherever possible our group theoretic notation conforms to his.

1. Groups with periodic cohomology

1.1. DEFINITION. Let n be a finite group. For any prime p the cohomo-
logical p-period of 03C0 is the smallest integer q such that k(03C0, A) and
k+q(03C0, A) have isomorphic p-primary components for all values of k
and all coefficient modules A. The cohomological period of n is the lowest
common multiple of the p-periods.
The following proposition is well known, see for example [2, XII 11.6].

1.2. PROPOSITION. 03C0 has finite p-period if and only if a Sylow subgroup
03C0p is cyclic or of generalised quaternion type.
A complete classification exists for groups satisfying this Sylow condi-

tion for all p, which for future reference we reproduce below. The table
is a modified version of one appearing in [19, p. 179]. In the two types of
non-soluble groups (V and VI) SL(2, p) denotes the group of 2 x 2
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matrices of determinant 1 with entries in Fp, the field of p elements,
p ~ 5. If eo generates Fp, define an automorphism 0 of SL(2, p) by

The next two technical results will be used frequently in the proof of
the main theorem.
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1.4. PROPOSITION. Let n be a finite group with periodic cohomology. The
2- and 3-periods of n both divide 4.

PROOF. The assertion about the 2-period is contained in [12, Theorem
1]. Theorem 2 of the same paper characterises the 3-period as

where N and C stand for normaliser and centraliser respectively. Since
C03C0(03C03) contains 03C03, N/C has order prime to 3. However N/C is also
contained in the automorphism group of 03C03, which has order 2.303BD-1.
Hence [N03C0(03C03) : C03C0(03C03)] ~ 2, and the 3-period divides 4.

In the cases when 03C0 operates freely and orthogonally on S2n-1, it

will be essential to compare the cohomological period with the degree
over R of an irreducible fixed point free representation. With the notation
of table 1.3 let d be the order of r in the multiplicative group of residues
modulo m1, of integers prime to ml. Both the cohomological period and
the representation degree are functions of d, but the latter may exceed
the former by a factor of 2. This is the case, for example, with most
groups of type IV [19, p. 208].
Groups of type III and IV are best studied through their generalised

binary polyhedral subgroups, Tv and 0:. TÛ is obtained by putting
ml = 0, m2 3v, and 0: by putting Il = 0, 12 = -1 in addition.
When v = 1 we obtain the usual binary tetrahedral and octahedral
groups respectively.

1.5. PROPOSITION. (i) Tv has both cohomological period and minimum
representation degree equal to 4

(ii) 0: has cohomological period 4, and minimal representation degree
8, unless v = 1, when there is a representation of degree 4.

PROOF. For the representation theory see [19, Chapter 7]. The asser-
tion about the cohomological period follows from 1.4, since [TÛ : 1] =
8.3v and [0: : 1] = 16.3v.

2. Definition and existence of polarised complexes

This section is a comparatively minor extension of the fundamental
work of Swan in [11], although we follow the treatment given [15],
rather than the original.

2.1. DEFINITION. Let 03C0 be a finite group and n ~ 4. A (03C0, n)-polarisa-
tion of a finite dimensional complex Y consists of an isomorphism
03C01(Y,y0) ~ 03C0 and a homotopy equivalence of the universal cover
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Sn-1. Two polarised spaces Y, and Y2 are equivalent if there is a
homotopy equivalence f : Y1  Y2 which preserves the polarisations.
An argument in Cartan and Eilenberg [2, p. 357] shows that a neces-

sary condition for such a Y to exist is that x has periodic cohomology.
A generalisation of the Lefschetz fixed point theorem [10] shows that,
if n is even, Y must be orientable, and n divisible by the cohomological
period. Indeed once an orientation of Sn-1 has been chosen, it follows
that Poincaré duality for Y implies Poincaré duality for Y.

2.2. THEOREM. If 03C0 is a finite group with cohomological period s, the
equivalence classes of (03C0, s)-polarised complexes Y correspond bijectively
to generators g of ÎlS(n; Z).
PROOF. By [11, Thm. 4.1] 03C0 has a periodic projective resolution of

period s. This gives us an exact sequence

defining a generator go of Ext’(Z, Z) = Hs(03C0; Z). If r is any integer
prime to [03C0 : 1 ], let [r, N ] be the projective ideal of Z03C0 generated by r
and N = ¿XE1t x. Since [r, N]+Z ~ Z03C0+Z, we can modify the resolu-
tion above and obtain

This replaces go by rgo, that is, we can realise any generator g of

HS( n; Z), [11, Lemma 7.4]. By adding in elementary complexes
0 ~ F ~ F - 0, with F free on countably many generators, we may
suppose each Pi to be free. By splicing together a large number of copies
of the resolution we obtain a projective resolution of Z over 03C0, chain

homotopy equivalent to the chain complex of a K(03C0, 1). Now apply
[14, Thm. 4] to show there exists a K(03C0, 1) whose chain complex in
dimensions ~ 4 is the given one. The s - 1 skeleton Y of this space has
chain complex equivalent to the one above, and is (03C0, s)-polarised. That
equivalence classes of polarisations are in (1-1) correspondence with
the generators g follows from [13, Thm. 1.8].
The obstruction to replacing the complex in Theorem 2.2 by a finite

complex is the Euler characteristic 0 of the resolution in 0(Z03C0). This
depends only on the homotopy type of Y, hence 0 = 0(g) depends only
on the particular generator (k-invariant) in Hs(03C0; Z). If go is some fixed
maximal generator of smallest dimension in Hs(03C0; Z), all possible g in
all possible dimensions are of the form rgô . In the Mayer-Vietoris
sequence of algebraic K-theory, associated with the Milnor square of
rings
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the unit r in Z[03C0:1] maps under ô : K1Z[03C0: 1] ~ 0Z03C0 to the class of

[r, N]. Lemma 6.2 of [11 ] can be restated as

2.3. PROPOSITION

In the case of the cyclic and generalised quaternion groups the existence
of numerous free orthogonal actions on S2n-1 enables us to prove some-
what more.

2.4. COROLLARY. (i) If 03C0 is cyclic, 03B8(g) = 0.
(ii) If 03C0 is a generalised quaternion group Q(2v), v ~ 3, 0(g) belongs

to the image of ô and has order at most 2.

PROOF. The first assertion is trivial, since the lens spaces L2n-1 ( p; q,
1, ..., 1) cover all possible k-invariants g E H 2n(Z P; Z). If 03C0 is isomorphic
to Q(2v), 03C0 has cohomological period 4, and any free orthogonal action
on S3 defines a polarisation with minimal generator go, such that
0(g,) = 0. Let 03C0 have presentation {A, B ; A2v-1 = 1, A2v-2 = B2,
BA = A-1B}; there are 2v-2 distinct fixed point tree unitary representa-
tions ot degree 2, induced from the subgroup generated by A. The cor-
responding k-invariants are squares in the group of units U(Z 2v) and
since ~(r2) = 20r (ii) follows from 2.3. This corollary is a special case
of a more general result for groups with periodic cohomology, which
can be proved using their hyperelementary subgroups.

There are two problems posed by the preceding results. (a) Are there
any groups 03C0 for which 0(g) lies outside the image of ô? And (b) is Image
ô ever non trivial? A positive answer to (b) would provided examples of
polarised complexes with non-vanishing finiteness obstruction. For

example, over the group Q(8) Swan has shown [11, Lemma 6.3], that
[3, N ] is projective, satisfies the equation [3, N ] + [3, N ] = Z03C0+Z03C0,
but is not free. We have since shown that it is not. Problem (b) therefore
turns on whether the module [3, N] is stably free. Similar examples can
be constructed for the higher order quaternion groups.
We next recall that a finite CW-complex Yn -1 is a simple Poincaré

complex if it has a fundamental class [Y] a representing cocycle 11 of

which defines a simple chain homotopy equivalence of degree - n + 1.
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In [17] such complexes were called finite Poincaré complexes; we shall
call a complex Y finitely polarised, if it is both polarised, and a finite
complex in this strong sense. So far we have shown that each generator
g ~ s(03C0; Z) determines a (n, s)-polarised complex Y = Yg, unique up
to homotopy type and with finiteness obstruction 0(g). We now suppose
that 0(g) = 0 and ask whether Y, is homotopy equivalent to a simple
Poincaré complex. Our strongest general result is

2.5. THEOREM. If 0(g) = 0, Yg2 is homotopy equivalent to a simple
Poincaré complex.

PROOF. By assumption Y is finite, so the torsion z(Y) (an element of
Wh(03C0)) of the chain homotopy equivalence f between Y and its dual is
defined. In dimension r + 1 the algebraic mapping cone C( f ) of f takes
the form

Let Y1 denote the complex, whose chain complex is obtained by splicing
the dual complex C*(DY) (C * Y with a dimension shift) to the left hand
end of C* Y. C*(DY) and C* Y are chain homotopy equivalent, so Y1 is
homotopy equivalent to Yg2 . By writing down the boundary operators of
the enlarged algebraic mapping cone, one sees that, because s is even,

However i is additive over homotopy equivalences, and 03C4(Y) =-03C4(DY).
Therefore -r(Y1) = 0, and Yl is a finitely polarised complex for the group
n. Observe that this purely algebraic argument does not depend on
C*(DY) having a geometric realisation.

2.6. REMARK. In the case when 03C0 is cyclic it is known that Wh(03C0) is
torsion free, from which it follows that any (n, s)-polarised finite complex
is finitely polarised. We ask whether the corresponding result holds in
general.

2.7. THEOREM. If n is a finite group with cohomological period s and
h = ([n : 1 ], 03A6[03C0 : 1 ]) then there exists a complex Y with finite (03C0, 2sh)
polarisation.

PROOF. Let 0(g) be the finiteness obstruction for the resolution of 2.2.
By replacing 0(g) by 0(rg) if necessary, we may suppose that the order
of 0 in 0Z03C0 is h [11, § 10]. By splicing together h copies of the original
resolution we can construct a periodic free resolution of period sh by
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finitely generated modules. The argument for geometric realisation is the
same as before, and since Y is now finite, Theorem 2.5 applies.

2.8. REMARK. The numerical factor h in the hypothesis of 2.7 can be
improved by replacing the order of the group [7r : 1 ] by the Artin exponent
U(03C0).

This was introduced by T. Y. Lam in [5 ] as the smallest positive integer
for which Artin’s Theorem on induced representations holds. In general
U(03C0) divides [03C0 : 1 properly, for example, the argument of [5, Cor. 7.3 ]
shows that, if n is of type 1 with [7c : 1] = ml m2 then 2!(n) = m2 .
As we have indicated in the introduction, the topological space form

problem is particularly interesting for the non-abelian groups 7t of order
pq, p and q distinct primes. 7T is of Type I, the number d introduced in 1
equals q, and so [N03C0A&#x3E; : C03C0A&#x3E;] = q. The p-period thus equals 2q,
and a similar argument shows the q-period to be 2. Since (pq, 0(pq» =
q, the smallest dimension for a finitely polarised complex given by Theo-
rem 2.7 is 4q2-1.

3. Existence of normal invariants

From now on we assume that Y4n-1 is a finitely polarised complex,
constructed as in 2, with fundamental group identified via the polarisa-
tion with the abstract group rc. Poincaré duality implies that a regular
neighbourhood of a stable embedding of Y4n-1 in S4n+k-1, k ~ 4n -1,
has boundary homotopically equivalent to the total space of an Sk-1
fibration v, called the Spivak fibration [8]. (The original published argu-
ment for the existence of v is valid, because even though Y is not 1-con-
nected, rc acts trivially on the homology of the universal cover, see remark
2 on p. 89.) Given the relation to a regular neighbourhood it is clear that
the Thom class of the mapping cylinder of the projection of v, also a fibra-
tion, is spherical. Another way of putting this is to say that v is reducible.
Let the unique stable fibre homotopy equivalence class of v be induced by
a map ~ : Y - BG the classifying space for stable spherical fibrations.
Recall that G = lim Gn, where G. denotes the monoid of self homotopy
equivalences of sn -1 .

3.1. DEFINITION. There is a reducible PL (topological) vector bundle
over Y if and only if ~ : Y - BG factors through BPL (BTop). A homo-
topy class of such factorisations is called a normal invariant of the com-

plex Y.
The main result of this section is that normal invariants exist. From

the definition it is clear that the problem is one of reducing the structure
monoid of a spherical fibration from G to PL or Top. In order to clarify
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this reduction we collect the technical tools into a number of preliminary
propositions.

Let 03A9Poin*() denote the bordism theory defined by Poincaré complexes.
An element of 03A9Poin*(X) is an equivalence class of pairs [Y, f ], f : Y ~ X
with Y a Poincaré complex. [Y1 , f1] ~ [Y2, f2] if there exists a Poincaré
pair (Z, Y1~ Y2) containing Y1 and Y2 as disjoint subcomplexes, and a
map F : Z - X such that F|Yi = fi : Yi ~ X (i = 1, 2). As usual the
group operation is given by disjoint union. Although 03A9Poin*() is not a

homology theory, there is a generalised Hurewicz homomorphism

which interprets a homotopy class as a bordism class. The following
proposition is due essentially to Sullivan [9, Theorem 7].

3.2. PROPOSITION. The generalised Hurewicz homomorphisms

are injective.

PROOF. We give the proof of (i), that of (ii) is similar, given that the
homotopy structures of G/PL and G/Top coincide except in dimension 4.
To be precise 0394Sq2 defines a single non-vanishing k-invariant for the
mod 2 homotopy type of G/PL, which does not occur for G/Top. In
order to fix the ideas, suppose n = 4k, and consider the commutative
diagram

h is the usual Hurewicz isomorphism, and S is the Steenrod representa-
tion map, which sends the pair [Y, f] to the homology class f* [Y]. 03B2 is
the composition



110

where G/PL(2) is G/PL localised at 2, see [9, Theorem 4]. The left hand
side of the diagram defines a monomorphism

Therefore h is also a monomorphism.
The argument in dimensions 4k+2 follows the same lines with Z2

replacing Z(2) .
Write Y for Y with an open 4n -1 cell removed, and v for v| Y.

3.3. COROLLARY. If the monoid of v reduces from G to PL (or Top), so
does the monoid ofv. Furthermore all extensions of the factorised classifying
map are homotopic.

PROOF. The obstruction to reducing the structure monoid over the
last cell of Y determines an element in p4n-2(G/PL), which bounds in
03A9Poin4n-2(G/PL). By the preceding proposition the obstruction vanishes.

Furthermore the obstruction to a homotopy between two different

extensions lies in H4n-l(y 03C04n-1) = 0.

3.4. PROPOSITION. Let 03C0 be a cyclic, generalised quaternion, or soluble
generalised binary polyhedral group. (i) If 03C0 ~ Zv, Q(2"), T*v or Oi the
monoid of v reduces from G to PL (or Top).

(ii) If 03C0 ~ O*v, v ~ 2, the same is true, provided n = 2k.

PROOF. Without loss of generality, suppose that Y has only one (4n -1 )-
cell, so that Y = Y4n-2, the codimension 1 skeleton of Y. Because of the
dimensional restriction in (ii) there exists a finite (03C0, 4n)-polarisation
which is a manifold M4n -1. M4n-l is the quotient of S4n-1 by some
fixed point free orthogonal representation. By induction over the cells

one can construct maps Y à M, which are inverse homotopy equivalences
in codimension 1. This construction hinges on the fact that

Since M is a manifold VM and VM have structural group PL (or Top). Both
in the absolute and relative cases the Spivak fibration is unique up to
fibre homotopy equivalence [8, Corollary 3.4], and f*vM is reducible
[8, Proposition 2.1]. It follows that the monoid of Vy can be reduced to
PL (or Top), and an application of 3.3 shows the same to be true for vY.

In the proof of the main theorem 3.3 implies the triviality of the top
dimensional obstruction. The triviality of the remaining obstructions
depends on the following Lemma, due to E. Thomas and reproved here
by an elementary argument suggested by A. Dold.
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3.5. PROPOSITION. Let 03BE be a fibration over Y with total space E and
1 -connectedfibre F, and f : X ~ Y a map such that

(i) for all k,

is injective,

(ii) for all k,

is surjective, and

(iii)f*ç has a section s.
Then s ~ f * t for some section t of 03BE.

PROOF. As usual f is homotopic to an inclusion. By (iii) the subbundle
f*03BE over X admits a section and (i) and (ii) ensure that the relative groups
Hk(f; nk-l F) vanish. Hence there is no obstruction to extending the
section s over the whole of Y. This proves the proposition. The ground is
now prepared for:

3.6. THEOREM. If y4n-l is finitely polarised for the group 03C0, Y4n-1
admits at least one PL (or Top) normal invariant, provided in case IV,
that n is even and in case VI that p ~ ± 3 (mod 8).
PROOF. It is necessary to consider the groups listed in (1.3) type by

type. However the argument follows the fixed pattern of comparing Y
with a covering space X for which normal invariants are known to exist.
For clarity we formulate the

3.7. HYPOTHESIS. Suppose that 03C0 either has odd order or contains a

subgroup p which satisfies the following properties:

(a) [e : 1 ] is divisible only by powers of 2 and 3,
(b) the restriction homomorphism H2(03C0; Z2) --+ H2(03C1, Z2) is an iso-

morphism, and
(c) the covering space X corresponding to the subgroup p admits normal

invariants.

The existence of a normal invariant for Y is equivalent to the existence
of a cross section for the fibration 03BE associated to the Spivak fibration v
with fibre GIPL. The obstructions to such a cross-section lie in

Hk(y, TCk-l(G/PL) and by 3.3 we may neglect the top dimension.
Furthermore, Y is the (4n-1)-skeleton of a K(n, 1) and so the lower
dimensional obstructions may be computed in the cohomology of n.
A consequence of periodicity is that HOdd(n; Z) = 0; this can be deduced
for example from [2, XII 10.1]. It follows that the only possible non-
vanishing obstructions belong to the groups
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The theorem now follows immediately if 03C0 has odd order, and in general
we see that it is now sufficient to show that the associated fibration with

fibre 6’/PL(2) has a section. Let the map f : X - Y of 3.5 be the covering
map associated with the inclusion of p in 03C0. We check that conditions

(i)-(iii) are satisfied. Given (c) condition (iii) is immediate.
Condition (ii) concerns two maps

and

For any prime p the p-periodicity isomorphism is defined by ’cupping’
with powers of g, E q(03C0; Z) of order the highest power of p dividing
[03C0 : 1 ]. The restriction of gp to p has the same property. Now since by
1.4 the 2- and 3-periods of 03C0 and divide 4, and products are natural
with respect to restriction, by (a) it is enough to consider

and

Since 0(03C3; Z) = Z/[03C3: 1 ] Z for any subgroup J of 03C0, the first is sur-

jective, (b) states the second is bijective. Condition (i) follows from the
same reasoning applied to H -1«(1; Z2), which equals Ker(Z2  Z2 ).
To complete the proof of the theorem it remains to check 3.7 case by case.
We observe that since p contains a 2-Sylow subgroup, f* : H*(03C0; Z2) ~
H*(p; Z2) is always injective [2, XII, 10.1], and hence that for (b) it is
enough to check the order of H*( ; Z2 ). Also

If 03C0 is of Type 1 in 1.3, let p be a 2-Sylow subgroup 03C02. Either ml and
m2 are both odd, or ml is odd and m2 even. In both cases 3.7 is satisfied,
since n2 is either cyclic or zero, and (c) follows from 3.4. Similar numerical
restrictions dispose of Type 11, for which 03C02 is generalised quaternion. If
03C0 is of Type III (IV), 03C0 contains a generalised binary tetrahedral subgroup
T* (octahedral subgroup 0:), which contains some 03C02 and plays the
part of p. It remains only to check part (b) of the hypothesis. This is a
consequence of the explicit computation of the commutator quotients,

Before considering the non-soluble Types V and VI, it will be necessary
to digress on the structure of SL(2, p), the group of 2 x 2 matrices of
determinant 1 with entries from the field Fp. The unique element ( -12)
of order 2 in SL(2, p) generates the centre; indeed SL(2, p) is the central
extension of Z2 by the linear fractional group SF(2, p). (Both groups are
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given in terms of explicit generators and relations in [3, Chaps. XII &#x26;

XIII], where there is also a long discussion of the subgroup structure of
SF(2,p).) In particular, whatever the value of p, SF(2, p) contains at
least one subgroup isomorphic to the tetrahedral group Tl of order 12.
In the central extension of Z2 , T1 lifts to the binary tetrahedral group Ti ,

If 03C0 is of type V, hypothesis 3.7 is satisfied with TT playing the
part of the subgroup p. A direct check shows that H1(03C0;Z2) is trivial,
hence that (b) is satisfied. Finally, if 03C0 is of Type VI, replace T*1 by
O*1 = {T*1, S} and check that H1(03C0 Z2) ~ Z2 . Note that oi contains
a Sylow 2-subgroup if p - ± 3 (8); otherwise, (b) fails.
The proof of the theorem is now complete.
Because we are primarily interested in the normal invariant as an aid

to framed surgery, we have stated the preceding theorem in terms of
finite polarisations. However since neither the finiteness nor the torsion
obstruction enters the proof, the theorem holds for infinite polarised
complexes.
The question of the existence of smooth normal invariants is much

harder. Using K-theory it is possible to show that, for groups of Type 1
and at least one k-invariant, Y admits smooth normal invariants. This
argument is outlined in [1, p. 83]. Observe however that 3.2 is unknown
in the smooth case, so that we cannot pass immediately from one homo-
topy type to another.
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