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ON TOPOLOGICAL NEIGHBOURHOODS

by

C. P. Rourke and B. J. Sanderson

COMPOSITIO MATHEMATICA, Vol. 22, Fasc. 4, 1970, pag. 387-424
Wolters-Noordhoff Publishing
Printed in the Netherlands

This paper is concerned with the ’normal bundle’ problem for topolog-
ical manifolds: Suppose M" is a proper, locally flat submanifold of

Qn+r; then what structure can be put on the neighbourhood of M in Q?
If r ~ 2 the problem has been solved by Kirby [22], who has shown that
there is an essentially unique normal disc bundle, while if r ~ 3 then our
counterexample [38] showed that the notion of fibre bundle is too strong
a concept. The notion of topological block bundle [37; § 1 ] seems in-

applicable since M might possibly be untriangulable and a triangulation
of M would be unnatural structure for the problem. The answer we
propose here is the ’stable microbundle pair’. The idea of using micro-
bundle pairs to classify neighbourhoods was introduced by Haefliger
[9, 10] in the pl case and we showed [35; § 5] that his theory essentially
coincides with our theory of pl block bundles.
An r-microbundle pair is a pair eN ce (1 Ir where EN denotes the trivial

microbundle of rank N. Two are equivalent if they are isomorphic after
possibly adding further trivial bundles to both elements and the iso-
morphism restricts to the identity on the trivial subbundles. The equiva-
lence classes form a good ’theory’ with classifying space BToPr =

limn~~(BTopr+n,n). To the manifold pair M c Q we associate the pair
LM EB vM c 03C4Q|M ~ vM , where vM denotes any stable inverse to rm - Our
main theorem (in § 3) asserts that this association classifies the germ of
neighbourhood of M in Q except possibly in the case n = 1, q = 3 (and
n = 2, q = 4 if ~M ~ 0); these ommisions are due to the unsolved
4-dimensional annulus problem.
The main work of the proof is a stability theorem for 03C0i (Topr+n,n)

which is contained in § 2. This we reduce by means of immersion theory
to a statement about straightening handles in the sense of Kirby and
Siebenmann [21, 23], keeping a pl subhandle fixed, which is proved in
§ 1. The proof follows the Kirby-Siebenmann proof for the absolute case
using the relative surgery techniques of [32]. In §§ 4, 5 and 6 we give
some applications of the main theorem.

In § 4 are theorems about existence and uniqueness of normal block
bundles in the case that M has a triangulation not necessarily combina-
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torial. The results hold for any type of block bundle (open, closed or
micro) and are the same as [33; § 4] (existence and uniqueness up to
isotopy) in the following cases: r ~ 5 or ~ 2, r = 4 and M is 1-connect-
ed, r = 3 and M is 2-connected (the omitted cases are again due to
4-dimensional problems).

In § 5 we prove stable existence and uniqueness of normal micro and
disc bundles. The dimensions are the same as obtained in the pl case by
Haefliger and Wall [12] (improved slightly by Morlet [31 ] and Scott [40]).
However we need codimension 5 for our results on microbundles, and
6 for disc bundles.

In § 6 we prove analogues of smoothing theory for submanifolds. There
are two cases:

(a) M and Q are both pl. manifolds and we seek to isotope M to a pl.
submanifold. This is always possible in an essentially unique way if

r ~ 3; and if r ~ 2, n + r ~ 5 there is a well-defined obstruction. (The
codim 3 result was originally announced by Bryant and Seebeck [2] ]
using a result of Homma [15 ] unfortunately the proof of Homma’s result
appears to contain some gaps. Several other alternative proofs have
been given.)

(b) Q is a pl. manifold. Here we have the analogue of the Lashof-
Rothenberg result [28]. M can be isotoped to a pl. submanifold if and
only if the classifying map M - BTop, for the germ of neighbourhood
lifts to BPL,.. If r ~ 3 the problem is identical to the absolute problem
of finding a pl. structure and if r ~ 2 the map lifts in an essentially unique
way by the result of Kirby mentioned above.
We are indebted to A. Haefliger for his unpublished preprint [9] and

for a private communication containing his arguments for classifying
germs of pl. neighbourhoods. We are also indebted to R. C. Kirby for
a copy of his excellent and detailed notes [21 ] on triangulating manifolds.
We plan a further paper which will contain the technical details of

defining transversality for topological manifolds (Hudson showed [17] ]
that a local definition is inadequate). This is done by examining Whitney
sums (defined in § 3 of this paper) along the lines of [34; § 3] and [39];
we then define M to be ’germ transversal’ to W in Q if along M n W the
three germs of neighbourhoods form the Whitney sum decomposition.
A relative transversality theorem in case dim M n W ~ 5 can then be
proved using local pl. structures which exist by Kirby and Siebenmann’s
results.

0. Preliminaries

We use the same basic scheme of notation as in [35; § 0]. Rn denotes
Euclidean n-space and In the double unit cube [-1, +1]n. aln =
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[ - a, 03B1]n, sn-i = DI". d n c Rn is the standard n-simplex with vertices

v0, v1 ··· v,,. There are natural inclusions Rn c Rn+r, In c In+r; and
identifications Rn Rr = R n+r, In Ir = In+r.

Microbundles

We refer to Milnor [30] for basic results on microbundles. We recall
that if M is an unbounded manifold then iM is the microbundle with total

space M x M, zerosection 4M and projection 03C01 (the projection on the
first factor). We often write i(M) for iM. If Mis bounded then we define
zrz = 03C4(M+)|M where M+ = Mu open collar. Suppose 03BEn, ~n+r are
microbundles. We say 03BE is a subbundle of q and write 03BE c 11 if B(03BE) =
B(~), E(03BE) ~ E(~), at least in some neighbourhood of B(03BE), and for ea(,h
x E B(03BE) there exists microbundle charts h : U x Rn -+ E( ç), 9 : U x Rn+r -
E(~) with x E int U, so that

The trival bundle an of rank n is defined by the diagram

An inverse to 03BE is a pair (~, t) where il is a bundle with the same base as
03BE and t: E(03BE 0 q) - E(eN) is a trivialisation. Inverses are unique up to
stable isomorphism of il and bundle homotopy of t, see [30].

A-sets and groups
We refer to [36, 37] for the theory of semisimplicial complexes and

groups without degeneracies. The A-group Topn (resp. PLn) has as

typical k-simplex a germ of homeomorphisms (resp. pl. homeomorph-
isms)

defined in a neighbourhood of jk x {0} and satisfying

(ii) u commutes with projection on dk.

Applying the classifying functor of [37; § 1] we get classifying spaces
BToPn, BPL. which are Kan 0394-sets. BToPn classifies n-microbundles with
base a CW complex and there is a universal microbundle 03B3n/BTopn. (We
recall from [36] that there is a natural bijection between homotopy
classes of d -maps [S(X), Y] and continuous maps [X, |Y|], where X
has the homotopy type of a C W-complex, Y is a Kan d-set and S(X) is
the singular complex. We will denote both these sets by [X, Y]). All
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topological manifolds have the homotopy type of CW complexes and
thus BTop,, classifies n-microbundles over manifolds. Similar remarks
apply to BPLn .
We define 0394-subgroups Topnr+n, Topr+n,n of Topr+n by the conditions

(iii)1 and (iii)2 respectively

where here Rn is identified with {0} Rn C Rr Rn = Rr+n, PLnr+n,
PLnr+n,n are defined similarly. There are natural inclusions of all the pl.
groups in the corresponding topological groups and of Topr+n,n in
Topnr+n etc.
We now define two suspension maps s and s’ (both injective) in the

diagram

where s( (J) : dk x Rr+n x Ri is defined to be a x id and

is obtained from s( (J) by reordering the last coordinate into the (r + 1 )-st
place and the j-th coordinate to the ( j + 1 )-st place for j = r + 1, ... n.
f is the natural inclusion. The outside square commutes while the tri-
angles do not; however, it is easy to see that they commute up to homo-
topy which is all we require.
We obtain a large diagram of inclusions:
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where the vertical inclusions are s’, the horizontal ones s, and we have
defined Top = u Topr , Topr = u Topr+n,n and Top = u Topr . By
homotopy commutativity we have Top c Top a homotopy equivalence.
Again there are similar definitions for the pl. groups.

If X is a A-set then we denote by X(k) the k-skeleton of X.

Main tools

Apart from microbundles the principal tools will be isotopy extension
and immersion theory, in both pl. and topological categories. An isotopy
of M and Q is locally trivial if it is locally the restriction of an isotopy of
an open subset of Q in Q. All embeddings of manifolds will be locally
flat and all isotopies locally trivial. The isotopy extension theorem (for
locally trivial isotopies) is proved by Hudson-Zeeman [20] in the pl. case
and Edwards-Kirby [4] in the topological case. We also need the theorem
for cubes of isotopies. This is Hudson [16] in the pl. case, while the
topological case follows by combining his methods with those of Ed-
wards and Kirby, see also Kirby [21]. From this last theorem we have
a Kan fibration

where p restricts to the last n coordinates, and the fibre is Top, ln, n -
We will need a doubly relative version of immersion theory, this is

stated in Corollary 2 of the appendix to this paper. The pl. version is
stated but not proved in Haefliger-Poenaru [11 ], see the last three lines
of § 2. However it follows easily from what they do prove by analogous
(rather simpler) arguments to those used in our appendix. Incomplete
versions of topological immersion theory have been given by Lees [29],
Lashof [27] and Gauld [5].

1. Relative handle straightening

Definition of the set Hk(n, i) for k ~ 0, n ~ i ~ 0.
A representative is a pair (h, V) where V is a pl. manifold and

h : dk  Rn ~ V a homeomorphism such that hl DAk X Rn u Ak x Ri is pl.
and h|0394k x Ri i s pl. locally flat. Two such (h1, V1) and (h2, V2) are equiv-
alent if there is a pl. homeomorphism q : V1 -+ V2 defined in a neighbour-
hood of hl (jk x {0}) such that
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commutes up to a topological isotopy which is fixed on ojk X Rn ~ jk x Ri
and defined in a neighbourhood of dk x {0}  I.

Now identify dk with Ik by an orientation preserving pl. homeomorph-
ism then an addition in Hk(n, i ) is defined for k &#x3E; 0 by identifying Ik
with each of Ik-1 x [ -1, 0 ] and Ik-1 x [0, 1 ] and gluing the two re-
presentatives along Ik-1 x {0}. This addition makes Hk(n, i ) into a

group with zero represented by (id., 0394k Rn). This follows from

Proposition 1.1 below and the definition of addition in 7rk(TOPm, q PLm, q).
By ignoring conditions on jk x R. we have a set Hk(n); however in this
case the ’equivalencc’ relation is not transitive since the composition of
q1 and q2 might not be defined and we take the transitive closure of this
relation. This ’absolute’ set is essentially the set of handle problems
considered by Kirby and Siebenmann [23] and the first halves of 1.1 and
1.2 are theirs.

There is a forgetful function f: Hk(n, i ) ~ Hk(n) and a suspension
s : Hk(n, i) ~ Hk(n + 1, i + 1) defined by s(h, V) = (h x id, V x R1 ).

PROPOSITION 1.1. There are bijections

and

which commute with the suspension and forgetful functions, where

m = k+n and q = k+i.
The proof of 1.1 is postponed to § 2.

and i, f ’further n - i ~ 3, then Hk(n, i) ~ Hk(n) and we have a commutative
square of isomorphisms

The cases n - i ~ 2 of the theorem follow easily from Kirby’s results
[22] on codimension 2 embeddings. The proof for n - i ~ 3 is in two
parts; first we show that Hk(n, i) = 0 or Z2 when k = 3 and Hk(n, i) = 0,
if k ~ 3. This is done by relativising the Kirby-Siebenmann ’main dia-
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gram’ [21; 5.1]. Then secondly we show by ’unwrapping’ [21; 5.2] that

Hk(n, i) is actually Z2 in the case k = 3.

Relativisation of the main diagram
Let h : 0394k x Rn ~ Vm be a particular relative handle straightening

problem. It will be convenient to denote the pl. submanifold h(dk x Ri)
by vq and write h : Ak X R n, in vm,q a map of pairs. Consider diagram 1:

Diagram 1

All maps are pl. on boundaries and indicated submanifolds, and by
relative collaring [6] we may also assume that all maps are pl. in a neigh-
bourhood of the boundary. Tn,i0 = Tn, minus a disc pair; a is an immer-
sion of dk x Tô in jk x Rn which respects boundary and immerses A k x Toi
in d k x R. ; Wm,q0 is d k x Tn,i0 with PL structure induced from ha. All the
maps on the left commute with a standard inclusion of 0394k In,i in
dk  Tn,i0. The construction of the diagram is exactly as in [21; pages
71-74] except for two points

a) The construction of g. Let C c ¿jk be an open pl. collar on BAk defined
so that hl C x Rn is pl. Now define
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Let i : Um,q ~ Wm,qc be the identification map (see figure 1). Next

identify the one-point compactification of um,q with 0394k Tn,i by a
homeomorphism which is pl. on U and the identity on dk X In,i. Finally
define g to be the one-pair compactification of i. We claim that wm,q
has a pl. structure extending that of Wm,qc and so that glAk x Ti is pl.
Looking at the end of Wm,qc we see that it is enough to prove a relative
form of the hauptvermutung for sm -1 X R, stated in proposition 1.3

below, and proved at the end of the section.

Figure 1

b) The construction of g’.
We need g’ = g on Ak x Ti as well as on 8(Ak X Tn) as in [21 ]. When

it is possible to find g’ at all the extra condition can also be satisfied.
This follows from a result of [32], stated in 1.4 below:

PROPOSITION 1.3. Suppose ( W m, Wq) is a pl. manifold pair and that
there is a homeomorphism h : ( Wm, Wq) ~ (Sm-1 x R, Sq-1 x R) such
that hl Wq is pl. Then there exists a pl. homeomorphism h’ : W’ sm -1 x R,
extending h| W q, provided m ~ 5 and m-q ~ 3.

PROPOSITION 1.4. Suppose h : Qm,q ~ Wm, q is a homeomorphism of
pairs of compact pl. manifolds such that hl8Qm u Qq is pl. Suppose further
that h is homotopic rel 8Qm to a pl. homeomorphism, then h is homotopic
rel 8Qm u Qq to a pl. homeomorphism provided m ~ 5 and m - q ~ 3.
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PROOF OF THEOREM 1.2. Let (h, h) be the relative problem considered
above and suppose n - i ~ 3 and n + k ~ 5 and further that (h, V) is
straightenable as an absolute problem. Then by 1.3 and 1.4 we can

construct the complete relative main diagram for h. H is the identity on

~(0394k x 2In) and dk x 21’ and hence is isotopic to the identity rel these
subsets by an Alexander isotopy. Restricting to a neighbourhood of
A k x {0} which is embedded in Ak x Rn throughout the isotopy shows that
h is straightenable as a relative problem. Now suppose (h, Tl) is un-

straightenable as an absolute problem, it is therefore unstraighte nable
as a relative problem; but by adding any unstraightenablerelative problem
we get a straightenable absolute (and hence relative) problem. Thus
Hk(n, i) = 0 if k ~ 3, k + n ~ 5, n - i ~ 3 and 0 or Z2 if k = 3. It

remains to show that H3(n, i ) = Z2 in this range.
Consider the commutative diagram (diagram 2):

ex

Diagram 2

The indicated isomorphisms come from 1.1 and [21; theorem 12].
Horizontal maps are suspension and diagonal maps forgetful functions.
They are homomorphisms by 1.1. We have shown that all the groups are
0 or Z2, we will construct a function a which makes the diagram com-
mute, it then follows that all the groups are Z2 and the homomorphisms
are isomorphisms.

DEFINITION OF a. We reverse the unwrapping construction [21; p. 79].
Let h:03943  R2 ~ V represent an element of H3(2). Identify 03943 x I2 c
03943 R2 with 03943 I2 {1} c ~(03943 I3) and let V0 = h(03943 I3). Glue
~03943 I3 to V0 via h on ~03943 I2 {1} this forms Wo, which has pl.
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interior since h is pl. on this subset, and we have a homeomorphism
h’:03943 I2 {1}~~03943 I3 ~ W0 which is pl. on ~03943 I3. Now

int( Wo) is a contractible pl. manifold and hence RS (Stallings [42]).
In int( Wo) choose a pl. ball BS sufficiently large to contain

h’(03943 x {0} x {1} u a.£13 x {0} x [0, 1])
in its interior, and denote C5 = (h’)-1B5 c ô(d3 x I3). Now extend
h’IC5 to g:B6 = 03943 I3 ~ B5 I by two conical extensions. First

extend over aB6 using the fact that ôB6 - int C’ is a ball by the
Schoenflies thecrem and second extend over B6 using the standard cone
structure on B6. See figure 2. Observe that g|03943 {0} is pl. since

h’|~03943 {0} was pl. Finally identify R3 with int 0394I3 and restrict g to
03943 03B5I3 to complete the definition of a(h), e being chosen so that
g|~03943 x 8I3 is pl. It is easy to check (cf [21; p. 83]) that 03B1(h) is equivalent
to the suspension of h, as required.

Figure 2

This completes the proof of 1.2. We note for future reference (§ 4)
that we could have constructed g to be pl. on all of ôd 3 I3 by the
regular neighbourhood theorem, and also that the range of g is a pl. ball.

PROOF oF 1.3. The case m ~ 6. Let 03BE be a normal block bundle for
Wq c Wm. We have e the trivial normal block bundle for Sq -1 c Sm -1
and we can homotope h rel Wq to a map h" : Wm ~ sm-l X R so that
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h’’|E(03BE) is a block homotopy equivalence of 03BE with e x R (see [37; § 3]
for definition). This follows by an easy induction argument using homo-
topy extension and the fact that h has local degree 1. Then h’’|E(03BE)
determines a map g : Wq ~ Gr/PLr, r = m - q, which we claim is nul-
homotopic. Consider s o 9 : Wq ~ G/PL, the suspension of g, this

factors via Top/PL by a standard argument since we started with a
homeomorphism. s o g is therefore nulhomotopic since the natural map
of Top/PL in G/PL is zero on homotopy, by [23] and the fact that

03C03(G/PL) = 0 (see also Wall [43]). Hence g is nulhomotopic by stability
of r/PLr (see [35; 1.10]).

It follows that h" is homotopic rel Wq to h"’ which restricts to a
block bundle isomorphism of 03BE with E x R. This provides a pl. product
structure on E(03BE) which extends to all of Wm by Siebenmann’s relative
collaring theorem [41 ]. We now have a pl. isomorphism

which extends h| Wq. But Mm-1 is a pl. sphere by the Poincaré theorem
and the pair (Mm -1, sq -1 ) is unknotted by Zeeman [45 ]. The construc-
tion of the desired h’ is now easy.

The case m = 5. The case q = 1 presents little difficulty so we concen-
trate on the case q = 2. It is easy to verify that any pl. self-homeomorph-
ism of Si x R extends to S4 x R if q ~ 2 and it suffices to find some pl.
homeomorphism of pairs W5,2 ~ S4,1 x R. By Wall [43] W5 is pl.
homeomorphic with S4 x R and we assume that W5 = S4 x R; we have
to unknot M2 - h-1(S1 x R) in S4 x R. We show how to isotope M
to meet each sphere S4 x {n}, n~Z, in an essential circle and the result
follows from the 2-dimensional pl. annulus theorem and unknotting
S1 x I in S4 I (Hudson and Lickorish’ concordence extension theorem
[19]). The method for each S4 is the same. By transversality S4 n M
can be taken to be a finite number of circles. We show how to pipe two
neighboring circles together and the result follows by induction. Choose
points p, q on each circle and arcs 03B1, 03B2 in M and S4 joining them and
not meeting other intersections. Then the circle oc u 13 spans a 2-disc D
which meets M and S4 only in a u fi. A regular neighbourhood of D is
a 5-ball. B5 meeting S4 and M in unknotted subdiscs B4, B2 which in
turn meet in 2 arcs ab, cd say. It is a trivial matter to isotope B 2 in B5
rel boundry so as to replace ab, cd by arcs ac, bd (or ad, bc) and this has
the effect of piping the two original circles together.

2. The stability theorems

Before proving 1.1 it is convenient to define a new set H’k(n, i). A
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representative is a homeomorphism h : Rk x Rn ~ V where V is a pl.
manifold, h|cl(Rk-0394k) Rn is pl. and h|0394k Ri is pl. locally flat.

(h, V) ~ (g, W) if there is a pl. homeomorphism q : V ~ W defined in
a neighbourhood of dk x {0} such that

commutes up to a topological isotopy which is pl. on cl(Rk-0394k) x Rn ~
03B4k x Ri and defined in a neighbourhood of d k x {0} x I. (h, V) - (g, W)
if (h, V) = (hl, Vi) z (h2, V2) ~ ··· ~ (h1, Vl) = (g, W). The set of
equivalence classes forms Hk(n, i); Hk(n) is defined similarly. There are
obvious surjections 03C81 : Hk(n, i) - H’k(n, i ) and 03C82 : Hk(n) ~ H’k(n)
defined by ’adding a collar’.

PROPOSITION 2.1. 03C81 and 1/1 2 are bijections.
PROOF. We have to show injectivity. Suppose (h, V) z (g, W) ; let q

be as above and st the isotopy of qh to g ; so we have so - qh and s, = g.
Now by two applications of the pl. covering isotopy theorem we can
find a pl. ambient isotopy st of W so that s’0 = id and s’tqh|L = sIL
where L = ad k x Rn ~ d k x Ri. Define q = s’1 q and st = s’1 o (s’t)-1 o st
then q is pl. and S-t is an isotopy between qh and g which is fixed on L.
This shows that the restriction of (h, V) and (g, W ) to dk x Rn are
equivalent in Hk (n, i), as required.
Now define Ik(n, i ) to be the set of regular homotopy classes of

orientation preserving immersions h : Rk Rn ~ Rk+n such that h is a

pl. immersion of Rk x Ri and of a neighbourhood of cl(Rk-0394k) x Rn.
The regular homotopies are via such immersions but defined only in a
neighbourhood of (0394k {0}) I. Similarly Ik(n) is defined by ignoring
the condition of dk x Ri. Now h induces a pl. manifold structure on
Rk x Rn; denote this pl. manifold by (Rk Rn)h. We then get a relative
handle problem ht, with ho = h. It is easy to see that (’idB (Rk x Rn)h) ,:
(’id’, (Rk x Rn)hE) for small e and hence, by compactness of I, the

(’id’, (Rk x Rn)h) 1’01 (’id’, (Rk x Rn)h1). We therefore have well-defined

functions CP1 : Ik(n, i ) ~ Hk(n, i) and CP2 : Ik(n) - Hk(n).
PROPOSITION 2.2. (fJ1 and CP2 are bijections.

PROOF. Surjectivity. Let (h, V) represent an element of H’k(n, i) then by
a collaring argument we may suppose h is pl. in a neighbourhood of
ôdk x Rn. Now Vits a contractible pl. manifold and therefore pl. immerses
in Rk+n by an immersion a such that ah is orientation preserving.
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Injectivity. Suppose (’id’, (Rk x Rn)h0) ~ (’id’, (Rk x Rn)h1) we have to
construct a regular homotopy between ho and hl. Let q, st be given by
the definition of ~ (notation as in 2.1). We construct the regular homo-
topy in two stages.

Stage 1. By collaring st may be taken to be pl. in a neighbourhood of
ôd x Rn then h, st defines an allowable regular homotopy between
hl oqandhl.

Stage 2. h o and hl o q are both orientation-preserving pl. immersions
of (Rk x Rn)ho in Rk+n and are therefore regularly homotopic since both
manifolds are contractible.

PROOF oF 1.1. We have functions

defined by restricting the differential of an immersion to dk  {0} and it
follows from the pl. and topological immersion theorems that these are
bijections. The result now follows using 2.1 and 2.2 and the commutativ-
ity of 03C8i, CPi and di with suspension and forgetful functions.

THEOREM 2.3. Suppose r ~ 2 or k + r ~ 5 then inclusion induces an
isomorphism.

PROOF. Consider the diagram

i2 and i4 are isomorphisms for i ~ k by [9; 8.5] ] see also [35; 5.4].
i3 is an isomorphism by 1.1 and 1.2. To apply the 5-lemma we need il
epimorphic. This is true for i ~ 2 since 03C0i+1(Topr, PL,) = 0 by 1.1 and
1.2. For i = 2 however we have 03C02(PLr+k,k) ~ 03C02(PLr) ~ 03C02(PLr) ~
03C02(0r) ~ 0 (see [35; 5.5] ] and [8; 6.6]) so i* is an isomorphism by an
easier argument.

THEOREM 2.4. Suppose r ~ 3. Then TOPr/PLr -+ Top/PL is a homotopy
equivalence.

PROOF. This is immediate from 1.1 and 1.2.

COROLLARY 2.5. Suppose r ~ 3. Then Gr/Topr ~ GITop is a homotopy
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equivalence. Here Gr is the homotopy analogue Topr (cf [35 ; § 0]), which
has the homotopy type of the monoid Gr of sel f homotopy-equivalences of
Sr-1

PROOF. Use 2.4 and [35; 1.10].

3. Classification of r-neighbourhoods of manifolds

For simplicity we work first with an unbounded manifold Mn. The
bounded case introduces technical difficulties which will be dealt with

at the end of the section. Let i : Mn ~ Nn + r be a locally flat embedding
in the unbounded manifold N. The pair (i, N) is called an r-neighbourhood
of M. Two such (i, N), (i’, N’) are equivalent if there is an embedding
h : N ~ N’ defined in a neighbourhood of i(M) and such that h o i = i’ .

The set of equivalence classes is denoted Nr(M) and called the set of
germs of r-neighbourhoods of M.
To the r-neighbourhood (i, N) we associate the microbundle pair

(i*7:(N),7:(M)). The isomorphism class rel7:(M) of this pair depends
only on the germ of (i, N) and this gives us a well-defined function

K : Nr(M) ~ [M, BTopnn+r]03C4(M)
where [M, BTopnn+r]03C4(M) denotes homotopy classes of sections of the
fibration over M induced from the fibratjon

by the classifying map 03C4(M) : M ~ BTopn .
PROPOSITION 3.1. K is a bijection.

PROOF. K is injective: Suppose K(i, N) = K(i’, N’) then there is an iso-
morphism h : (i*03C4(N), 03C4(M)) ~ (i’*,03C4(N’), 03C4(M)) of microbundle pairs
such that h|03C4(M) = id. By the immersion theorem there is an immersion
h’ : (N, M) ~ (N’, M) defined in a neighbourhood of M such that
h’|M = i’. This last condition implies that h is an embedding in some
smaller neighbourhood and thus (i, N) - (i’, N’).

K is surjective: Suppose given a microbundle pair (03BEn+r, 03C4(M)). We
have to construct an (n + r )-manifold M with M c N and an isomorph-
ism (T(N)IM, 03C4(M)) ~ (çn+r, 03C4(M)) rel 03C4(M). We will construct N

inductively over an open cover of M using the immersion theorem to
match overlaps:

Let {Ui}, {U’i}, i = 1, 2 ···, be countable locally finite open covers of
M such that Vi c U’i and (03BE, 03C4)|U’i is trivial for all i. Let
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and suppose inductively that there is an (n+r)-manifold V ~ U and an
isomorphism h : (03BE|U, 03C4(U)) ~ (03C4(V)|U, 03C4(U)) which restricts to id. on
03C4(U). Let t : U’p x (Rn+r, Rn) ~ (03BE|U’p, 03C4(U’p)) be a trivialisation, and let
Z = U n U’p. We can define a representation cp: 03C4(Z Rr)|Z ~ 03C4(V)|Z
by the following diagram, in which the maps are suitably restricted:

and it is trivially checked that ~|03C4(Z) = id. Thus by the immersion theo-
rem 9 is homotopic rel i(Z) to the differential of an immersion

cp’ : N(Z) ~ V, cp’IZ = id, where N(Z) is a neighbourhood of Z in
Z x Rr. Now ç’ is an embedding in N(Z) n N( Up) for some neighbour-
hood N( Up) of Up in U’p Rr. Now define V’ = V ~ N( Up) identified
by cp’i and U’ = ~ {Ui; i = 1, ···, p} then it is easily verified that

V’ ~ U’ has the inductive property.
Now let (i, N) be an r-neighbourhood of M and choose an inverse

v to 03C4(M) (that is to say 03C4(M) ~ v has a preferred trivialization). Then
we can identify the pair (i*03C4(N) EB v, T(M) EB v) with (i*1:(N) EB v, 8N)
using this trivialisation. The last pair determines a classifying map

c(i, N) : M ~ BTopr

Now the isomorphism class relaN of the above pair depends only on the
germ of (i, N) and thus we have a well defined function

THEOREM 3.2. Suppose n + r ~ 5 or r ~ 2, then c is a bi jection.

PROOF. Consider the following diagram.

Here si are suspensions. The vertical sequences are fibrations. We now
use the main stability theorem 2.3 to deduce that s1 induces isomorphisms
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on nk for k ~ n+1 and hence by 3.1 that Nr(M) is in 1-1 correspondence
with lifts of S3 o 03C4(M) over p2. But p2 is fibre homotopy trivial; this is
seen as follows. There is a retraction t : BTop’r ~ BTopr constructed
inductively over skeletons by means of inverses 03B6(k) for p*2(03B3(k))|BTop’r(k)
where y(k) is the universal bundle over BTop(k)t(k) is then the classifying
map for the pair (03BE(k) ~ 03B6(k), s) where (03BE(k), p*y(k») is the universal bundle
over BTop’r.

It is easily checked that t o 1 ~ id. Thus p2 is fibre homotopy trivial
by [3] and it follows that Nr(M) is in 1-1 correspondence with
[M, BTopr] by the correspondence (i, N) - t o s2 o K(i, N). It remains

to observe that this is homotopic to c(i, N) by stable uniqueness of in-
verses.

The bounded case

Let M be bounded and M+ - M ~ {open collar} and recall that
03C4(M) = 03C4(M+)|M. We then have an isomorphism i(ôM) E9 el ~
-r(M)lèM given by choosing an inward collar, and a commutative diagram

An r-neighbourhood of M is a pair (i, N) where N is a bounded
(n+r)-manifold, 1 : M - N an embedding and i-1(~N) = ôM. Two
such are equivalent if there is an embedding h : N - N’ defined in a
neighbourhood of i(M) such that h-1(~N’) = ~N and h i = i ’. The set

of equivalence classes is again denoted Nr(M). To the pair (i, N) we
associate the bundle diagram

which depends up to isomorphism rel i(M) only on the germ of (i, N).
This gives a function K from Nr(M) to the set of homotopy classes of
commuting diagrams:
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PROPOSITION 3.1 b. K is a bijection.

PROOF. Follow the proof of the unbounded case but split into two
cases. Deal first with the boundary then relativise the bounded argument
to deal with the interior keeping boundaries fixed. Details are left to
the reader.

Now suppose ( j, L) is a fixed r-neighbourhood of ôM and consider
r-neighbourhoods which extend ( j, L) under the equivalence of germ of
homeomorphism rel L. Call this set Nr(M rel L) then the proof of 3.1 b
shows

PROPOSITION 3.1 c. Nr(M rel L) is in 1-1 correspondence with lifts of
03C4(M) in BTopn +r which extend s’2 o K(j, L).
We now stabilise 3.1b and c along the lines of 3.2. As before choose a

fixed inverse v to 03C4(M) then we get functions

where the last set denotes homotopy classes of maps which extend c( j, L)
on ôM.

THEOREM 3.2b. cl is a bijection provided n + r ~ 6 or r ~ 2.

THEOREM 3.2c. C2 is a bijection provided n + r ~ 5 or r ~ 2.

PROOF. Consider the diagram

The results follows from 3.1 b or 3.1 c the triviality of the right-hand
fibration and the stability properties of s’1 and si (2.3). Note that we get
one better dimension for 3.2c than 3.2b since we are considering a fixed
map K( j, L) and thus do not need stability for s’1.

Whitney sums, product theorem and induced neighbourhoods
We deduce three simple consequences of the main theorem (3.2).
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Suppose (i1, N1)(i2, N2) are neighbourhoods of M of codimension
rl, r2 respectively. We can form their Whitney sum (i 3 , N3) of codimen-
sion rl + r2 uniquely up to equivalence provided n+r1+r2 ~ 5 (or 6 if
~M ~ 0): form the bundle pair (1*1(Ni ) E9 v E9 i*(N2) ~ 03BD, a ~ 8) and
then define (i3, N3) to be a member of the class classified by this pair.

Secondly, suppose M ~ Ml x I and (i, N) an r-neighbourhood of M.
Then provided n+r ~ 6 (or 7 if 8M1 i= ) we can find a neighbourhood
(il, Nl ) of Ml such that (i, N) is equivalent to (il +id, N1  I): Define
(il , N1 ) ta be a neighbourhood classified by c(i, N)/M1 and then the
result follows since c(i, N) and c(il x id; N1  I) agree on Ml.

Thirdly, suppose (i, N) is an r-neighbourhood of M and f : W ~ M
a map of manifolds let co = dim W then provided only r + 03C9 ~ 5

(~ 6 if ~W ~ 0) we can define the induced neighbourhood f*(i, N) of
co uniquely up to equivalence as the neighbourhood classified by
c(i, N) o f.

4. Normal block bundles

We deal first with micro block bundles. Analogous results for open
and closed block ubndles will be deduced afterwards. Tõpr(03BC) is the

topological analogue of PLr(03BC) [33], a typical k-simplex is a germ of
block and zero-preserving homeomorphisms 03C3 : 0394k x Rr W defined in a

neighbourhood of dk x {0}. An r-microblock bundle will mean a Tõpr(03BC)-
block bundle in the sense of [37; § 1 ]. If K is the base of 03BE then we write
ç/K and identify |K| with the zero section in E(03BE). Isomorphism classes
of block bundles are classified by homotopy classes of maps in BTõpr(03BC)
(for more detail see [37; § 1 ]).
We will define a map

inductively over skeleta. We need

PROOF. There is a surjection Hk(r, 0) ~ 03C0k(Tõpr(03BC), PLr(03BC)) (see 4.5
below) and the result follows from [32; 2.6] and 1.2.
Assume r ~ 5 or ~ 2 and use 4.1 to replace BTõpr(03BC)(k) by a parallel-

ized open manifold Tk by imbedding a locally finite simplicial complex
(cf [33; § 2]) in some large dimensional Euclidiean space and consdering
the interior of a regular neighbourhood. Then the pair (id, E( yr¡ Tk) is
an r-neighbourhood of Tk where yr is the universal bundle, and thus
determines a map ~(k) : Tk -+ BToPr. We observe that by choosing Tk to
be a parallelized open manifold we can take ~(k) to classify the pair
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(1(E(y))), T(Tk) without adding an inverse. X(k) is defined up to homotopy
independently of the choices made and hence we can assume ~(k+1)
extends ~(k) and thus define a limit map x. There is a similarly defined
map for r+n ~ 5 or r ~ 2.

Finally if r = 3, 4 define x to be the composition.

PROPOSITION 4.2. (i) Let |K| - M be a triangulated topological manifold
and let çr/K be a block bundle. Let 1 : K ~ BTôp, classify 03BE then X o 1 ~

c(id, E(03BE)).
(ii) The diagram

commutes up to homotopy.
(iii) BTopr ~ BTõpr(03BC) is a homotopy equivalence.

PROOF. For (i) observe that we can assume 1 : K - Tk is an embedding
and v a normal microbundle on this embedding, the result is then clear.
This proves the result for r ~ 3, 4 but in these cases note that s determines
an isomorphism of (03C4(E(03BE)), i(M)) with (03C4(E(03BE)) ~ 03B5, 03C4(M) ~ s) and
the result follows on applying the above argument to x’. (ii) is easily
checked from definitions and (iii) follows at once from stabilizing (ii).

REMARK. K was not assumed to be a combinational manifold. This

remark holds throughout the section.
Now let Mn C Qn+r be a proper locally flat submanifold (i.e.

~Q n M = ~M) and |K| = M a triangulation and denote L c K the
subcomplex underlying DM.
A normal micro-block bundle on M in Q is a micro-block bundle Çr / K

with E(03BE) c Q and E(03BE) n DQ = E(03BE|L). These conditions imply that
E(03BE) is a topological neighbourhood of M in Q. Normal bundles 03BE, ~
are isotopic if there is an isotopy of E(03BE) in Q through normal bundles
starting with the identity and ending with an isomorphism of 03BE with q.
For simplicity now assume DM = 0. Analogous results for the bounded

case will be stated below. An almost normal micro-block bundle on M
in Q is a pair (03BE, f) where Çr /K is a micro-block bundle and f : (03C4(E(03BE))|M,
03C4(M)) ~ (,r(Q)IM, T(M» is an isomorphism of pairs with f|03C4(M) = id.
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Two such are isotopic if there is a bundle isomorphism g : E(03BE1) ~ E(03BE2)
such that

commutes up to homotopy of bundle maps rel r(M).
PROPOSITION 4.3. Isotopy classes of normal micro block bundles on M

in Q correspond bijectively »’ith isotopy classes of almost normal bundles.

PROOF. By the immersion theorem an almost normal bundle gives an
immersed normal bundle which can be replaced by an embedded one by
’radially’ shrinking into a small neighbourhood of M. Similar considera-
tions apply to homotopies.

THEOREM 4.4. Suppose n -I- r ~ 5 or r ~ 2 then isotopy classes of normal
micro block bundl,,s on M in Q correspond bijectively with lifts of c(id, Q)
over x.

REMARK. Since x is not a fibration we nEed to replace it by one to make
sense of ’lifting’ over x. This amounts to considering homotopylifts (i.e. a
map f : M ~ BTôp, together with a mohotopy Ft of X o f to c) and homo-
topy classes of such lifts.

PROOF. By 4.3 and stability (2.3), isotopy classes of normal bundles
correspond bijectively with stable isotopy classes of stable almost normal
bundles. We now examine the proof of 4.2 (i) in greater detail. Assume
r ~ 3, 4 and fix a sufficiently large skeleton Tk of BTôp,, as in the defini-
tion of x, and assume that Tk is an open subset of Euclidean space of
sufficiently large dimension for M to unknot and to have normal bundle
v say. Next choose a fixed isomorphism of the pair (T(Q)IM ~ 03BD, E) with
c*(y, E) where the latter is the classifying pair. Now a lift of c(id, Q)
over x gives a block bundle çr/K and a microbundle pair ~/K  I such that
~/K  {0} has an expliict isomorphism with (T(E(ç))IM (D v, e) and
tllkx {1} one with (03C4(Q)|M ~ v, e) both restricting to the identity on 8.
Then by the product theorem for microbundle pairs 1 is a product and
we have an isomorphism of (03C4(E(03B6))|M ~ v, e) with (T(Q)IM Et) v, a)
determined up to bundle homotopy rel s. I.e. a unique stable isotopy of
almost normal block bundles. Similarly a homotopy over c(id, 0) gives
a bundle ’/K Et) I and a bundle map q : 03C4(E(03B6))|M I ~ 03BD I ~ T(6)!M
(D v which is the natural projection on trivial subbundles. To convert
this into the required homotopy of abstract bundles we need a product
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theorem for block bundles (see [37; 2.4]). There is a homeomorphism
h : E(03B6|K {0}) I ~ E«) such that h = id on {0}-end ~ K I and

h|{1} - end is an isomorphism g say. The q o dh is the homotopy of bundle
maps which makes the diagram above 4.3 homotopy commute. Finally
the cases r = 3, 4 are dealt with by applying the above argument to x’
exactly as in the proof of 4.2 (i).
BOUNDED CASE. We state the versions of 4.4 for bounded manifolds.

The proofs are by relativising the absolute case as in second half of § 3.
Details will be left to the reader.

THEOREM 4.4b. Suppose DM = Ø and r + n ~ 6 or r ~ 2 then isotopy
classes of normal micro-block bundles on M in Q correspond bijectively
with lifts of c (id, Q) over X.
THEOREM 4.4c. Suppose ~/L is a given normal micro block bundle on

ôM in ôQ and n+r ~ 5 or r ~ 2. Then isotopy classes rel E(~) of normal
bundles on M in Q which extend ~ corresponds bijectively with lifts of
c(id, Q) over X which extend the classifying map of il.

In order to apply theorem 4.4 we need to examine the homotopy
properties of x. By 4.2 parts (ii) and (iii) this is equivalent to examining
the properties of s : BTõpr(03BC) ~ BTõpr(03BC). As usual we reduce the analy-
sis to PL results:

We refer to [36] for a general definition of the homotopy groups of a
pair of d-set. We may regard the group n,(Tôp,,, i(li), PLn, i(03BC)) as the
set of concordence classes of germs of homeomorphisms 03C3 : dk x Rn ~~
defined in a neighbourhood of Lik x {01 such that 03C3|0394k x R. = id and
h|~0394k x Rn is pl. By considering isotopy classes, rather than concordance
classes, we get a set n1S0(TÕPn, i(m), PLn, i(m».

PROPOSITION 4.5. The natural map

is a bijection.

PROOF. Let (h, V) represent an element of Hk(n, i). Extend h|0394k x Ri
to a proper immersion hl : dk x Rn ~ V by the pl. immersion theorem.
Now Hl embeds a sufficiently small neighbourhood of dk x {0} and
(h, V) - (hi 1 o h, Ik x Rn). This shows that cp is onto. A similar argument
shows that cp is injective.
Now by 4.5 and 1.1 the differential

is a bijection, where m = k + n and q = k + i. We can define a homo-
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morphism d1 : 03C0k(Tõpn,i(03BC), PLn,i(03BC)) ~ 03C0k(Topm+1,q+1, PLm+1,q+1) by
observing that the differential of a concordiance defines a homotopy
between the suspensions of the differentials at the ends. We then have a
commutative diagram

where il and i2 are the natural maps.

PROPOSITION 4.6. All the maps in the above diagram are bijections if
k+n ~ 5 or n-1 ~ 2.

PROOF. d is always a bijection as observed above and il is trivially
always onto. Now i2 is a bijection in the range of dimensions considered
by 1.1 and 1.2. The result follows by commutativity.

COROLLARY 4.7. The suspensions

are isomorphisms provided n + k ~ 5 or n - i ~ 2.

PROOF. The diagram above 4.6 commutes with suspensions and the
result follows for S1 by 1.1 and 1.2. The result for S2 now follows by
5-lemma exactly as in proof of 2.3.

COROLLARY 4.8. ~ : BTõpr(03BC) ~ BTop, induces isomorphism on 03C0k for
k+r ~ 6 or r ~ 2.

PROOF. Use 4.7 and the remarks below 4.4c.

Combining 4.8 with 4.4 we deduce:

THEOREM 4.9. (a) Let Mn ~ Qn+r be a locally flat submanifold and
1 KI = M a triangulation suppose ôM = Ø and n + r ~ 5 or r ~ 2 then if
r ~ 5 or ~ 2 M has a normal micro block bundle which is unique up to

isotopy. If r = 4 the same result holds provided M is 1-connected and if
r = 3 provided M is 2-connected.

(b) Same hypotheses but aM =F 0 and n + r ~ 6 or r ~ 2. Same conclu-
sions provided both ôM and (M, ôM) satisfy the connectivity conditions
for r = 3, 4.

(c) Same hypotheses as (b) but 17/ L a given normal block micro bundle
on ôM in ôQ and n -I- r ~ 5 or r ~ 2. Then ~ extends up to isotopy rel E(ri)
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to a normal micro block bundle on M in Q provided if r = 4, 3 that M, ôM
is 1, 2-connected.

Open and closed block bundles
Now let Tôp, and Tôp,(R) be the topological analogues of PLq, PLq(R)

[35; § 0]. These are the groups for closed block bundles and open block
bundles respectively. There are natural homeomorphisms, see [35; § 0]:

Note that in the pl. case all these maps are homotopy equivalences. We
may define maps, in the same way as x,

and the analogues of 4.3 and 4.4 hold for closed and open block bundles,
indeed the proofs were written in such a way that they require ano Itera-
tion. Now XR XI and x commute up to homotopy with the diagram (1)
and to deduce results on normal open and closed bundles we need to

examine the properties of the maps in (1).

THEOREM 4.10 The maps in (1) induce iosmorphisms on 03C0n( ) for q ~ 2
or n+q ~ 5.

PROOF. We prove the result for germ (I). A similar proof works for R
and the result follows by commutativity. We show that germ (1)* :
03C0n(PLq, Topq) ~ 03C0n(PLq(03BC), Topq(03BC)) is an isomorphism in the range
considered and the result follows by the 5-lemms and the PL result.
Now let h : In Xjq +-D represent an element of 7tn(Tôpq, PLq) then by
relative handle straightening and isotopy extension we may assume that
h is pl. in a neighbourhood of In {0} provided n+q ~ 5, n ~ 3 or
q ~ 2. So we have h pl. on In x g12 for some E and by the regular neigh-
bourhood theorem we may assume that h preserves this set setwise.

But In (Iq-03B5Iq) is a collar on In 03B5Iq and it is thus easy to change h
by a concordance to make it a product on this collar and hence pl.
This shows 03C0n(Tõpq, PLq ) = 0 n+q ~ 5, n :0 3 or q ~ 2 and it remains
to show that n3(TÕpq, ÊLI) = Z2 for q ~ 3 and that germ (I)* is non-
trivial on 7:3. The above argument and the usual considertaions shows
that 03C03(Tõpq, PLq) is 0 or Z2 , and it suffices to construct one non-trivial
element which usspends to the non-trivial element of 03C03(Top/PL). The
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lowest dimension concerned is 03C03(Tõp3, PL 3) and we only have to
observe that the non-straightenable handle constructed in § 1 was in fact
a closed handle and the restriction to ~03943 x 13 was pl. It is then easy to

see that it represents an element of 03C03(Tõp3, PL3).
COROLLARY 4.11. Let K be a simplicial complex. There are natural

bijections between isomorphism classes of q-dimensional open, closed and
micro block bundles provided q ~ 2 or ~ 5, and provided further that if
q = 4 then K is 1-connected and if q = 2 that K is 2-connected.

COROLLARY 4.12. The results of theorem 4.9 arc true for open and closed
block bundles.

REMARKS. (1) The uniqueness part of 4.12 implies that there are
’regular neighbourhood’ theorems in the topological catergoy in restricted
dimensions and for restricted subsets.

(2) We do not have a complete analogue of the Kister-Mazur theorem
for block bundles. The problem is the lack of engulfing techniques in
dimension 4.

5. Normal open, micro and closed disc bundles

Let Topn(R), Topn(I) be the groups for open and closed disc bundles.
Then there are natural maps Topn(R) ~ Topn, Topn(I) ~ Topn on taking
germs. The first is a homotopy equivalence (Kister [24]), while the second
is not (Browder [1 ]). We get natural maps ToPn(R) - Topn, Topn ~ Topn
which induce maps of classifying spaces a : BTopn(R) ~ BTop,,,
03B2 : BTopn ~ BToPn, y : BTopn(I) ~ BToPn. Now let Mn (- Qn+q be a
locally flat submanifold, then by rather simpler arguments than in
Theorem 4.4 we have :

THEOREM 5.1. Isotopy classes of normal open, micro and disc bundles on
M in Q correspond bijectively with liftings of c(id, Q) under a, 13 or y
respectively, under the same dimensional restrictions as 4.4.

In order to apply Theorem 5.1 to prove existence of normal bundles
we need to compare Top., etc., with Topn, as usual we work with the pl.
groups.

PROPOSITION 5.2. The n-th homotopy groupqf the squares

is zero if n ~ q + 1, q ~ 5 or n  q + 1, q ~ 6 respectively.
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PROOFS. For the first square use the long exact sequence
~ 03C0n(Topq, PLq) ~ 03C0n(Topq, PLq) ~ 03C0n(1q) -

and 1.1, 1.2. Note that we do not need to know 03C0q+1(Topq, PLq) ~
03C0q+1(Topq, PLq) is an isomorphism, since the latter group is always
zero if q ~ 5.
Now consider the fibrations (up to homotopy)

given by the topological and pl. Kister-Mazur theorems [14, 24, 25]. It
follows that nn(3q) = 0, all n, q. The second half now follows from the
long exact sequence

and the first half. Note that we have identified 1q-1 with (Topq;
Topq-1, PLq ; PLq-1) by 2.4.

PROPOSITION 5.3. There is a long exact sequence for q ~ 3.

PROOF. This follows by exactly the same argument as the pl. sequence
[35; 3.6] using the isomorphisms 7r,,(Top,, 1, Topq) ~ 03C0n(PLq+1, PL q)
03C0n(Sq) Et) 7r.(Fq, Gq) (2.4 and [35; 2.15]).
COROLLARY 5.4. (i ) 03C0n(Topq, Topq(I)) = 0 if n  q, q ~ 6.
(ii) 03C0n(Topq, Topq(R)) = 0 n ~ q, q ~ 5.
PROOF. The first half follows from the pl. result (see [12; 4.2] and

[33; § 5]) and 5.2, and the second from 5.3 and the vanishing of

7En(F,,, Gq) metastably (James see [8]).
COROLLARY 5.5. With the notation of 5.1, if q ~ 5 and n ~ q then M

has a normal open or micro bundle; if n  q it is unique up to isotopy. If
q ~ 3 and n  q, M has a normal disc bundle and if n  q -1 it is

unique up to isotopy.

REMARK. We have one better dimension for open bundles than [12],
this was obtained in the pl. case by Morlet [31] and Scott [40].

6. Approximation and triangulation

We consider two problems.

Approximation problem
(1) ,f’: Mn ~ Qn+r is a locally flat embedding of M in Q both pl.
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manifolds, f-1(~Q) = DM and flaM is pl. It is required to ambient
E-isotope f rel ôQ to a pl. embedding.

Triangulation problem
(2) f : Mn ~ Q""’ is a locally flat embedding and Q only is pl.

f-1(~Q) = DM and f(~M) is a pl. submanifold. It is required to ambient
e-isotopy Q rel ôQ to carry f(M) onto a pl. submanifold.
The solutions we give to these problems (6.1 and 6.4 resp.) are the

analogues of the smoothing theorems of Haefliger [10], Lashof-

Rothenberg [28] and ourselves [33; 6.6], the coefficients being in

03C0i(Top; PL, Top,; PL,) and 03C0i(Topr, PL,) respectively. However, since

these coefficients are all computable by stability and Kirby-Siebenmann
we get simple solutions to the problems:

THEOREM 6.1 (Approximation theorem). Data as in the approximation
problem. If r ~ 3 the required isotopy always exists. If r ~ 2 and n +r ~ 5
then there is an obstruction in H3(M, DM; Z2 ) which vanishes iff the
required isotopy exists.

PROOF. r ~ 3. The case n = 1, r = 3 is known (Homma-Gluck see
[7]) so we may assume n + r ~ 5. The bounded case is a direct relativisa-
tion of the unbounded case using the bounded versions of §§ 3 and 4 so
for simplicity assume DM = 0. Let j = c( f, Q) : M ~ BTopq classify
the neighbourhood of M in Q and consider the diagram

Here ql is the pl. analogue of x, it is a homotopy equivalence by
[35; 5.5]. Consider a lift il of 03BE in BPLr . This determines a lift of 03BE over
x and hence by 4.4 a normal block bundle on M in Q with a pl. structure
and hence a local pl. structure on Q near M. On the other hand, denoting
the stabilization of 03BE by 03BE’, we have, by the main result of Kirby-
Siebenmann [23], a natural bijection between liftings of 1’ (D iM = ’t’QI M
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in BPL and local pl. structures on Q near M. Since iM has a preferred
lifting by the pl. structure of M, there is a bijection also with lifts of 03BE’
in BPL. We next observe that these two processes are compatible i.e. the
local pl. structures determined by lifting 03BE or 03BE’ agree iff the diagram
commutes. This is an easy consequence of the classifying property of 03C8
(pl. analogue of 4.2 (i)).

Finally we appeal to stability (2.4) to assert that there is a bijection
between liftings of 03BE and 03BE’ and hence we can choose a lifting il of ç
which stablises to the lifting il’ of 03BE’ given by the original pl. structure
on Q. Hence we have a local pl. structure in Q extending the given struc-
ture on M and agreeing up to equivalence with the given structure on Q.
The equivalence (cf Kirby-Siebenmann [23]) is e-isotopy and the result
follows.

r ~ 2. In this case the first half of the above argument holds but we
have Top,,IPL, contractible by 2.1, Wall [44] and collaring arguments for
r = 1 (essentially Kirby [22] again). Hence there is essentially only one
lift il of 03BE in BPLr and using the homotopy type of Top/PL a single
obstruction in H3(M; Z2) to commutativity. This proves ’only if’; ’if’ is
clear since a s-isotopy of f to a pl. embedding determines a normal block
bundle on f [33] and hence a lift of 03BE in BPLr ~ BPLR-
As a direct corollary of the first half of 6.1 we have

COROLLARY 6.2. Denote by Emb(M, Q) resp. EmbpL(M, Q) the sets of
isotopy classes (resp. pl. isotopy classes) of locally flat (resp. pl. locally
flat) embeddings of Mn in Qn+r. Then if r ~ 3 the natural function

is a bijection.

PROOF. Onto is clear from the approximation theorem. But topological
isotopy ~ pl. concordance by the relative statement ~ pl. isotopy by
Hudson [18].
We can also relativise results on the Hauptvermutung using the proof

of 6.1 which showed

COROLLARY 6.3. Two different pl. structures on Q which agree on M and
are equivalent, are equivalent rel M.
We now turn to the triangulation problem:

THEOREM 6.4 (Triangulation theorem). Data as in the triangulation
problem. If n ~ 5 and r ~ 2 the required isotopy always exists. If r ~ 3
then there is an obstruction in H4(M, DM; Z2 ) which vanishes iff ’ the
required isotopy exists.

PROOF. Use the diagram in 6.1. We show that the required isotopy
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exists iff 03BE lists in BPL, and the refult follows from the homotopy type
of TOPr/ P Lr. ’Only if’ is clear by the argument at the end of proof of 6.1.
So suppose 03BE lifts to ~ : M ~ BPLr and let ~’, 03BE’ be the stabilizations of
il, 03BE. Now ’LQIM = ’LM ~ 03BE’ has a preferred lift in BPL given by the pl.
structure of Q and we can choose a lift of ’LM in BPL so that m ~ ~’ =
03C4Q|M. This determines a pl. structure on M by the main result of [23 ] and
the argument is now exactly as in 6.1.

Appendix: Topological immersions

The arguments given here were contained in a paper by M. A. Arm-
strong and C. P. Rourke written in February 1968. Crucial use is made of
the topological covering isotopy theorem, the paper mentioned above
also contained an incomplete proof of this theorem. We refer to Edwards
and Kirby [4] for a complete proof. We need a version for cubes of
isotopies. This follows from the methods of Edwards and Kirby and Hud-
son [16], see also Kirby [21 ]. Familiarity with the paper of Haefliger and
Poenaru [11 ] is assumed and we have made our notation agree with
theirs as far as possible.

Al. Définitions and statements of results

Throughout the appendix we use the following notation: V and Q are
topological manifolds of dimensions n and n+r respectively and ôQ = 0.
V’ c V is a codim 0 submanifold and Mm c Vn is a submanifold of

codimension &#x3E; 0 with M n av = ôM, both M and are closed subsets
of V and M’ = V’ n M is a codim 0 submanifold of M. All embeddings
are locally flat in the appropriate senses.
Suppose a v = 0, then an immersion V - Q is a map which satisfies,

for each point x E V there are charts h : U ~ V, g : W ~ Q with x E im h
so that

commutes, where U, W are open sets in R", Rn+r.
A simplex of immersions f : V x 0394k ~ Q X Ak is a map satisfying

f(V {t}) c Q {t} and for each pair (x, t) E V 0394k there are charts
h: U x T - Vx Ak 9 : W x T - Qxdksothat
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commutes where U, W are open sets in Rn, Rn+r respectively, T is an
open neighbourhood of t in Ak and the whole diagram commutes with
projection on A k.
The A-set Im(V, Q) has as typical k-simplex a simplex of immersions

of V in Q with face maps defined by restriction.
Now let oV ~ 0, then we can embed V in an unbounded manifold V +

by adding an open collar to ~V. An immersion of V in Q is a germ of
immersions of V+ in Q defined in some neighbourhood of V in V + .
Two being equivalent if they agree in some smaller neighbourhood. A
simplex of immersions is defined similarly and we get a restriction map

determined by choosing a collar on V’ in V.
Now let 03BE, ~ be microbundles. A fibre map of 03BE in il is a pair ( f, F)

where f : B(() - B(~) is a map and F : E(03BE) ~ E(~) is a map defined in
a neighbourhood of B(03BE) which restricts to f on B(03BE) and carries fibres
to fibres, i.e. the diagram

commutes.

For example if f : V+ - Q is any map defined in a neighbourhood of
V then df = (f, f f) is a fibre map of iy in ’rQ. Recall that iY = 03C4V+|V
and 03C4V+ is defined by the diagram

V+  V+  V+  V+.
( f, F) is a representation if it is locally trivial in the following sense.

For each x E B( ç) there are charts H : U x Rn -+ E( ç), 9 : W Rn+r ~

E(l) with x E im h so that

commutes where ç : U ~ W = g-1 o F o h.
Equivalently a representation is a fibre map which factors as

where i is the inclusion of a subbundle (cf § 0 of this paper).
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As an example, if f is an immersion then df is a representation. A
simplex of representations of 03BE in il is a representation of 03BE x dk in il-

We thus have a 4 -set R(03BE, il) and a 4 -map

It is easy to check that both 0394-sets satisfy the Kan condition.

THEOREM 1. d is a homotopy equivalence provided that if r = 0 no
component of V is closed.

THEOREM 2. t : lm(V, Q) ~ Im(V’, Q) is a Kan fibration onto its image
provided that if r = 0 each component of V- V’ meets either a V or an
end of v.
Now let 9 : V’ - Q be a fixed immersion and denote by Im9(Vl Q),

R~(03C4V, TQ) the subsets which agree with cp (resp. dcp) in some neigh-
bourhood of V’.

COROLLARY 1. d : Im~(V, Q) - R~(03C4V, LQ) is a homotopy equivalence
with the proviso of theorem 2.

PROOF. Consider the commutative diagram of 0394-maps

where u is given by restriction. u is a Kan fibration onto its image by
an easy homotopy extension argument. It follows from the 5-lemma

that the corresponding fibres of t and u are homotopy equivalent in
particular those lying over cp.

THEOREM 3. The restriction map

is a fibration onto its image where 03C8 = ~|M’ and provided if r = 0 each
component of Y- (V’ ~ M) meets b V or an end of V.
Now let X : M ~ Q be a fixed immersion with ~|M’ = 03C8 and denote

by Im.,,,(V. Q), Rlp,x( ’tv, ’tQ) the subsets which agree with 9 on V’ and
X on M.

COROLLARY 2. d : Im~,~(V, Q) ~ Rv,x(Ty, TQ) is a homotopy equival
ence with the proviso of theorem 3.

PROOF. Consider the diagram
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u is again defined by restriction. That u is a fibration onto its image follows
from the isotopy extension theorem. The result now follows, as in Corol-

lary 1; from the 5-lemma.

A2. Topological immersions of PL manifolds

In this section we prove theorems 1 and 2 in the case that V is a

compact pl. manifold and V’ is a pl. submanifold, these are stated in
lemmas 2 and 3 below. The proofs in this section follow those of [11 ]
very closely and we will give details only when the arguments differ
substantially.

LEMMA 1. Theorem 1 holds if V is a disc.
The proof of Lemma 1 is identical to [11; § 5].

LEMMA 2. Theorem 1 holds if V is a compact pl. manifold.

LEMMA 3. Theorem 2 holds if V is a compact pl. mani fold and V’ a
submanifold.

COROLLARY. Collorary 1 holds if V is a compact pl. manifold and V’
a pl. submanifold.

PROOF. Apply the proof of corollary 1.
Lemma 3 is the main burden of the section. We show that Lemma 3 ~

Lemma 2 and finally prove lemma 3.

LEMMA 4. Corollary 1 holds if V = Iq x IS and V’ is a neighbourhood of
ajq x r.

Lemma 4 follows from lemmas 1 and 3 by the argument on [11; p. 81].

PROOF OF LEMMA 2. We use induction on the number of handles of

some handle decomposition of V. Suppose V = V, u H where H is a
handle and the lemma holds for V 0 .

Consider the commutative diagram

the restriction of d to each fibre is a homotopy equivalence by Lemma 4.
Therefore, by the five lemma, d is a homotopy equivalence.

It remains to prove Lemma 3.
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Induced neighbourhoods
We recall from [11 ] that an induced neighbourhood of an immersion

f : V - Q is a triple (U, i, cp), where U is a manifold of the same dimen-
sion as Q, i is a closed embedding of V in the interior U and cp is an

immersion of U in Q extending f o i-1|i(V). The treatment of induced
neighbourhoods [11; § 7]. was in a topological setting so there s no need
for us to repeat it. In particular, they always exist and give a unique germ
of neighbourhood of V.
Now suppose V is a disc Bn. An induced neighbourhood (U, i, cp) is

standard if the pairs (U, iB) and (2In+r, In) are homeomorphic.

LEMMA 5. Standard induced neighbourhoods exist.

PROOF. (See also Lacher [26]). We show that any induced neighbour-
hood U of f:B ~ Q contains a standard neighbourhood. By local
flatness, we can choose a smaller disc D" c B which has a standard
neighbourhood W in U and we can assume that (Bn, Dn) ~ (In, 2In).
The isotopy which expands 2In onto In is locally trivial hence extends
to a homeomorphism of U carrying W onto the required standard
neighbourhood.

PROOF OF LEMMA 3. As in [11 ], we are given a cube of immersions
Fo : Ik x V - Q and on extension F’ : :I Ik  V’ ~ Q. We have to find
a further extension F : : I Ik x V - Q. We first remark that we can forget
about the complement of a neighbourhood of V-V’ in V and that we
may assume that is obtained from V’ by adding handles. Since the
composition of two fibrations is a fibration, we may assume that V is
obtained from V’ by adding a single handle. Combining these two
remarks, we may assume that V = Iq x IS and V’ = Iq x IS - (3 4)Iq x IS.
An induced neighbourhood U of an immersion f : V’ ~ Q is standard
if as pairs

(U, iV’) ~ (21q x 2F x 2Ir -(t)Iq x 21S x Ir, Iq x Is x {0}-(3/4)Iq x IS x {0}).

LEMMA 6. For all pairs (t, 03C4) ~ I Ik, the immersion F,, : V’ - Q,
given by F’|{t} x {03C4} x V’, has a standard induced neighbourhood.

REMARK. Lemma 6 is necessary in order to avoid the usage of the pl.
regular neighbourhood theorem made in [11; p. 90 second paragraph].

PROOF. By lemma 5, for t = 0, the required standard neighbourhood
is easily found inside a standard neighbourhood of (F0,03C4, V). In general,
the restriction of F’ to I x (i) x V’ is a regular homotopy between F’t,03C4
and F’0,03C4 for any t ~ I. Suppose t is the greatest lower bound of values
for which a standard induced neighbourhood of Fsi z does not exist. Let
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(U, i, ~) be any induced neighbourhood of F’t,03C4. Then there is an s &#x3E; 0

and an interval of embeddings in the interior of U,

extending i, and such that F’ | = ~P. Now F’t-03B5, 03C4 has a standard induced
neighbourhood and, by uniqueness of gems of induced neighbourhoods,
we may assume (by choosing a smaller standard neighbourhood) that
it is contained in the interior of U. Covering the isotopy P then yields
standard neighbourhoods of Fs,r: for all se [t-s, t+03B5], contradiction.
Hence standard neighbourhoods exist for all t, as required.
Now, as in [11; p. 88], we appeal to compactness of I Ik to reduce

to the case when the following condition is satisfied:

CONDITION c. There is a standard neighbourhood (Q, i, cp) induced by
F’0, o : V’ ~ Q and a cube of embeddings P’ : :I Ik  V’ ~ 03A9 such that

F’ = ~P’ and P’0,0 = iF’0,0.
From now on, the argument is virtually identical to the corresponding

parts of [11 ]. One first proves the lemma at the bottom of page 88, which
relies only on covering siotopies, and one can take the resulting neigh-
bourhood V" of V’ in V to be Iq Is-(1/2)Iq Is. Assuming r &#x3E; 0, the
formulae on page 90 of [11 ], then provides the required extension F of
F’-covering isotopies is again used essentially here. The case r = 0 is
also dealt with in the same way as in [11 ].

A3. Proof of the theorems

PROOF OF THEOREM 1. We show, making crucial use of the results of
§ A2, that d is a bijection on homotopy classes referred to any basepoint,
the result then follows from the Whitehead theorem for d-sets [36].

d* : 03C0i(Im(V, Q)) ~ 03C0i(R(03C4V, 03C4Q)) is suriective.
PROOF. We are given a sphere of representations of rv in rQ and we

have to construct a corresponding sphere of immersions of V in Q. For
simplicity suppose first that r &#x3E; 0 and choose a locally finite cover {Bj}
of V in V+ = V u collar, where each Bj is an n-ball with locally flat
boundary.

INDUCTION HYPOTHESIS. There is a sphere of immersions F : Si x Uj ~ Q
such that dF is hc motopic to the restriction of the given sphere of repre-
sentations, where Uj is an open neighbourhood of yj ~ ~j03B1=1 Ba in V + .
The induction starts with U, = B1 ~ open collar of B 1 using Lemma 1.

INDUCTION STEP. Let B = Bj+1 and A = B u closed collar of B in V.
Regard A as a pl.-manifold. Denote X = A n yj.
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LEMMA 7. There is a pl. manifold W of A such taht X c (interior of
WinA) c W c Uj nA.

PROOF. X is a closed subset of the metric space A and Uj n A is an
open subset. Therefore there is a 03B4 &#x3E; 0 such that N03B4(X, A) ~ Uj n A,
where Na (X, A) = {y|y E A, d(y, X)  03B4}. Triangulate A by a complex
K of mesh less than à/2. Define the subcomplex L c K to consist of all

(closed) simplexes which meet X. Define W = simplicial neighbourhood
M(L, K") where K" denotes a second derived complex. Then W c N03B4/2
(L, A) c N03B4(X, A) c Uj n A and X c L c interior of W in A, as

required.
Now FISi x W is a sphere of immersions corresponding to the given

sphere of representations of rw in rQ and this sphere of representations
extends to a sphere of representations of rA in LQ. I.e. we have (based)
maps of Si into three of the spaces in the following commutative diagram

and d4, dM are homotopy equivalences by Lemma 2. It follows that there
is a sphere of immersions F1 of A in Q which extends FISi x W and cor-
responds to the given sphere of representations (up to homotopy). Now
F : Si x Uj ~ Q and Fi : Si x A - Q agree on the open neighbourhood
W of B ~ yj and hence agree on some open neighbourhood Uj+1 of
yj+1, completing the induction step. Finally we remark that this induc-
tion defines a limit sphere of immersions of V in Q since the cover is
locally finite.

The case r = 0. In this case we can only appeal to Lemma 2 if each
component of A - W meets ôA. This need not happen, so remove a point
from each component which does not meet ôA. This is equivalent to
removing the interior of a disc and adding back an open collar. We can
therefore appeal to Lemma 2 to find a sphere of immersions of

A - {finite setl which extends the given immersions of W. In the limit
we get a sphere of immersions of V-X where X is a locally finite set.
We will show that id : V - V is isotopic to an embedding V - V-X
and we thus get the required sphere of immersions of V. Without loss of
generality assume V is connected. There are two cases (a) V is compact,
in which case X is finite and c V ~ 0 by hypothesis. In this case the
required isotopy is easily found, since we may isotope X into a collar
of SK (b) V is non-compact; then Tl has an end and we can embed R+
locally-flatly in V so that the image contains X and the end of R+ goes
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to the end of V. Now R+ has a standard neighbourhood in V (cf. Lacher
[26] for better results) and the required isotopy is now easily found.

We are given an annulus Si x I of representtaions of iv in iQ and two
spheres Si x {0} ~ Si  {1} of immersions corresponding up to homotopy.
For convenience extend (productwise) both the immersions and the
representations to Si  [-1, 0] ~ Si [1, 2]. Choose Bj as in the last
proof and use the same notation.

INDUCTION HYPOTHESIS. There is an annulus x [-1, 2] x Uj of im-
mersions in Q, which agree witht he given immersion on Si ([-1, 0] ~
[1, 2]) Uj and corresponds up to (based) homotopy with the given
representation.
The induction starts trivially with U0 = Ø and for the induction step

one considers the same diagram as in the last proof. We have based
maps of Si [-1, 2] into three of the spaces and a map of Si x

([-1, 0] u [1, 2]) into the fourth, all commuting up to homotopy. It

follows that there is a annulus Si x [ -1, 2] x A of immersions extending
the given immersions on si x ([-1, 0] ~ [1, 2] x A ~ S [-1, 2] x W.
As before this implies that we have defined an immersion on S’i x

[-1, 2] Uj+1 for some open neighbourhood Uj+1 of yj+1, satisfying
all the requirements.

This completes the proof of the case r &#x3E; 0 if r = 0 we again get only
a annulus of immersions of TY- X but by homotopy extension and the
isotopy used before this implies the required annulus of immersions of V.

PROOF oF THEOREM 2. Again for simplicity assume r &#x3E; 0 and choose

balls Bj as in the previous proofs. We are given a cube Fo : Ik x V - Q
of immersions and an extension F’ : I Ik V’ ~ Q. We have to con-
struct a further extension F : I Ik x V - Q.

INDUCTION HYPOTHESIS. There is a cube of immersions Pj : I Ik Uj
~ Q extending F0| ~ F’ where Uj is an open neighbourhood of

5i = r u ~j03B1=1 Bj in V+ = V u collar.
(Note that yj and Uj are defined in a different way than in the last

proof. )
The induction staarts since F’ is lready defined on a small neighbour-

hood of V’ in V+ (see the definition of immersion of a bounded mani-
fold). For the induction step define B = Bj+1, A = B ~ collar and

X = A n Yi and choose W as in lemma 7. By lemma 3 there is an

extension of Pj|I Ik  V ~ Fo 1 Ik x A to a cube of immersions Pj : I x
Ik x A ~ A. Pi and P’j agree in a neighbourhood of B n Y i and hence
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define Pj+1 in some neighbourhood Uj+1 of Yj+1, completing the
induction.

The case r = 0 is now dealt with as in previous proofs.

PROOF oF THEOREM 3. We are given a cube of immersions Fo : Ik x
V - Q and compatible extensions F’ : I x Ik x V’ - Q, G : I x Ik x
M ~ Q we have to construct a further extension F : I x Ik x V - Q.
Bi are chosen as in the previous proofs.

INDUCTION HYPOTHESIS. There is a cube of immersions Pj : I Ik

Uj ~ Q extending Fou F’ u G where U. is an open neighbourhood of
Yj V’ ~ M ~ ~j03B1=1 B; in V+.
The details of the induction step are exactly as in the last proof so it

is necessary only to start the induction i.e. to extend to some open

neighbourhood of M ~ V’. As before F’ is already defined in a neigh-
bourhood of Y’ in V +. Now by compactness of Ik x I we can assume
that F’ ~ G factors via an embedding and the required extension then
follows from the isotopy extension theorem, see the proof of the lemma
on p. 88 of [11].
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