Compositio Mathematica

V. W. Bryant
 The convexity of the subset space of a metric space

Compositio Mathematica, tome 22, $\mathrm{n}^{\circ} 4$ (1970), p. 383-385
http://www.numdam.org/item?id=CM_1970__22_4_383_0
© Foundation Compositio Mathematica, 1970, tous droits réservés.
L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

THE CONVEXITY OF THE SUBSET SPACE OF A METRIC SPACE

by

V. W. Bryant

Let (X, d) be a metric space and let d^{*} be the Hausdorff metric on the set X^{*} consisting of the non-empty closed bounded subsets of X. In this paper we consider what conditions on (X, d) will ensure that (X^{*}, d^{*}) is metrically convex.

Definition. (i) (X, d) is (metrically) convex if for any two distinct points $x, y \in X$ there exists $z \in X$, distinct from them both, with

$$
d(x, y)=d(x, z)+d(z, y) .
$$

(ii) (X, d) is a (metric) segment space if for any $x, y \in X$ there exists an isometry $f:[0, d(x, y)] \rightarrow(X, d)$ with $f(0)=x$ and $f(d(x, y))=y$.

It is clear that every segment space is convex, and it has been shown that the two concepts coincide in a complete space (see, for example, [1; p. 41]). Now, if $A \subseteq X$ and $0 \leqq \delta$, then the set A_{δ} is defined by

$$
A_{\delta}=\{x \in X: \exists a \in A \quad \text { with } \quad d(x, a) \leqq \delta\} .
$$

We note that in any metric space $\bar{A}=\bigcap_{n=1}^{\infty} A_{1 / n}$, and that in any segment space $A_{\gamma+\delta}=\left(A_{\gamma}\right)_{\delta}$ for $0 \leqq \gamma, \delta$. The Hausdorff metric d^{*} is defined on X^{*} by

$$
d^{*}(A, B)=\inf \left\{0 \leqq \delta: B \subseteq A_{\delta} \quad \text { and } \quad A \subseteq B_{\delta}\right\} \quad\left(A, B \in X^{*}\right)
$$

It is known that if (X, d) is compact (resp. complete), then $\left(X^{*}, d^{*}\right)$ is compact (resp. complete), proofs of these results being found in [3; p. 38] and [2; p. 29 IV].

We are now ready to investigate the convexity of $\left(X^{*}, d^{*}\right)$. Since $d^{*}(\{x\},\{y\})=d(x, y)$ for $x, y \in X$, it is clear that the convexity of $\left(X^{*}, d^{*}\right)$ implies the convexity of (X, d). The theorem below shows when the converse implication holds.

Theorem. If (X, d) is a compact convex metric space, then so too is $\left(X^{*}, d^{*}\right)$.

Proof. In view of the above remarks we need only show that (X^{*}, d^{*}) is convex. Let $A, B \in X^{*}$ with $d^{*}(A, B)=\delta>0$. Then by the compactness of (X, d) (and hence of $A, B) \overline{A_{\delta}}=A_{\delta}$ and $\overline{B_{\delta}}=B_{\delta}$. Since (X, d) is a segment space it follows that

$$
A \subseteq \bigcap_{n=1}^{\infty} B_{\delta+1 / n}=\bigcap_{n=1}^{\infty}\left(B_{\delta}\right)_{1 / n}=\overline{B_{\delta}}=B_{\delta}
$$

and similarly $B \subseteq A_{\delta}$. Let $C=A_{\delta / 2} \cap B_{\delta / 2}$. Then we show that $C \neq \phi$ (whence $C \in X^{*}$) and that $d^{*}(A, C)=d^{*}(C, B)=\frac{1}{2} d^{*}(A, B)$. If $a \in A \subseteq B_{\delta}$, then $d(a, b) \leqq \delta$ for some $b \in B$ and there exists $c \in C$ with $d(a, c)=d(c, b)=\frac{1}{2} d(a, b) \leqq \frac{1}{2} \delta$. Thus $c \in A_{\delta / 2} \cap B_{\delta / 2}=C$ and $a \in C_{\delta / 2}$. This shows that $C \neq \phi$ and $A \subseteq C_{\delta / 2}$, and similarly $B \subseteq C_{\delta / 2}$. Thus $C \in X^{*}, d^{*}(A, C) \leqq \delta / 2$ and $d^{*}(C, B) \leqq \delta / 2$. But

$$
\delta=d^{*}(A, B) \leqq d^{*}(A, C)+d^{*}(C, B) \leqq \frac{1}{2} \delta+\frac{1}{2} \delta=\delta
$$

and so $d^{*}(A, C)=d^{*}(C, B)=\frac{1}{2} d^{*}(A, B)$ as required. Hence $\left(X^{*}, d^{*}\right)$ is a convex space and the theorem is proved.

We now give examples to show that neither the total-boundedness nor the completeness of a convex space (X, d) necessarily implies the convexity of (X^{*}, d^{*}).

1. Let X be the subspace of 3-dimensional Euclidean Space given by

$$
\begin{aligned}
& X=\left\{(x, y, z): x^{2}+y^{2}<1,|z| \leqq 1\right\} \cup\left\{(x, y, z): x^{2}+y^{2}=1\right. \\
&x \text { rational, } z=-1\} \cup\left\{(x, y, z): x^{2}+y^{2}=1, x \text { irrat }, z=1\right\} .
\end{aligned}
$$

Then (X, d) is a totally bounded segment space. However, by considering

$$
\begin{aligned}
& A=\left\{(x, y, z) \in X: x^{2}+y^{2}=1, z=-1\right\} \in X^{*} \\
& B=\left\{(x, y, z) \in X: x^{2}+y^{2}=1, z=1\right\} \in X^{*}
\end{aligned}
$$

we see that $\left(X^{*}, d^{*}\right)$ is not convex.
2. Let X be the normed vector space of all real null sequences with metric d induced by the usual norm. Then (X, d) is a complete segment space and we show that $\left(X^{*}, d^{*}\right)$ is not convex. For if

$$
A=\left\{\left\{x_{n}\right\} \in X: x_{n} \neq 0 \text { for an odd no. of } n, \text { and } x_{n}=1+1 / n\right.
$$ whenever $\left.x_{n} \neq 0\right\} \in X^{*}$

$$
B=\left\{\left\{x_{n}\right\} \in X: x_{n} \neq 0 \text { for an even no. of } n, \text { and } x_{n}=1+1 / n\right.
$$ whenever $\left.x_{n} \neq 0\right\} \in X^{*}$,

then $d^{*}(A, B)=1$ and $\overline{A_{\frac{1}{2}}} \cap \overline{B_{\frac{1}{2}}}=A \frac{1}{2} \cap B \frac{1}{2}=\phi$. Thus there exists no $C \in X^{*}$ with $d^{*}(A, C)=d^{*}(C, B)=\frac{1}{2} d^{*}(A, B)$. It follows that $\left(X^{*}, d^{*}\right)$ is neither a segment space nor a convex space.

Finally we give an example to show that the existence of a segment from $\{x\}$ to $\{y\}$ in $\left(X^{*}, d^{*}\right)$ does not imply the existence of a segment from x to y in (X, d).
3. Let X be the subset of R^{2} given by $X=\{(x, y):|x|<1,0 \leqq y \leqq 1$ and $(x$ is rational if and only if y is $)\} \cup\{(-1,0),(1,0)\}$, and define a metric d on X by
$d\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right)=\left|y-y^{\prime}\right| \cdot\left(1-\max \left(|x|,\left|x^{\prime}\right|\right)\right)+\left|x-x^{\prime}\right|$,
$\left((x, y),\left(x^{\prime}, y^{\prime}\right) \in X\right)$.
Then $d^{*}(\{(-1,0)\},\{(1,0)\})=2$ and the mapping $f:[0,2] \rightarrow\left(X^{*}, d^{*}\right)$ given by $f(\lambda)=\{(x, y) \in X: x=\lambda-1\}$ for $\lambda \in[0,2]$ is an isometry with $f(0)=\{(-1,0)\}$ and $f(2)=\{(1,0)\}$. This is therefore a segment between $\{(-1,0)\}$ and $\{(1,0)\}$ in $\left(X^{*}, d^{*}\right)$. However, there exists no segment between $(-1,0)$ and $(1,0)$ in (X, d).

REFERENCES

L. M. Blumenthal
[1] Distance Geometry, Oxford, 1953.
C. Kuratowski
[2] Topologie I (2nd edition), Warsaw, 1948.
C. Kuratowski
[3] Topologie II, Warsaw, 1950.
(Oblatum 16-III-1970)
Dr. V. W. Bryant,
Department of Pure Mathematics, The University of Sheffield, England.

