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1. Introduction

In [4], Valiron proved that an analytic function g(z) in the unit disk,
which is a solution of a first order equation P(z, y, y’ ) = 0, where P is
a polynomial, must be of finite order of growth (i.e. lim supr~1 [log
(log M(r; g))/log((1-r)-1)]  +00, where M(r; g) is the maximum

modulus of g). We treat here a broader class of equations, namely those
first order equations of the form 03A9(z, y, y’) = 03A3 Qkj(Z)yk(y’)j = 0,
where Q is a polynomial in y and y’, whose coefficients are subject to
the following restriction: If p = max {k+j: Qkj ~ 01, then we allow
Qkj(z) to be an analytic function of finite order in the unit disk if
k + j  p, while if k + j = p, we require Qkj(z) to be a polynomial.

In this paper we investigate solutions of Q(z, y, dy/dz) = 0 which are
meromorphic in the unit disk (i.e. meromorphic functions h(z) in Izl  1

such that 03A9(z, h(z), h’(z)) = 0 at each point z where h is analytic). More
specifically, we deal with the following problem: If a meromorphic
solution in |z|  1 is represented as the quotient of two analytic functions
in |z|  1, what can be said about the orders of growth of these analytic
functions? In particular, we would like to show that a meromorphic
solution h(z) in |z|  1, cannot be written as the quotient of two analytic
functions f/g, where g is of finite order in |z|  1 and f is of infinite
order in |z|  1. However, we cannot prove this result without an addi-
tional assumption on h(z) because of the following difficulty which
arises: Our technique consists in viewing a first order equation which
has h = f/g for a solution, as a relation betweenf, g and their logarithmic
derivatives. Now if f is of infinite order in Izl  1, then the Valiron-
Wiman theory for the unit disk [4; p. 299], provides a useful relation
between the values of f(z) and f’(z)/f (z) at certain points on some

* This research was supported in part by the National Science Foundation (GP
7374).
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sequence of ’remarkable’ circles |z| - Yn where limn~~ rn = 1. These

certain points on |z| = r n are those z where |f(z)| is sufficiently close to
M(rn; f) in the sense that |f(z)| ~ M(rn; f)(log M(rn;.f))-Ã for some
non-negative constant 03BB  1/2. On the other hand, if g(z) is of finite
order in Izi  1, then of course, as Izi ~ 1, Ig(z)1 is easily estimated, but
obviously as Izi ~ 1, there is difficulty in estimating the growth of

|g’(z)/g(z)| whenever z is in the immediate neighbourhood of a zero of g.
We prove (see § 4 below) that there exist small disks around the zeros of
g such that if D is the union of these disks, then as Bzl ~ 1 in the comple-
ment of D, Ig’(z)jg(z)B = 0«l - Izl)-’) for some A ~ 0. Thus the

information on f(z), f’(z)/f(z), g(z) and g’(z)/g(z) can be used together
with the differential equation (and will yield a contradiction) provided
an additional assumption is imposed to insure that as r - 1, there is at
least one point on izl = r, not in D, at which |(z)| is sufficiently close to
M(r; f) in the sense that |(z)| ~ M(r; f)(log M(r;f))-Ã. Thus if

W(r, f; g) denotes max {|f(z)|:|z| r, z e DI, then our main result

states that a meromorphic function h(z) in IzB  1, which is a solution
of the first order equation Q(z, y, y’) = 0, cannot be written as the
quotient of two analytic functions f/g where g is of finite order in BzB  1

while f is of infinite order in Bzl  1, and where

The condition (A) is of course automatically satisfied for the broad
class of functions f/g, where g is of finite order in 1 z  1, f is of infinite
order in Izi  1, and where for all r in some interval [ro, 1), I.f(z) 
assumes its maximum value M(r;f) at some point on Izi = r not lying
in D. (In this case, M(r; f) = W(r, f; g) on [r 0, 1).) In the other case
(i.e. where W(r, f; g)  M(r;f) for a sequence of r tending to 1), we
show in § 6 that there are examples where condition (A) is satisfied and
examples where it is not satisfied.

In view of our main result, all analytic solutions of cquations in the
class treated here must be of finite order in the unit disk. However, we
remark that such equations can possess meromorphic solutions of in-
finite order in the disk (e.g. (sin exp (1/(1-z)))-1).

2. Définition

Let g(z) be an analytic function in Izi  1 which is not identically zero
and which is of finite order in Izi  1. Let al, a2, ··· be the sequence of

zeros of g(z) in 0  Izl  1, arranged so that |a1| ~ |a2| ~ ···. Since g
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is of finite order, there exists 6 ~ 0 such that 03A3n~ 1 (1-lan/)G  + oo

(see [1; p. 140]). Following Tsuji i [3], let 03BC ~ 0 be the convergence
exponent of the sequence {an} (i.e. jn = 0 if 03A3n~1 (1-lan/)  + ~, while

if 03A3n~1 (1-|an|) = + ~, then let 03BC ~ 0 be such that 03A3n~1 (l-lan/)tt+ 1-£
= + oo and 03A3n~1 (1-|an|)03BC+1+03B5  +00 for every e &#x3E; 0). For each n,
let Dn be the disk Iz-anl  (1-|an|)03BC+4, and let D = ~n~1 Dn. Then
clearly the closure of each Dn lies in Izl  1, and it is proved in [3; p.
14] that the radii of the Dn satisfy the condition

(It easily follows that for any r E [0, 1), there is an r’ ~ (r, 1) such that
the circle Izl = r’ is disjoint from D).

Let f(z) be any analytic function in Izi  1 which is not identically
zero. We define the maximum modulus of f relative to the zeros of g to be
the function,

It follows easily from (1) that there exists an interval [r *, 1) on which
W(r, f; g) is defined and is nowhere zero.

3. Main theorem

Let Q(z, y, y’ ) = 03A3Qkj(z)yk(y’)j be a polynomial in y and y’ whose
total degree in y and y’ is p. If k + j  p, let Qkj(z) be analytic and of
finite order in |z|  1, while if k+j = p, let Qkj(z) be a polynomial.
Then a meromorphic function h(z) in Izl  1, which is a solution of

Q(z, y, y’) = 0, cannot be written as the quotient of two analytic func-
tions f/g in Izl  1, where g(z) is of finite order in Izi  1, while f(z) is
of infinite order in Izi  1, and where for some real number 03BB  1/2,

4.

Before proving the main result, we prove a lemma which shows the
significance of the disks Dn of § 2.

LEMMA A: Let g(z) be an analytic function in Izl  1 which is not

identically zero and which is of fzni te order in izi  1. Let {an} be the
sequence of zeros of g in 0  Izi  1, and let Il ~ 0 be the convergence
exponent of {an}. For each n, let Dn be the disk 1 z - an  (1-|an|)03BC+4,
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and let D be the union of the Dn . Then there exist real numbers ro E [0, 1),
Lo &#x3E; 0 and A &#x3E; 0 such that for r E [ro, 1),

PROOF: Let q be a non-negative integer such that

It is easily verified that for any e &#x3E; 0, there exists no such that for n ~ no,
1-|an|2 ~ (lj2)ll-iinzl on |z| ~ 1-03B5. Hence in view of the inequality,
|Eq+1(u)-1| ~ 3|u|q+2 for |u| ~ 1/2 (see [2; p. 297]), and the fact that
03A3n~1 (1-|an|)q+2 converges (in view of (5)), it is easy to see that the

product defining S(z) converges uniformly in each compact subset of
|z|  1, and hence S(z) represents an analytic function in /zl  1 whose

sequence of zeros is {an}. We note here that S(z) differs slightly from the
canonical product of Tsuji [3; p. 8], which is defined as

where t is the smallest non-negative integer such that 03A3n~1 (1-|an|)t+1
converges. However, it is easy to verify that the proof and conclusion of
[3; Theorem 1 ] on the growth of the canonical product, hold for our
function S(z) with t replaced by q + 1. That is,

Since |1-anz| ~ 1-|z|, and since 03A3n~1 (1-|an|2)q+2 converges (in view
of (5)), it follows from (6) that

Let g(z) have a k-fold root at z = 0 (k ~ 0). Then z-kg(z) and S(z)
are both analytic and have the same sequence of zeros in Izi  1. Hence

there is an analytic function cp(z) in Izi  1 which is nowhere zero, such

that Z-kg(z) = cp(z)S(z). We may write g(z) = e03C8(z) where 03C8 is analytic
in z f  1, and hence,
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Thus,

Now an easy computation (see [2; p. 292]) yields,

where,

Let z e D. Then there are only finitely many n such that (1-|an|2) ~
(1/2)|1-anz| since for such n, |an| ~ ((1 + Izl)/2)t. We write (10) as,

where il corresponds to all n such that (1-|an|2) ~ (1/2)|1-anz|,
while E2 corresponds to all n such that (1-/anI2)  (1/2)|1-anz|.
We first consider 1 1 . Since z e D, |z-an| ~ (1-|an|)03BC+4 for each n in

il. Thus |z-an| ~ 2-(03BC+4)(1-|an|2)03BC+4, and hence by assumption
about Ll, |z-an| ~ 2-(203BC+8)|1-anz|03BC+4. Thus,

Since |1-anz| ~ 1-lzl and since 03A3n~1(1-|an|2)q+2 ~ 2q+1b (by (5)),
we have

Now consider 03A32. For such an n, (1-|an|2)  (1/2)|1-anz|. It easily
follows that Iz- (l/an)1 &#x3E; 2(1-|an|2)/|an|. · Since |z-(1/an|) ~ |z-an|+
|an-(1/an)|, we easily obtain, |z-an| ~ (1-|an|2)/|an|. Thus,

Since 1 a.  1 and |1-anz| ~ 1-|z|, we have (in view of (5)),

In view of (12), (14) and (16), we obtain for z e D,

where K1 = (2203BC+q+9+2q+1)b.
We now consider the function ~(z) = eV1(z), which by (8) satisfie-

~(z) = z-kg(z)/S(z). Letting T(r, -) represent the Nevanlinna characs
teristic [1; p. 12], we have by [1; pp. 11, 14] that
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where K2 is a constant. By hypothesis, g is of finite order in Izi  1, and

by (7), S is of finite order in |z|  1. Since Zk is also of finite order in

Izi  1 (being bounded), it follows easily from (18) that cp is of finite

order in |z|  1. Thus there exist r * E [0, 1) and u &#x3E; 0 such that for

r ~ [r*, 1),

Since cp - et/!, we thus have,

But by an inequality of Caratheodory [2; p. 338], if r ~ R  1,
M(r; 03C8) ~ (R-r)-1(R+r)(A(R)+|03C8(0)|) where A(R) = maxlzl=R Re
03C8(z). Applying this with R = (1 + r )/2, where r e [r *, 1), we obtain (in
view of (20)),

Let ro = max {r*, 1/2}. Then if r E [ro, 1) and z is on Izl = r, we have
by the Cauchy formula for derivatives that

where we obtain,

Finally, since r0 ~ 1/2, we have

In view of (9), (17), (22) and (23), if we set A = max {q+03BC+6, 03C3+2}
and Lo = K1+203C3+2K3+3k, then for r E [ro, 1), we have

This proves Lemma A.

5. Proof of the theorem of § 3

We assume the contrary and suppose that there exists a meromorphic
function h(z) in |z|  1 which is a solution of the first order algebraic
differential equation Q(z, y, y’) = 0, and which can be written as the
quotient of two analytic functions f/g, where g is of finite order in Izi  1,
f is of infinite order in Izi  1 and condition (3) holds.
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Thus,

By hypothesis concerning the coefficients Qkj(z), there exist constants
L &#x3E; 0, d &#x3E; 0 and r * (0 ~ r *  1 ) such that,

Let m be defined by,

and consider the coefficient Qp-m,m. We now prove,

LEMMA B : There exist real numbers r1 E [r *, 1), c ~ 0 and L1 &#x3E; 0 such

that when r E [r1, 1),

PROOF: We may write Qp-m,m(z) = K(z-b1)··· (z-bd), where

K ~ 0 and where the roots b1, ..., bd are so arranged that b1, ..., bs
lie in Izi  1, bs+1, ···, bt lie on Izi = 1 and bt+1, ···, bd lie in izl &#x3E; 1.

Let y = max {|bj| : 1 ~ j ~ sl and let r, = (1 + y)/2. Then for r E [r1, 1)
and j = 1, ’ ’ ’, s we clearly have |z - bj| ~ (1-03B3)/2 on 1 z = r. For
j = s+ 1, ..., t, we have Ibjl = 1 so clearly |z-bj| ~ 1- r on Izl = r.
Finally if yi = min {|bj|:t+1 ~j~ d}, then y 1 &#x3E; 1 and clearly,
|z-bj| ~ 03B31-1 on |z|  1 for j = t+1,···, d. Setting c = t - s and

L1 = |K|((1-03B3)/2)s(03B31-1)d-t, we clearly obtain (29), proving Lemma B.
Since g(z) is of finite order in Izl  1, there exist real numbers

r2 E [0, 1) and B &#x3E; L1 such that

Letting {an} be the sequence of zeros of g in 0  izi  1 with convergence

exponent jn ~ 0 and letting D be the union of the disks |z-an| 
(1-|an|)03BC+4, then by Lemma A there exist r0 ~ [0, 1), L o &#x3E; 0 and

A &#x3E; 0 such that for r E [ro, 1),

We now consider f(z). Let ¿i= 0 Hjzj be the power series expansion
of f(z). For each r ~ [0, 1) let N(r) = maxj~0 |Hj|rj and n(r) =
max : |Hj|rj = N(r)}. For convenience let M(r ) = M(r; f ) and

W(r ) = W(r, f; g) (where W is as in § 2). Then since f(z) is of infinite
order in |z|  1, the following is proved in [5; pp. 209, 210, 212]: If oc is
any real number in (0, 1) and t is a positive integer such that the corre-
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sponding number 13 = (t+ 1)-l(t+2)(I-(aj2)) is less than 1, then there
exists in (0, 1) a sequence of values of r (called remarkable) tending to
one, such that,

where 03B4 = (1- a)-1 and y’, y" are strictly positive constants indepen-
dent of r,

and such that at every point of Izl = r,

where K’ is a positive constant independent of r.
We now construct the value of a for which we will apply the Valiron

theory, (32)-(34) above. By condition (3), there exist constants r3 E [0, 1)
and K4 &#x3E; 0, such that

Since Â  1/2, let 0 e (0, 1/2) be such that 03BB + 03B8  1/2. Since the function
t ~ (t+1)-1((t+2)/2) tends to 1/2 as t ~ +oo, there exists a positive
integer to such that (t0 + 1 )-1((t0 + 2)/2)  (( 1 + 0)/2). Now each of the
four numbers, 1-(t0+2)-103B8(t0+1), c/(1 + c), B/(1 + B), A/(1 + A), is

less than 1 (where c, B, A are as in (29), (30), (31 )). Let a be a real
number such that,

Then a E (0, 1), and using t = to, the corresponding

clearly satisfies,

Thus f3  1, and hence we can apply (32)-(34) for the value of a given
by (36).
Now define e(z) at points z where f(z) ~ 0, by the relation,

We note by the definition of W(r ) in § 2, that for each r in some
interval [r *, 1), there is at least one point z 0 D lying on Izl - r at which
If(z) = W(r ). We now prove:
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LEMMA C: There exists r4 E [r *, 1) such that for any remarkable value
r E [r4 , 1), we have

at which |f(z)| = W(r).
PROOF: By (34), (35) and (38), it follows that for any remarkable

r ~ max {r3, r*}, we have,

at each point of |z| = r at which lf(z)l = W(r ). Now by [5; p. 196], for
any R o e (0, 1),

We apply (41) with Ro = 3/4. Then noting [5; p. 195] that since f is of
infinite order,

(42) n(r) is a non-decreasing function of r, with limr~1 n(r) = + 00,

we have by (41) that N(r) ~ N(3/4)en(r)/3 if r ~ (3/4, 1 ). Thus by (33),
for any remarkable r &#x3E; 3/4, we have

Since limr~1 n(r) = +00, it follows from (43), that there exists

r’ E (3/4, 1) such that M(r )  en(r) for all remarkable r &#x3E; r’. Hence,
since 13  1, we obtain from (40), that

at each point of Izl = r at which |f(z)| = W(r), if r is a remarkable
value ~ max {r3, r *, r’}. But -1+03B2+03BB  0 by (37) and the definition
of 0. Hence since log M(r) ~ + 00 as r ~ 1, the right side of (44) tends
to zero as r ~ 1, and so is less than 1/2 for all r greater than some
number r4 E [r *, 1). This proves Lemma C.
Now h = flg satisfies the relation,

at all points z where h is analytic. Let r E [r4, 1) and let z e D be a point
on |z| = r at which If(z) = W(r). Then f(z) ~ 0 and g(z) ~ 0, and so
by dividing equation (45) through by (h(z))P (where p is as given), and
noting that h’/h = (f’/f) - (g’/g), we can write (45) in the form,
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where

and

Let R 1 = max1~j~4 rj.
We now assert that there exists r5 E [Ri, 1), such that for any remark-

able r E [r5, 1),

at each point z e D on Izi = r at which If(z)1 = W(r ).
To prove (49), we note first that since M(r) - + oo as r - 1, it

follows from (35) that W(r) ~ + oo as r - 1. Since also n(r) ~ + o0
as r ~ 1 (by (42)), there exists R2 E [R1, 1) with R2 &#x3E; 1/2, such that

Let r be a remarkable value in [R2, 1), and let z e D be a point on
Izi = r at which lf(z)l = W(r). We refer to the right side of (48). If
k+j  p, then p-(k+j) ~ 1, so

Hence by (35),

Thus,

Also by (27) and B &#x3E; A, |Qkj(z)| ~ exp((1-r)-B) and |g’(z)/g(z)| ~
L0(1-r)-A. Since 1,8(z)l  1/2 by (39), we have by (38) that

Thus noting that j  p if k +j  p, we have from (48) and the above
estimates that,

where
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for some constant KS &#x3E; 0. Then u(r) ~ 0, and we will show that

u(r) ~ 0 as r - 1 through remarkable values. Now it follows from (32)
that

Thus clearly,

where (J 1 , (J 2 are constants. Since M(r) ~ + oo as r - 1, clearly the
right side of (52) tends to zero as r - 1. Hence there exists r5 E [R2, 1)
such that u(r )  1 for r E [rs , 1). In view of (51), this proves (49).
We now consider ll(z) given by (48). We distinguish two cases:

CASE I: m = 0. Then 039B(z) = Qp,o(z). Since 039B(z) = 03A6(z) by (46), we
have by (29) and (49) that L1(1-r)c ~ (M(r))-1/2exp(p’(1-r)-B) for
all remarkable r E [rs, 1). But by (32), M(r) &#x3E; exp(03B3’(03B3’’)03B1(1-r)-03B103B4).
Hence we obtain,

(53) (1-r)2cexp(03B3’(03B3’’)03B1(1-r)-03B103B4-2p’)(1-r)-B) ~ (1/L,)’,
for all remarkable r E [rs , 1). But 03B3’(03B3’’)03B1 &#x3E; 0 and since a &#x3E; B/(1+B)
by (36), we have ab &#x3E; B &#x3E; 0. Hence the left side of (53) clearly tends
to + oo as r ~ 1, and so (53) is impossible (since there exist remarkable
values tending to 1). This contradiction proves the theorem in the case
m = 0.

CASE II: m &#x3E; 0. We first note that ll(z) may be written in the form,

where

We consider Pj(z) at points z e D on Izi = r at which /f(z)/ = W(r ),
where r is a remarkable value in [rs , 1). By (38),

Since IR(z)1  1/2 by (39) and since r  1, |f’(z)/f(z)| ~ n(r)/2. Thus
by (32), |f’(z)/f(z)| ~ (03B3’’/2)(1-r)-03B4. By (3 1), |g’(z)/g(z)| ~ L0(1-r)-A.
Hence,
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By (36), oc &#x3E; A/(1+A) and so 03B4 &#x3E; A+1. Thus(1-r)03B4-A~0 as r ~ 1,
so from (56) there exists r6 E [r5, 1) such that

Hence in view of (27), (29) and (57), we have for j = 0, 1, ···, m-1,

when r is a remarkable value in [r6, 1). But since m - j ~ 1, (m - j)03B4 ~ 03B4,
and since a &#x3E; cj(l +c) by (36), we have b &#x3E; c. Thus the right side of

(58) tends to zero as r ~ 1, so there exists r7 E [r6, 1) such that for
remarkable r in [r7, 1), we have,

By (54),

Thus in view of (29), (57) and (59), we have that when r is a remarkable
value in [r7’ 1), then,

at each point z e D on |z| = r at which |f(z)| = W(r).
Since A(z) = 03A6(z) by (46), we have by (49) and (60) that when r is a

remarkable value in [r7, 1), then

where K6 is a strictly positive constant. Since

by (32), we thus obtain,

for all remarkable r ~ [r7, 1). But since a &#x3E; B/(1+B), we have

ab &#x3E; B &#x3E; 0. Since also 03B3’(03B3’’)03B1 &#x3E; 0, clearly the left side of (61) tends
to + oo as r ~ 1 and hence (61) is impossible (since there exist remark-
able values tending to 1). This contradiction proves the theorem in Case
II and thus the proof of the theorem is complete.

6. Remarks and examples concerning condition (3)
We discuss here the condition (3):
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which is a relation between the two functions,f’ and g, each analytic in
Izi  1, g being of finite order. The condition is of course automatically
satisfied for the broad class of pairs ( f, g) where for all r in some interval
[ro, 1), the maximum value of |f(z)| on |z| = r is assumed at some

point outside the union of the small disks Dn around the zeros of g,
which are described in § 2. (In this case, M(r; f ) = W(r, f; g) for all
r E [r 0, 1).)

In the other case (i.e. where M(r; f) &#x3E; W(r, f; g) for a sequence of r
tending to 1), we now show that there are examples where (3) is satisfied
and examples where it is not satisfied.

First we show that if f(z) = exp(exp((1-z)-1)) and g(z) = sin
(n(l -z)-’), then (3) is not satisfied. Here, M(r;f) &#x3E; W(r, f; g) for a
sequence of r ~ 1, since the maximum of If(z)1 on Izi = r is achieved
only on the positive real axis, while in |z|  1 the non-zero roots of g
are an = 1 - (lin) for n = 2, 3, ···, which are positive real numbers.
The exponent of convergence of the sequence {an} is p = 0. We now con-
sider W(r, f; g) for r = an = 1-(l/n). The disk Dn of § 2 is Iz-rl 
(1-r)4. An easy calculation then shows that

where

Writing

it easily follows that e(r) = (1 - r )6 cp(r) where limr~1 cp(r) = 1. Since
log M(r;f) = exp(1-r)-1), we see that,

log M(r; f)-log W(r, f; g) ~ exp((1-r)-1)[1-exp(-03B5(r)/(1-r))],
from which it easily follows that for all sufiiciently large n,

It is now easy to see that for any À,

tends to + oo as r tends to 1 through the sequence r = 1-(1/n). Hence
in this example, condition (3) is not satisfied.
To construct examples where M(r;f) &#x3E; W(r, f; g) for a sequence of
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r ~ 1, but where condition (3) is satisfied, we modify the above example.
Again let f(z) = exp(exp((1-z)-1)), and let b(r) be a positive function
on some interval (r’, 1) such that b(r)  1/2. Let ro be such that
1 &#x3E; ro &#x3E; max {r’, 1/21, and for each r E [ro, 1), define u = u(r) by the
relation

Then it is easy to verify that - r  u(r )  r, and so there exists v(r) &#x3E; 0

such that z(r ) = u(r)+iv(r) lies on Izi = r. Since each z(r ) lies above
the real axis, we can choose, for each integer n ~ (1- ro)-1, a point an
on izi = 1- (lIn), such that the disk Dn : Iz-anl  (1-|an|)4 intersects
the positive real axis, but does not contain any point z(r ) (where
r ~ [r o , 1)). The exponent of convergence of {an} is zero, and so by
[3; p. 8], we can form the canonical product g(z) with zeros at the points
an for n ~ (l-ro)-l. 9 is of finite order in izl  1 by [3; Theorem 1].
By construction, M(r; f) &#x3E; W(r, f ; g) when r = 1- (lin) for each

n ~ (1-r0)-1. We now derive a condition on ber) to guarantee that
condition (3) will be satisfied. Since for each r E [ro , 1), z(r ) does not
lie in the union of the disks Dn(n ~ (1-r0)-1), clearly W(r, f; g) ~
I!(z(r )1 for r E [ro, 1). Hence,

where b(r) = v(r)/(1-2u(r)+r2). A routine calculation shows that

(b(r))2 ~ 203B4(r)(1-r)-2. Hence if 03B4(r) is chosen so that 03B4(r)(1-r)-2 ~
0 as r ~ 1, then on some interval [rl , 1 ),

Since log M(r;f) = exp(l- r )-1), it follows from (62) that

Subtracting and adding the term cos b(r) exp ((1-r)-1) to the right
side of (64), and using (63), it follows that on some interval [r2, 1),
(65) log M(r; f)-log W(r, f ; g) ~ 4b(r )(l-r )-2 exp ((1-r)-1).
Hence if Â  1/2 and 03B4(r) is chosen to be any positive function which
satisfies,

(66) 03B4(r) ~ (03BB/4)(1-r)exp(-(1-r)-1),
on some interval [r3l 1), then in view of (65), condition (3) will be
satisfied for the corresponding pair (f, g).
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