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1. Introduction

In this paper we wish to present some properties of isols and regressive
isols that are closely related to infinite series of isols. In [14] A. Nerode
associated with each set a of non-negative integers, a particular set 03B1039B of

isols. The results presented in the paper were obtained when the following
problem was considered: Can we characterize the regressive isols that
belong to 03B1039B? In [3 ] J. C. E. Dekker introduced and studied a special
kind of isol, denoted by 03A3Tan and called an infinite series of isols. Of
particular interest are the infinite series that represent regressive isols.
Properties of some special infinite series of this kind were studied in
[8], [4] and [6]. Let a be any set of non-negative integers. The principal
aim of this paper is to show that the regressive isols that belong to 03B1039B
can be characterized as being those isols that are representable as a
particular type of infinite series of isols.

2. Preliminaries

We let E denote the collection (0, 1, 2,...) and the members of E are
called numbers. By a set we will mean a subset of E. A set ex is immune

if a is infinité and a does not contain any infinite recursively enumerable

(written r.e.) subset. If f is a function from a subset of E into E then (Jf
will denote the domain of f and pf the range of f. A one-to-one function
an from E into E is regressive, if there is a partial recursive function p(x)
such that

It is readily seen that for every regressive function an there also exists a
partial recursive function p(x) which satisfies, besides (1) and (2) the
conditions

* The authors were partially supported by the National Science Foundation.
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If a" is a regressive function, then every partial recursive function p(x)
satisfying (1), (2), (3) and (4) is called a regressing function of an . Let
p(x) be a partial recursive function satisfying (3) and (4). The function

is the index function of p(x). Note that if p(x) is a regressing function
of the regressive function an then p*(x) is partial recursive with (Jp as
its domain and for each number n, p*(an) = n. j(x, y) will denote the
familiar primitive recursive function that maps E2 onto E in a one-to-one
manner, and defined by

For any number n and set oc,

Let A be any regressive isol and u,, any function from E into E. If A is
finite and A = k, then

if k &#x3E; 1 and equals 0 if k = 0. If A is an infinite regressive isol, then

where an is chosen to be any regressive function that ranges over a set in A.
While the value of l A Un will depend on the particular regressive isol A
and function Un, it will not depend on the particular regressive function
an that is chosen to range over a set in A, when A is infinite. In the special
case that u,, is a recursive function then l A Un will be a regressive isol by
[1, Theorem 1 ]. Let an and u,, each be functions from E into E. Then

an ~* u,, will mean that mapping an ~ un has a partial recursive extension.
If A is a regressive isol, then A ~ * un will mean that either A is finite or
else A is infinite and there is a regressive function an that ranges over a
set in A statisfying the property an ~ * un . Note that when an is any
regressive function then an ~ * n. It is readily seen from this fact that
when A is any regressive isol and un is any recursive function then

A  * un. In the special case that A is a regressive isol and A ~ * un
then 03A3Aun will also be a regressive isol by [4, Propositions 5 and 7].
We let A denote the collection of all isols and AR the collection of all
regressive isols. Let a be any set of numbers. Then liA will denote the
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Nerode extension of a to the isols and ocR will denote the collection of

regressive isols belonging to 03B1039B, i.e., ocR = 039BR n 03B1039B. In the next section

we will describe the extension procedure that leads to the definition of

03B1039B. Throughout the paper we will assume that the reader is familiar with
some of the basic properties of regressive isols.

Regarding references in the paper to formulas that do not first appear
in the proofs of theorems, we adopt the following convention. In each
section, when referring to a formula of the same section we simply
write the formula number, and when referring to a formula of a different
section we indicate this with the section number and a period before the
formula number. For example, a formula labeled (6) in section § 3,
would be referred to in § 3 by (6) and in § 4 by (3.6).

3. The extension procedure

Q will denote the collection of all finite sets and the mapping cp : Q ~ E
will denote a fully effective Gôdel numbering of Q. The value of ~(03B1)
will also be written as a*. A collection F of finite sets is a frame if

A set f3 is attainable from a frame F, denoted by f3 Ed(F), if for each
finite set il 5; f3 there is a set à E F such that

Because F is a frame there will correspond to the set il a unique smallest
set ô E F for which (2) holds, and this particular member of‘ F is denoted
by CF(~). Note that a finite set is attainable from a frame F if and only if
the set belongs to F. In addition, it is easy to see that if H is a non-empty
directed subset of a frame F, in the sense that

then the set

will also be attainable from the frame F. An isol B is attainable from a

frame F, denoted by B~A(F), if B = Reqf3 for some f3Ed(F). Let a
be any set and F a frame, then F is an a-frame if

For F any frame, let
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03B4F will be a collection of finite sets. A frame F is recursive if

and the mapping

is partial recursive.
Note that if F is a frame, then F* r.e. implies that 03B4F* is also r.e..

In addition, the following property follows from (3), (4) and (5); if F
is a recursive a-frame and

then w is an r.e. subset of a and F is a recursive m-frame. The extension

procedure introduced by Nerode in [14] can now be defined. Let a be
any set of numbers, then 03B1039B is defined to be the collection of all isols that

are attainable from some recursive a-frame. This extension procedure has
the following properties,

The reader is referred to [12] and [14] for examples and a more complete
development of frames and properties of the extension procedure. In
view of the definition of aR , we note that each of the five properties given
above will be true when A is replaced in the extensions by R. For example,

4. The principal theorems

The purpose of this section is to prove four theorems; each theorem
is related to characterizing the regressive isols belonging to aR as infinite
series of isols. We need some new definitions for this purpose.

In [14] and [15], Nerode associated with each recursive function
f : E ~ E a function Df : 039B ~ ll*; where 039B* denotes the collection of

isolic integers. Let f be a strictly increasing recursive function and let
a be its range. Then it need not be true that D f maps 039B into A, yet each
of the properties
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holds by [1, Corollary 4] and [5, Proposition 3] respectively. The func-
tion e(x) related to f(x) by

is the e-difference function of f; we will also write en for e(n). Note that
for every number x,

Because f(x) is a strictly increasing recursive function it follows that

e(x) will also be a recursive function. In addition, by [1, Proposition 2],
the following property is true,

Let 03B4 be any set of numbers. We associate with à a particular collection
03B403A3 of isols in the following way. If 03B4 is a finite set then àz = 03B4. If à is

an infinite set, let g(x) denote the strictly increasing function that ranges
over ô and let d(x) denote the e-difference function of g(x). Then

The collections 03B403A3 play a fundamental role in the paper. By an earlier
remark we know that 03B403A3 will be a collection of regressive isols. Observe
also that

When à is a finite set then (4) is clear. When à is an infinite set, let the
functions g(x) and d(x) be related to 03B4 as above and, then (4) follows by
noting,

It can also be readily shown that a finite isol belongs to 03B403A3 if and only
if it belongs to 03B4.

We now prove four theorems. The first theorem is easy to obtain from

some known results and we mention it here mostly for comparison with
the other three.

THEOREM 1. If a is a recursive set then aR = aI.
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PROOF. Let oc be a recursive set. If oc is a finite set then the theorem is

easy, because

Let us assume now that a is an infinite set. Let f(x) denote the principal
function of a, and e(x) the e-difference function of f(x). Let Df(X)
denote the extension of f(x) to A. Then f(x) will be a strictly increasing
recursive function, and e(x) will be a recursive function. From (4.2) and
(4.3) respectively, we have

Whenever A is a regressive isol, A + 1 is also a regressive isol, and because
e(x) is a recursive function, one will have true the relation A + 1 ~ * en .
Combining this property with (1), (2) and the definition of az it follows
that aR = aI’ and this completes the proof.

THEOREM 2. If a is any set, then

PROOF. Let a be any set and let B E aR . Then B will be a regressive isol
and attainable from some recursive a-frame. Assume first that B is finite,
and let B = b E E. Let il denote the one-element set whose only member
is b. Then q will be an r.e. set and, by (3.11), also ~ ~ a. Since by defini-
tion qz = il, we see that b e qz and therefore also that,

Assume now that B is an infinite regressive isol. Let B = Req fl and
let F be a recursive a-frame such that f3 Es/(F). f3 will then be an infinite
regressive and immune set, and we let bx denote a regressive function that
ranges over 03B2. Let

Since F is a recursive a-frame, we know by an observation in § 3 that

We want to describe a certain procedure that is based on properties of
the set 03B2. Consider any particular number bn of 03B2. By using the regressive
property of the function bx we can effectively find from bn the list of
numbers b0, ···, bn and their respective indices. In addition, because F
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is a recursive frame (refer to (3.5)), the members of the finite set

CF((b0, ···, b")) E F can also be found. Since 03B2 is attainable from F and
(b0, ···, bn) ~ 03B2, it follows that

We can now check to see if CF((b0, ···, bn)) contains any numbers bk
with k ~ n + 1, and if so then proceed to find both the numbers in the
list b0, ···, bk and the finite set CF((b0, ···, bk)) E F. Then as in the step
before, we can now check to see if this member of F contained any new

bx values and if it did then continue to find another member of F. Our
procedure is effective and will therefore enable us to generate, begi nning
with the number bn, an r.e. subset of 03B2. Since 03B2 is an immune set, the
procedure will have to terminate after a finite number of steps. This will
happen when we arrive at a step with k ~ n and

There will have to be infinitely many numbers k for which (4) holds,
and we let denote this particular set of numbers. Let kx denote the strict-
ly increasing function that ranges over n. It follows as an easy consequence
of the procedure just described that given any number bm ~ 03B2 we can
effectively find out whether or not m ~ 03C0. If it turns out that m e 03C0 then

we will be able to find from bm, by using our procedure, the smallest
number t &#x3E; m such that t E n. In addition, if it should turn our that
m ~ 03C0 then, because we would know the values of b0, ···, bm, we could
then also find the next smaller value than m in 03C0 if there is one. For

m E E, let

We can conclude from our previous remarks that each of the mappings

will have a partial recursive extension. Let, for n E E

Let

Regarding these definitions, the following properties are true,
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(7) an is a regressive function,

(9) f(x) is the principal function of 03B4.

Property (7) follows because the mapping in (6) has a partial recursive
extension. Concerning property (8), first note the following implications,

The first two implications are clear form the definitions of 03B4 and 03B4m,
and the last one follows from (1). Together they imply that ô 9 il.

Combining this inclusion with (2) gives the desired property in (8).
Property (9) follows as an easy consequence of the definitions of 03B4, (Jn and
f(x), and the fact that kx is a strictly increasing function.

Our approach in the remainder of the proof is to show that the isol B
that we began with belonging to aR , also belongs to 03B403A3. In view of (2)
and (8) this will establish the desired result. Let e(x) denote the e-differ-
ence function of f(x). Note that

We now verify that

i.e., that the mapping

has a partial recursive extension. For this purpose we will assume that
the value of the number ko is known to us; in view of (10), it follows
that the value of eo will also be known. Let the number an be given;
from it we would like to find the value of en . Since bx is a regressive
function the number kn such that bkn = an can be found. Here kn ~ ko
since kx is strictly increasing. Knowing the value of ko we then can check
to see if kn = ko. If kn = ko, then n = 0 and en = eo. In this event the
value of en = eo can be computed because it is known to us. Let us

assume now that kn &#x3E; ko. Then n ~ 1, and in view of the effectiveness
of the mapping in (6), we can compute from the number an = bkn the
value of bkn-1. Since bx is a regressive function, the value of kn-1 can
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be found. Knowing both of the numbers kn and kn-1, we can now
find the number

It readily follows, in light of these remarks, that the mapping an ~ en
will have a partial recursive extension. Therefore an ~ * en, and this
verifies (11). Let 

Since an is a regressive function and an ~ * en it follows from the defini-
tion of àz that

To complete the proof of the theorem, we now verify that B = Reg 03C3,

or equivalently that

It is known by [9, P9.b] that the relation of (14) will hold if and only if
both

and

hold. Here the relation fi ~ * 6 means that there is a partial recursive
function defined at least on 03B2, that maps f3 onto a and that is one-to-one
on 03B2; similarly a ~ * 03B2 is defined. To prove (14) we will verify both (15)
and (16). Let

Regarding these definitions note that each of {03B2n} and {03C3n} is a sequence
of mutually disjoint sets, and
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Also, in view of (10) and (17), for each number n,

RE (15). We define a mapping g : 03B2 - 6 such that for each number n,

Let b e 03B2n. To define g(b) two separate cases are considered.

CASE 1. n = 0. Then 03B20 = (b0, ···, bko). From (10), eo = 1 +ko,
and therefore b E 03B20 implies

Define

Note that g will map 03B20 onto uo. In addition, observe that ao - bko = b00FF
and

Combining (21) and the fact that the mapping bm ~ bm has a partial
recursive extension it readily follows that, given a number b E Po we
can effectively find the value of g(b).

From (10), we know that en = kn - kn-1’ and therefore b ~ 03B2n implies that

Define

Note that g will map 03B2n onto un when n ~ 1. Also, observe that

and

Combining (22), the regressive property of bx, and the fact that the
mapping bm -+ bm has a partial recursive extension, it readily follows
that, given a number b E f3n with n ~ 1, we can effectively find both of
the values n and g(b).

This completes the definition of the mapping g(x). In view of the fact
that g(x) maps f3n onto u. for each number n, we see from (18), (19)
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and (20) that g(x) will map 03B2 onto u and in a one-to-one manner. In
addition, it follows as an easy consequence of the observations made in
each of the cases of the definition of g(x), that given any number b e fl
one can effectively find the value of g(b). We can conclude therefore that
g(x) will have a partial recursive extension, and hence also that 03B2 ~ * 6.
This is the desired result of (15).
RE (16). To verify (16) we simply show that the inverse of the one-to-

one mapping

defined in the course of proving (15), will also have a partial recursive
extension. For this purpose let the number d c- u be given. In view of the
definition of g(x) we know that

for some particular numbers s, n and r, with 0 ~ r  en and

Moreover, then

and we would like to find the value of bs . Since j is a one-to-one recursive
function and bx and ax are each regressive functions the values of the
three numbers bkn , n and r can be effectively found from d. We now
test on the value of n.

CASE 1. n = 0. Then s = r. In addition, in view of (21), r = s = kn
with r ~ r. Since we know the value of r with r ~ r and the value of

hr = bkn , we can by regressing from the number bÿ find the value of
by . Therefore the number

can be found.

Also an - bkn and since ax is a regressive function we can find from
the number bkn the value of ben -1 = an-1. From the value of bkn-l we
can determine the number kn-l. We know that
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and therefore by regressing from the number bkn we can find the value of
bs . In view of (23), it follows that the value of g-1(d) can be found. In
light of the previous remarks we can conclude that the mapping

will have a partial recursive extension. This verifies the property a ~ * 03B2
and completes the proof of (16). It had already been observed earlier
that the proof of the theorem would be complete when both (15) and (16)
had been verified; and therefore we are done.
The next result is a lemma. It is useful in proving the third theorem

and because the lemma can be readily verified by using the definitions of
the concepts involved, we will state it without a proof.

LEMMA 1. Let B be an infinite regressive isol. Let a and  each be infinite
sets with ce z â and â - a finite. Then

THEOREM 3. If a is a recursively enumerable set then,

PROOF. Let a be an r.e. set. From Theorem 2 it follows that

To complete the proof we now verify

For this purpose let b 5; a and let B E (JI. We would like to show that
B E aR . If B is finite then B will belong to 03B4. In this case B will then also

belong to aR , since b 5; a 5; aR .
Assume now that B is an infinite regressive isol. Then b will be an

infinite set. Let g(x) denote the principal function of 03B4 and let d(x) be
the e-difference function of g(x). Then B ~ 03B403A3 implies that there is a

regressive isol A ~ 1 such that

Because B is infinite, it is easy to see from (2) that A will also be infinite.
To establish the property that B ~ 03B1R, we will show that B is attainable
from a recursive a-frame. It is convenient to assume here that 0 E a; by
Lemma 1 it follows that this will not effect the general result. We let an be
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a regressive function that ranges over a set in A, and let p(x) be a regressing
function for an . Then p(x) is a partial recursive function such that
pan 5; bp and

Let p*(x) denote the index function that is associated with p(x). Then
p*(x) is a partial recursive function with ôp* = ôp, and

Note that for each number n,

In view of (2), it follows that

and

Let q(x) be a partial recursive function that establishes the relation of
(6), i.e.,

Let 13 denote the set appearing on the left side in (7). We now proceed
to define a frame F, with the aim of showing that Fis a recursive a-frame
and 13 Es/(F).

DEFINITION A. Let b E ôp and with p*(b) = k. Let

Then b is called an admissible number if
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Note that the collection of all admissible numbers will be an r.e. set,
since each of the functions p and q is partial recursive, and each of the
sets 03B4p, (Jq and a is r.e.. In addition, we also note that each of the numbers
an will be admissible, and if b = an in Definition A, then p*(an) = n and

DEFINITION B. Let b E ôp be an admissible number and let the numbers
k, bu, ..., bk and r0, ···, rk be defined as in Definition A. Define

In view of the definition of Ôb, it is readily seen that from a given admissi-
ble number b we can effectively find, by using the functions p and q, all
of the members of the finite set (Jb. In particular, we note that for b = an ,

Let

Let

In view of the property that each of the numbers an is an admissible
number, it follows from (9) and (10) that H will be a directed subset of F.
We now wish to show that F is a recursive a-frame and 13 Es/(F). For

this purpose let b and c each be admissible numbers of 03B4p, and let
p*(b) = k and p*(c) = h. Consider the following two lists of numbers,

Because b and c are each admissible numbers, it is easy to see that each
of the numbers appearing in L1 and L, will also be admissible. In view of
Definitions A and B the following properties are readily seen to be true.
If there is no number that occurs in both L1 and L2 , then Ôb n bc = 0;
if the number c occurs in L1 then 03B4c ~ Ôb; and if the number b occurs
in L2 then Ôb - bc. Otherwise there will be a number m  min (k, h)
such that bm = c. and bm+ 1 ~ cm+1. In this special case it follows that
the number d = bm = c. is admissible and (Jb n 03B4c = (Jk. By combining
(3.1 ), (10) and these properties, it follows that F will be a frame. Also F
will be an a-frame, for by combining Definitions A and B, and (10) we
have the following implications,
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We wish to verify now that F is a recursive frame. It has been already
noted that the collection of all admissible numbers is an r.e. set. Com-

bining this fact with the definition of F it follows that the collection
{03B4*|03B4 E F} will also be r.e. We recall from § 3 the definition of the col-
lection (5.F;

Because {03B4*|03B4 E F} is r.e., it is easy to see that also

Property (11) gives one of the two properties that we need to verify in
order to show that Fis a recursive frame, namely (3.4). The other property
we need to verify is (3.5), it is that the mapping

is a partial recursive function. For this purpose, assume that we are
given the number il*, for some il E 03B4F; we wish to find the number

CF(~)*. From the value of il*, we can find all the members of the set il
if there are any. If il = 0, then we would recognize this fact. Also, in
this event CF(~) = 0, and we could then find the value of CF(~)*. If
il is non-empty, then il will consist of numbers of the form j(b, y) where
b is an admissible number. Among the admissible numbers b such that
j(b, y) belongs to q we could find the unique one that has the maximum
index; i.e., the maximum value of p*(b). Let b denote this particular
admissible number. Then it is easy to see that

In addition, because we would know the value of b we could effectively
find the set bb and its Gôdel number 03B4*. In view of (12), this means that
we would be able to find the value of CF(~)*. We can conclude from
these remarks that the mapping (*) is a partial recursive function; and
therefore F will be a recursive frame. Finally we verify that 13 Es/(F).
First recall that the collection

is a directed subset of the frame F. Combining this fact with (7) and (9),
it follows that
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We have therefore shown that the regressive isol B that we began with
belonging to (J¡, can be attained from a recursive a-frame, namely F,
and therefore B E aR . This verifies the inclusion of (1), and completes
the proof.

THEOREM 4. If a is any set, then

PROOF. Let a be any set. The direction of inclusion - in (1), follows
from Theorems 2 and 3. The direction of inclusion - in (1), follows
readily by noting that, by (3.12),

5. Some remarks about infinite series

(A) One of the advantages of considering infinite series of isols of the
form 03A3Aen when A ~ * en is that it is easy to obtain and view regressive
enumerations of representatives belonging to 03A3Aen. When A is finite, this
is easy since 03A3Aen will also be finite. In the special case that A is an infinite
regressive isol and A ~ * en , then it can be readily shown that for an
any regressive function that ranges over a set in A, one will have

(where no terms of the forrnj(am, y) would appear if em = 0) represent
a regressive enumeration of a set belonging to l A en. With this feature in
mind it is easy to establish some properties of the minimum and maximum
of infinite series of this kind; for definitions of the minimum and maxi-
mum of two regressive isols see [9] and [7]. For example,

I. Let A and B be regressive isols such that A ~ * en and B ~ * en
Then min (A, B) ~ * en , and

II. Let A and B be two regressive isols such that A+B~039BR, A ~ * en .
and B ~ * en . Then max (A, B) ~ * en and
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Concerning the extensions aI and a, considered in § 4, the following
theorem is readily obtained from properties 1 and II, Theorem 3 and the
definition of 03B103A3.

THEOREM A. Let a be any set. Then

(1) A B ~ 03B103A3 ~ min (A, B) ~ 03B103A3,
(2) A, B E az and A + B E 039BR ~ max (A, B) E aI’

(3) A, B E 03B1R ~ min (A, B) E aR , for a recursive,

(4) A, B EE aR and A + B E 039BR ~ max (A, B) E aR , for a recursive.

(B) The only types of infinite series of isols that we have considered
in the paper were those of the form l A en with A ~ * en . These include as
a special case the event when en is a recursive function. We wish to mention
that, while 03A3Aen when A ~ * en will always be a regressive isol, it is

possible to have the value of 03A3Bdn be a regressive isol even when the
relation B ~ * dn does not hold. This particular property can be easily
shown in the following way. Let A be any infinite regressive isol and
let an be any regressive function that ranges over a set in A. Set B = A + 1
and dn = an . Then B will also be a regressive isol. In addition, by [4,
Proposition 5 ]

On the other hand it is easy to see that the relation B ~ * dn would imply
that dn ~ * dn+1 and it would then be an easy consequence of this fact
that dn were a recursive function. Thus 03A3Bdn would be a regressive isol
and yet B ~ * dn would not be true.
Many of the interesting cases where infinite series l A en play a role are

when en is a recursive function. The reason for this is that the canonical
extension of an increasing recursive function when evaluated at a regres-
sive isol is representable as a particular infinite series of this form; refer
to (4.3). The occurrence of infinite series of the form l A en with A ~ * en ,
in the study of properties of regressive isols is also interesting. Here are
two theorems that can be obtained, and we state these without proofs.
The second theorem is an unpublished result of Judy Gersting.

THEOREM B. Let f(x, y) be a recursive and combinatorial function of
x and y. Let Df(X, Y) denote the Myhill-Nerode canonical extension of
f(x, y) to 039B2 [cf. [13]]. Let A, B ~ 039BR with A + B ~ 039BR . Then

and there is a function dn such that A + B ~ * d. and,
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THEOREM C. Let A be a regressive isol and A ~ * en . Let B be an isol
such that B ~ r A en. Then B will also be a regressive isol, and there will
exist a function u,, such that

B = 03A3Aun with A ~ * un and (~n)[un ~ en].

In Theorem B, the function dn appearing there need not be recursive,
even though f(x, y) is a recursive function of x and y. If in the hypothesis
of Theorem C we assume that the function en appearing there is recursive,
then it is still possible that there would be no recursive function u,,
that would satisfy the conclusion of the theorem.
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