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COMPARISONS BETWEEN SOME GENERALIZATIONS

OF RECURSION THEORY 1

by
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Wolters-Noordhoff Publishing
Printed in the Netherlands

0. Introduction

There has been much work done to generalize the motions of ’recursive’
and ’recursively enumerable’ so that given an arbitrary structure X
with field A one can make use of a class cf relations on A which is some-

how analogous, e.g., to the class of recursive rtlations on the natural
numbers.

We concern ourselves here with two of these generalizations, one of
which ([RM]) approaches recursiveness from the point of view of de-
finability and the other of which ([YNM]) from the point of view of
computability. The main result of this paper is that the two approaches
yield the same class of ’recursive’ relations.
To do any kind of computation or recursion theory one must work

within a rich enough structure so that information can be coded and
stored. Clearly very little recursion theory can be done within a completely
arbitrary structure U.

Montague’s approach ([RM]) is to extend % as follows: Let K be a
cardinal. Define:

Consider a language with relation symbols for the relations of 9t and
the membership symbol 8 and variables of type n to range over Un,03BA.

Roughly speaking, a relation is ’K-recursively enumerable’ if it is defin-
able by a formula of this language having no unrestricted universal
quantifiers. lt is ’K-recursive’ if both it and its complement are ’K-

recursively enumerable’. For our purposes we only consider the case
when K = ~0. Our ’03A3t definable’ will mean’ ~ o-recursively enumerable’

Moschovakis’ approach ([YNM]) is to extend 2t by adding a distin-
quished element 0 and by closing A u {0} under the operation of forming

1 This is a modified and strengthened version of Part II of the author’s dissertation
([G]).
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ordered pairs. In this extended structure, A *, one can define the natural
numbers and the finite sequences of members of A*. The class of ’primi-
tive computable’ functions (which is the analog of the class of primitive
recursive functions on the natural numbers) is defined in a natural way
with the ordinary recursion schema being replaced by a schema that
allows definitions by recursion over the pairing relation. The definition
of the class of ’search computable’ functions (which is the analog of the
class of recursive functions) as given in [YNM] is good enough to give a
theory of functionals ’computable in’ given functions or functionals.
However, since we concern ourselves here only with first-order relations
on a first-order structure, we can bypass the full definition and use the
Normal Form Theorem (which is applicable in this case) so that a
’03C301’ (’recursively enumerable’) relation is one of the form 3yR(Xl’ ...,
xn, y) with R primitive computable and a ’search computable’ relation
is one which is ’03C301’ and which has a ’uo’ complement.
Each of these generalizations is good in the sense that much of the

theory of recursive relations and much of the theory of the arithmetical
hierarchy goes through, including Post’s Theorem. Moreover the theory
of search computable functions yields a good analog of the class of
hyperarithmetic sets, including the hierarchy theorems. Each of the
generalizations can be specialized to the case when the given structure
is the set of natural numbers, in which case both the X o-recursive and
the search computable relations are just the ordinary recursive relations.
Furthermore the search computable functions on a recursively regular
ordinal a have been shown in [G] to be the a-recursive functions in the
sense of Kripke ([K]) and the search computable relations on an admis-
sible set A have been shown in [G] to be the A-recursive relations in the
sense of Platek ([P]).
Our metatheory is a set theory with a (unique) empty set 0, and

individuals (urelements) which are not sets.
Throughout this paper 21 = ~A, R1, ···, Rl~ will be a fixed structure

with A an arbitrary set of urelements and each Ri an ni place relation
on A.

1. Définitions and easy lemmas without proofs

(1.1 ) DEFINITION. U = Un Un, where U" is defined inductively by:

The elements of Un are called objects of type n.
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(1.2) DEFINITION. Ut = ~Un, ~/U, R1, .···, Rl, ~ R1, ···, ~ Rl~n03C9, where
~ Ri is the complement, relative to A, of Ri.

(1.3) DEFINITION. HF(A) = UnRn, where Rn is defined inductively by:

{x|x is a finite subset of Rn}.

(1.4) DEFINITION. HF(U) = (HF(A), A, EjHF(A), R1, ···, RI,
- R1 , ..., - RI).

(1.5) DEFINITION. The language (for the structure 9t’) has the fol-
lowing symbols:

(a) For each natural number n, a countable sequence vo, n, vl,", ’ ’ ’
of variables of type n.

(b) Relation symbols R1, ..., Rl, ~ R1, ···, ~ Rl.
(c) The symbols A, v, V, 3, 8, ( ,) and , .
The formulas of l’ are defined inductively by:

(d) For i = 1, ’’’,/, if x1, ···, xni are type 0 variables then

Ri(Xl, ..., xnt) and ~ Ri(x1, ···, xni) are formulas.
(e) If Ç and 03C8 are formulas then (~ A 03C8) and (~ v 03C8) are formulas.
(f) If Ç is a formula, x is a variable of type n and y is a variable of

type n + 1 then 3x s yo, Vx 8 y~ and 3xo are formulas.
(Notice that x e y is not a formula of E’).
The interpretation of l’ in 2t’ is the obvious one with variables of

type n ranging over objects of type n.
The relations on A which are l’ definable in Ut are those which are

considered in [RM] as analogs of the recursively enumerable relations.

(1.6) DEFINITION. The language 1 (for the structure HF(2f» has all the
symbols of Et, except that it only has variables of one type, and in addition
has the symbols A and tA.
The formulas of 1 are defined inductively by:

(a) If x is variable then A(x) and uA(x) are formulas.
(b) For i = 1, ’ ’ ’ , l, if x1, ···, xni are variables then Ri(x1, ···, xni)

and - Ri(Xl’ ..., xni) are formulas.
(c) If Ç and 03C8 are formulas then (0 A 03C8) and (0 v 03C8) are formulas.
(d) If § is a formula and x and y are variables then ~x03B5y~, Vx 8 y~

and 3x§ are formulas.
The interpretation of 1 in HF(U) is the obvious one with A(x)

meaning x E A and -’A(x) meaning x ~ HF(A) - A.

(1.7) DEFINITIONS. If a relation R is Et definable in Ut we call R a
Et-relation. If R is 1 definable in HF(U) we call R a E-relation. If R is
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definable in HF(%) by a formula of 1 having no unrestricted quantifiers,
i.e., no subformula of the form 3xcp, then R is a  0-relation.

(1.8) LEMMA. For each n, ’x E U"’ is a  0-relation.

(1.9) LEMMA. Every 03A3t-relation is a 1-relation.

(1.10) LEMMA. Every 1-relation is of the form ~yS(u1, ···, uk, y), for
some L1 0-relation S.

2. Primitive computability and orol relations

(2.1) DEFINITION.
(a) A0 = .4 u {0}.
(b) A * = the closure of A ° under the pairing function

(c) For s, t ~ A*, 03C0(s, t) = s and 03B4(s, t) = t; for x e A, nx = c5x =
(0, 0) and 03C00 = c50 = 0.

(d) The natural numbers 0, 1, 2, ... are identified with 0, (0, 0),
((0, 0), 0), ’ ’ ’ so that, in particular, n + 1 = (n, 0) and the set (0 of

natural numbers is a subset of A*.

(e) The sequence (Xl’...’ Xn) of elements of A* is identified

with the element (n, (x1, ..., (xn , 0) ···)) of A*.
(f) If x = ~x1, ···, xn~ then lh(x) = n and, for 1 ~ i ~ n,

(x)i = xi.

Type conventions: (a) Lower case Roman Italics, f, g, ···, y, z, will
usually stand for members of A*, i, j, k, l, m and n will stand for

elements of co. (b) Bold face indicates sequences, in particular
u = u1, ···, uk, x = x1, ···, xn and ti = t1, ···, tni (where ni is the

number of arguments taken by Ri). If, for example, k = 0 then u re-
presents an empty sequence. (c) W will stand for a subset of A*.

Let xl , ’ ’ ’ , ~l be the representing functions of R1, ..., Rz respectively.
Our next project is to define a relation ’{f}pr(u) = w z’. The defini-

tion can be got from the inductive definition of ’{f}pr(u) = z’ implicit in
[YNM] by omitting clause Cl and by relativizing the definition to W.

(2.2) ’{f}pr(u) = W z’ is defined inductively by:
COi (i = 1, ···, l). If f = ~0, ni + n, i~ for some n ~ co and if {ti, xl

z W and ~i(ti) = z then {f}pr(ti, x) = yy z.
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(2.3) DEFINITION (See p. 432 of [YNM] and § 5 of this paper). The set
PRI° is defined inductively by:

CO-C4. For all n and i such that 1 ~ i ~ 1 ; ~0, ni + n, i~, ~2, n+1~,
~3, n+2), (4, n + 1, 0) and (4, n + l, 1) are elements of PRIO.

C5. If g and h are in PRI0, (g)2 = n+1 and (h)2 = n then ~5, n, g, h~
E PRIO.

C6. If g and h are in PRIO, (9)2 = n+1 and (h)2 = n+4 then
~6, n+1, g, h~ ~ PRI0.

C7. If g ~ PRI0, (g)2 = n and j  n then ~7, n, j, g) E PRI"

(2.4) We write {f}pr(u) = * z for {f}pr(u) = A* z.

(2.5) DEFINITION 2. (a) A function g/ on A* is absolutely primitive
computable (with respect to U) if, for some f E PRI’ and for all u E A*,

(b) A relation R on A* is absolutely primitive computable if its represent-
ing function is and (c) R is 6° if there is some absolutely primitive
computablc; relation S such that, for all u E A*,

The a? relations on A are the relations which are considered in [YNM]
as analogs of the recursively enumerable relations.

Before proceeding with the proof of Theorem 1, we list some facts
about the primitive computable and 03C301 relations which can be found in
[YNM].

(2.6) (a) The relations R1, ···, Rl, ’x E A’ and ‘x = 0’ are absolutely
primitive computable.

2 The definition of ’absolutely primitive computable’ given here is different than
but equivalent to the definition in [YNM]. See § 5.
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(b) The absolutely primitive computable relations are closed under
Boolean combinations and substitution by absolutely primitive com-
putable functions.

(c) The absolutely primitive computable relations are closed under
defimtions by course-of-values induction (see Lemma 8 p. 438 of [YNM ]).

(d) If S is absolutely primitive computable and
R(i, x) p [i e co &#x26; ~j  iS(j, x)] or
R(i, x) p [i E co &#x26; Vj  iS(j, x)] then R is primitive computable.

(e) If S is a" and, for all x, R(x) p 3yS(x, y) then R is uo.
(f) The relations ‘x is a sequence’ and ‘x E co’ are absolutely primitive

computable.
(g) The functions

the length of x if x is a sequence,
0 otherwise

and

otherwise

are absolutely primitive computable.

3.

We encode the elements of HF(A) in A*. The decoding function 03C4 is

a many-one function from a subset of A* onto HF(A). It is defined

inductively by:

It is easy to show that i is well defined, i.e., single valued, and is onto
HF(A).
Now associate with each relation R on HF(A) the relation R* on

A* defined by:

(3.3) LEMMA. The relation ’x E domain(03C4)’ is an absolutely primitive
computable relation on x.
The proof is a direct application of (2.6).

(3.4) LEMMA. If R is a 0 relation on HF(A) then R* is absolutely
primitive computable.

The proof is by induction on a d o definition of R. If R is one of Ri,
~ Ri or A then, since 03C4 is the identity function on A, R* is R and is

absolutely primitive computable. If R is defined by A(x) then R*(x) «
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x ~ domain(03C4) &#x26; x e A so, by (3.3) and (2.6)-(b), R* is absolutely
primitive computable. If R is defined by a conjunction or disjunction
then, by the induction hypothesis and (2.6)-(b), R* is absolutely primitive
computable. If R is of the form 3x E yS(x, u) then from the fact that 03C4

is onto HF(A) it is easily seen that, for all y, u E A*,

Now the relation S*((y)i+1, u) is got from S* by substitution of

the absolutely primitive computable function (y)i+1, the relation

~i  j S*((y)i+1, u) is got from that relation by quantification of

the form of (2.6)-(e) and R* is got from that relation by conjunction
with the absolutely primitive computable relation ‘x E domain(i)’ and
by substitution of the absolutely primitive computable function lh(x).
Therefore R* is absolutely primitive computable. Similarly, if R is of the
form Vx E y S(x, u) then R* is absolutely primitive computable.
MAIN LEMMA TO THEOREM 1. Every relation R on A which is aI-relation

is a a?-relation.
PROOF. By (1.10), R is of the form ~yS(u1, ···, Uk, y), where S is

a L1 o-relation. From the fact that 03C4 is onto HF(A), for all u,

Since R(u) holds only for a e A, in which case Iu; = ui (i = 1,..., k),

Hence, by (3.4), R is a 03C301-relation.
THEOREM 1. Every relation on A which is a l’-relation is a 03C301-relation.
This is an immediate consequence of the main lemma above and (1.9).
REMARK. Theorem 1 is half of our main result, since it is an immediate

corollary that every relation R on A which is ’recursive’ in the sense of
[RM] is ’recursive’ in the sense of [YNM].

4.

We now set out to prove the converse to Theorem 1 (with a certain
restriction).

(4.1) LEMMA. If W ~ W’ and {f}pr(u) = W z then {f}pr(u) w, z.
The proof is by an easy induction over the definition of ’{f}pr(u) = W z’.

(4.2) LEMMA. If {f}pr(u) = W z then there is a finite subset W’ of W
such that {f}pr(u) = w’ z.
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The proof is by an easy induction over the definition of ’{f}pr(u) = w z’.
If, for example, {f}pr(x) = w z holds by clause C5 of the definition then
f = ~5, n, g, h~ and there is a y and, by the induction hypothesis, there
are finite subsets W1 and W2 of W such that {g}pr(y, x) = W1 z and
{h}pr(x) = W2 y. Letting W’ = W1 ~ W2 we have, by Lemma (4.1 ) and
by clause C5, that {f}pr(x) = W, z.
Assume for the remainder of this paper that both the equality and

inequality relations on A are l’ definable in 5l(t.

(4.3) DEFINITIONS.

(4.4) REMARKS. (a) If x1, ···, xn+1 are elements of Uk then

(x1, ···, xn+1) E Uk+2n. (b) In view of the preceeding we may (and do)
identify finite n + 1 ary relations on Uk with certain elements of Uk+2n+1.

(4.5) DEFINITION. The property pk(p) holds for p E Uk+ s if p is a

3-place relation on Uk and there is some q E Uk+3 which is a 2-place
relation on Uk such that

(a) p is a one-one function on a subset of Uk x Uk, i.e., if (u, v, w) E p
and (u’, v’, w’) ~ p then (u, v) = (u’, v’) ~ w = w’.

(b) If (u, v, w) ~ p then w ~ 0 and w e Ak.
(c) If (u, v, w) ~ p, x ~ {u, v}, x ~ 0 and x e Akthen ~u’~v’[(u’,v’,x)~p].
(d) If (u, v, w) ~ p then (u, w) E q and (v, w) E q.
(e) If (x, y) E q and (y, z) E q then (x, z) E q.
(f) If (x, y) E q then x ~ y.
One should think of pk(p) as meaning that p is a pairing relation on a

finite part of Uk, (u, v, w) E p as meaning that w represents the pair
(u, v) and (x, y) E q as meaning that x ’preceeds’ y in the pairing structure
determined by p.

(4.6) DEFINITION. For each p such that pk(p) holds, define a function
pp from a subset A* into Uk inductively by:

(a) 03C1p0 = 0,
(b) Ppx = {x}k, if x E A and
(c) If 03C1px and p p y are defined and (p p x, 03C1py, w) E p then p p(x, y) = w.

(4.7) LEMMA. The following are E’-relations and so are their comple-
ments relative to the appropriate domains: (a) x En y, restricted to

Uk x Uk+ n, (b) x = y, restricted to Uk X Uk, (c) x = 0, restricted to Uk,
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(d) x = {y}n, restricted to Ukln X Uk, (e) x E An restricted to Un and
(f) x = (x1, ···, xn+1) restricted to uk+2nX Uk  ··· X Uk.
To prove (4.7) one merely writes out the various definitions in the

obvious way and checks that the definitions are in E’ form.

(4.8) LEMMA. If Pk(p) holds then pp is well defined and one-one.

PROOF. It is easy to see, from (4.5)-(b), that if ppx = y then exactly
one of the following must hold: (i) x = y = 0, (ii) x E A and y = {x}k
or (iii) 3s, t, u, v [x = (s, t) &#x26; (u, v, y) ~ p &#x26; pps = u &#x26; pp t = v]. To
show that 03C1p is well defined, assume p p x = y, and p p x = Y2 and show
by induction on x E A* that yi = y2 . If x E A° then either case (i) or
case (ii) holds so ppx is uniquely determined and y, = y2. If x = (s, t)
then case (iii) holds so 3u,, u2 , vl , V2 [(u1, vl , yl ) E p &#x26; (u2 , v2 , y2) E p
&#x26; OpS = Ul &#x26; OpS = U2 &#x26; Ppt = Vl &#x26; Ppt = v2]. By the induction
hypothesis applied to s and t, Ul = U2 and v 1 = V2 so, by (4.5)-(a),
y 1 = y2 . Let q be an element of Uk+3 satisfying (4.5)-(d), (e) and (f).
As a relation on Uk, q is a finite, and hence well-founded, partial ordering.
To show that p p is one-one assume p p xi = y and 03C1pX2 = y. If one of
cases (i) or (ii) holds then clearly xl - x2. If case (iii) holds, we show
that xl - x2 by q-induction on y. Assume x1 = (sl , tl ), X2 = (s2 , t2),
(u1, v1, y) ~ p, (u2, v2, y) ~ p, 03C1ps1 = u1, 03C1ps2 = u2, 03C1pt1 = v1 and

pp t2 = v2 . By (4.5)-(a), u1 = u2 and Vl = V2 and by (4.5)-(d),
(ul , y) E q and (vl , y) E q. Applying the q-induction hypothesis to ul
and vl , we get s, = S2 and tl = t2. Therefore, x, = x2 .

(4.9) LEMMA. (a) A0 ~ domain(pp). (b) If (s, t) E domain(pp) then

{s, t) G domain(pp). (c) If (u, v, w) E p then {u, v, w,} ~ range(pp).

PROOF. (a) is immediate from the definition of pp, (b) follows from the
proof of (4.8). (c) can be easily proved by q-induction on w as follows:
if (u, v, w) E p then (u, w) E q and (v, w) E q. Let x be one of u, v. Either
x = 0 or x E Ak, in which case x e range(pp) or, by (4.5)-(c), ~u’~v’[(u’,
v’,x)~p]. Applying the q-induction hypothesis to x we get that

x E range (pp). Hence, in any case, {u, v) G range(pp) so, by the defini-
tion of pp, w is also an element of range(pp).

(4.10) LEMMA. The relations P’(p) and [P’(p) &#x26; x ~ range(pp)] are
It definable in Ut.

PROOF. Simply write out the definition of pk(p) and observe that it is
in l’ form. For p such that pk(p) holds, x E range(pp) ~ [x = 0 or
x ~ Ak or 3u 3v[(u, v, x) E p]].
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(4.11) DEFINITION. For each n, k and each f ~ PRI0 with (f)2 = k,
let Ri be the relation defined by:

where D(p) = domain (pp).

(4.12) LEMMA. Rj is a Y/-relation.
The proof is by induction on f E PRIO. We take three sample cases

and indicate how to express the relation in It form. The remaining cases
are left for the reader.

(4.13) LEMMA. Let W be a finite subset of A*, (a) if A is infinite then
there is a p such that P1(p) and W ~ domain(pp) and (b) if A is finite
there is an n and a p such that pn(p) and W - domain(pp).

PROOF. Let W~ be the closure of W under n and b and let D = W~ u A 0.
If A is infinite then A, A1, D and U1 all have the same cardinality so

there is a one-one function y from D into U1 such that (i) yo = 0 and
(ii) yx = {x} if x ~ A. Let p = {(03B3u, yv, y(u, v)) | (u, v) E W~}. It is now
easy to show that P1(p) holds and that W - D = domain(pp).

If A is finite then {cardinality (Un) : n = 0, 1, ···} is an increasing
sequence while, for all n, cardinality(An) = cardinality(A). So, for n

sufhciently large, there is a one-one function y from the finite set D

into Un such that (i) y0 = 0 and (ii) yx = {x}n, for x ~ A. Let p =
{(03B3u, yv, y(u, v) (u, v) E W’I. It can now be shown that P"(p) holds
and that W z D = domain(pp).

(4.14) LEMMA. If A is infinite and R is a uo relation on A then, for
some f e PRIO,

PROOF. PickfEPRIo such that, for all u,
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Suppose that R(u) then, by (4.2) ~ y ~ W[W is finite and {f}pr(u,y) = W 0].
Now, by (4.13) and (4.1), ~y ~p[P1(p) and {f}pr(u,y) =domain(03C1p) 0].
Hence ~y ~pR1f(p, 03C1pu, 03C1py, 03C1p0). Since by assumption R is a relation
on A and R(u) holds we have u E A so pp u = {u1}, ···, {uk}. Therefore
~y ~pR1f(p, {u1}, ···, {uk}, y, 0). That R1f(p, {u1}, ···, {uk}, y, 0) implies
R(u) is immédiate from the definitions.

(4.15) LEMMA. If A is finite and R is a 03C301-relation on A then, for some
f E PRI0 and some n,

PROOF. Pick f ~ PRI0 such that, for all u,

By (4.1) and (4.2),

Now R is a finite relation so there is a finite class ir of finite subsets

of A * such that

Let X = u iF, then X is finite so, by (4.13), there is an n and a p such
that Pn(p) and X ~ domain(pp). Assume that R(u). Then, for some y
and some W ~ W, {f}pr(u,y) = W 0. Now W ~ X ~ domain(pp) so
{f}pr(u, y) = domain(03C1p) 0, hence Rnf(p, 03C1pu, Ppy, 03C1p0). By our assumptions
on Rand u, u E A so pu = {u1}n, ..., {uk}n, therefore 3y ~p Rnf(p, {u1}n,
···, {uk}n, y, 0). That Rnf(p, {u1}n, ···, {uk}n, y, 0) implies R(u) follows
directly from the definitions.
From (4.7), (4.12). (4.14) and (4.15) we have

THEOREM 2. If the equality relation on A and its complement relative
to A are Et -relations then every 03C301-relation on A is a Et -relation.

This completes the proof of our main result since (in the case that
equality is ’recursive’) it is an immediate corollary that every relation
which is ’recursive’ in the sense of [YNM] is ’recursive’ in the sense of
[RM]. The problem of strengthening Theorem 2 by removing the require-
ment that equality be ’recursive’ remains open.

5. Réconciliation of the définitions given in [YNM] and the definitions
of this paper, computability from parameters.

(5.1) DEFINITION ([YNM], p 432). The set PRI is defined inductively.
The definition can be obtained from the definition of PRI° by (a) re-
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placing PRI’ by PRI throughout and (b) adjoining the additional clause :
C 1. For all z E A* and for all n ~ w, (1, n, z) E PRI

(5.2) DEFINITION. The relation {f}pr(u1, ···, uk) = z is defined

inductively. The definition can be obtained from the definition of

{f}pr(u1, ···, uk) = A* z (2.2) by (a) omitting the subscript ’A*’

throughout, (b) replacing ’PRI0’ by ’PRI’ in clause C6 and (c) adjoining
the clause:

(5.3) DEFINITION ([YNM], p. 429). For each subset W of A * let W* =
the closure of W~ {0} under 7t, ô and Âxy(x, y).

(5.4) DEFINITION ([YNM]). (a) If W z A*, and 03C8 is a k-place function
on A* then y5 is primitive computable from W if there is an f E PRI n W*
such that, for all u,

(b) A relation R on A* is primitive computable from W if its representing
function is and (c) R is a 03C301(W)-relation if there is a relation S, which is
primitive computable from W, such that for all u E A*,

The definition of ’tf¡ is primitive computable from W’ is such that con-
stant functions may be used in the definition of 03C8 but only for parameters
(constants) from W*. An alternative but equivalent definition would
only allow parameters from W* n A. These definitions are equivalent
since n, b, 03BBxy(x,y) and the constantly 0 functions are absolutely primitive
computable. In [YNM], a function is called absolutely primitive compu-
table if it is primitive computable from 0. By the preceeding remarks
this can be seen to be equivalent to the definition given here.

(5.5) LEMMA. A k-place function 03C8 is primitive computable from a
subset W of A* if and only if there is a finite subset {c1, ···, c ,, 1 of
W* n A and an absolutely primitive computable, k + n place function 0
such that, for all u E A*,

PROOF. The implication from right to left is immediate, since y5 is

obtained from 0 and the constant functions ci, - - -, cn by substitution.
The implication from left to right is proved by induction on a primitive
computable index f for 03C8 such that f E PRI n W*, If f E PRI by one of
clauses CO, C2, C3, or C4 then 03C8 is already absolutely primitive comput-
able. If f ~ PRI by clause C5, then f = ~5, n, g, h~ and g and h are
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necessarily in W * since f is. By the induction hypothesis there are
c1, ···, cm, cm+1, ···, cp in W* n A and absolutely primitive compu-
table 01 and l/J2 such that, for all y, x,

Let ~(x, cl, - .., cp) = ~1~2(x, cm+1, ···, cp), x, c1, ···, cm) then 0 is
absolutely primitive computable and 03C8(x) = 0(x, Ci, ’ ’ ’, cp). Clauses
C6 and C7 are handled similarly to C5. The remaining clause is Cl.
It is clearly sufficient to show that for each z E W* the constant function

satisfies the lemma. If z = 0 then t/1 z itself is absolutely primitive com-
putable. If z E A, let 0 be the function ~(u, z) = z. Then 0 is absolutely
primitive computable and 03C8z(u) = 0(u, z). If z = (s, t) and if there are
Ci, ’ ’ ’, cp E W* n A and absolutely primitive computable functions ~1
and 02 such that, for all u, ~1(u, c1, ···, cm) = S and 02(U, C.+1,
..., Cp) = t then let ~ be the function such that, for all u, vi , ... , vp,

Now 0 is absolutely primitive computable and, for all u, 03C8z(u) =
~(u, cl, - - ., cp). Hence we have shown, by induction on z E A*, that
if z E W* then 03C8z satisfies the lemma.

For each subset W of A let 1’(W) be the language 03A3t enriched by
adding constants for elements of W. The above lemma gives the following
strengthened versions of Theorems 1 and 2. Let W be a subset of A.

THEOREM l’. Every relation on A’ which is definable in 2t’by a formula
of 1’(W) is a 03C301(W)-relation.
THEOREM 2’. If the equality relation on A and its complement relative

to A are definable in %(t by 03A3t(W) formulas, then every 03C301(W) relation
on A is 1’(W) definable in Ut.
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