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INFINITE-DIMENSIONAL LIE ALGEBRAS

IN THE SPIRIT OF INFINITE GROUP THEORY

by

I. N. Stewart

COMPOSITIO MATHEMATICA, Vol. 22, Fasc. 3, 1970, pag. 313-331
Wolters-Noordhoff Publishing
Printed in the Netherlands

Both notations and the numbering of sections will be carried over
from the previous paper. For convenience, however, a separate list of
references will be given.

3. Lie algebras, all of whose subalgebras are n-step subideals

A theorem of J. E. Roseblade [12] states that if G is a group such that
every subgroup K of G is subnormal in at most n steps, i.e. there exists B
series of subgroups

then G is nilpotent of class ~ f (n) for some function f : Z ~ Z.
This chapter is devoted to a proof of the analogous result for Lie

algebras over fields of arbitrary characteristic.

3.1 Subnormality and completions
It might be thought that we could prove the theorem for Lie algebras

over Q by a combination of Roseblade’s result and the Mal’cev corres-
pondence, as follows:

Suppose L is a Lie algebra over Q, such that every subalgebra K ~ L
satisfies K n L. By a theorem of Hartley [5] p. 259 (cor. to theorem 3)
L ~ L9t. We may therefore form the corresponding group J(L). Clearly
every complete subgroup H of G satisfies H a n G. If we could show that
every subgroup of G is boundedly subnormal in its completion, we could
use Roseblade’s theorem to deduce the nilpotence (of bounded class) of
G, hence of L.
This approach fails, however - we shall show that a locally nilpotent

torsion-free group need not be subnormal in its completion, let alone
boundedly so.

Let Tn(Q) denote the group of (n+1) (n+1) unitriangular matrices
over Q, Un(Q) the Lie algebra of all (n+1) (n+1) zero-triangular
matrices over Q. Similarly define Tn(Z), Un(Z).
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If H is a subnormal subgroup of G let d(H, G) be thé least integer d
for which (in an obvious notation) Ha° G. d is the defect of H in G.

LEMMA 3.1.1

PROOF:

Let T = Tn(Q), S = Tn(Z), d = d(S, T).. Then d ~ n since T is

nilpotent of class n. We show that Sn-1 T is false. Suppose, if possible,
that S n-1 T. Then for all s ~ S, t ~ T we would have

(where (a, mb) denotes (··· (a, b), b),..., b).) Taking logarithms,

By the Campbell-Hausdorff formula, remembering that T is nilpotent
of class n, this means that

We choose s ~ S in such a way as to prevent this happening.
Consider the matrix

Then
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So if we put

then s e 5’.
Let

where for the moment 03BB is an arbitrary element of Q. An easy induction
shows that

where ce = À. (n!)"-1
Now

and we can choose e Q so that ce o Z. Thus exp(A) ~ S, so A ~ log (S),
a contradiction. This shows d ~ n, so that d = n as claimed.

COROLLARY 1

There is no bound to the defect of a nilpotent torsion-free group in
its completion.

PROOF:

T"(Q) is easily seen to be the completion of Tn(Z).
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COROLLARY 2

A locally nilpotent torsion-free group need not be subnormal in its
completion.

PROOF:

Let

Then

If V were subnormal in V then V m V for some m ~ Z, so that

Tm+1(Z) m Tm + 1 (Q) contrary to lemma 3.1.1.

3.2 Analogue of a theorem of P. Hall

We prove the theorem we want directly for Lie algebras, using methods
based on those of Roseblade. Throughout the chapter all Lie algebras
will be over a fixed but arbitrary field f (of arbitrary characteristic).
We introduce 3 new classes of Lie algebras:

(The last condition is known as the idealiser condition).
Throughout this chapter 03BCi(m, n, ···) will denote a positive-integer

valued function depending only on those arguments explicitly shown.
Our first aim is to show that if H a L, H E Rc, and L/H2 E Wd then

L E R03BC1(c,d) for some function /11. For the purposes of this chapter it is
immaterial what the exact form of /11 is; but it is of independent interest
to obtain a good bound. The group-theoretic version, with ,ul (c, d) =

(c+1 2)d-(c 2), is due to P. Hall [4]; the result for Lie algebras with this
bound is proved by Chong-Yun Chao [2] (stated only for finite-dimen-
sional algebras). In [14] A. G. R. Stewart improves Hall’s bound in the
group-theoretic case to cd+ (c-1)(d-1) and shows this is best possible.
We add a fourth voice to the canon by showing that similar results hold
for Lie algebras (using essentially the same arguments). A few preliminary
lemmas are needed to set up the machinery.

LEMMA 3.2.1

If L is a Lie algebra and A, B, C ~ L then
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PROOF:

From the Jacobi identity.

LEMMA 3.2.2

If L is a Lie algebra and A, B, C ~ L then

PROOF:

Use induction on n. If n = 1 lemma 3.2.1 gives the result. Suppose the
lemma holds for n. Then

by lemma 3.2.1

and the induction step goes through.

THEOREM 3.2.3

Let L be a Lie algebra, H  L, such that H E Rc and L/H2 E Rd. Then
L E R03BC1(c,d) where

Further, this bound is best possible.

PROOF:

Induction on c. If c = 1 the result is obvious. If c &#x3E; 1, then for any r
with 1 ~ r ~ c we have Mr = H/Hr+1  Nr = L/Hr+1. Mr ~ Rr and
Nr/Mr E 9èd so inductively we may assume

Now

summed over the interval 0 ~ i ~ 2cd-2d-c+1 (by lemma 3.2.2).
Each such i belongs to an interval

Condider an arbitrary j. By induction if j :0 1, and since Ha L if j = 1,
we have
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(also using the fact that [H,tL] ~ Lt+1)

obviously if c - j = 0

Thus L2cd-c-d+2 = 0 and the induction hypothesis carries over. The
result follows.

Next we show that this value of 111 is best possible, in the sense that for
all c, d &#x3E; 0 there exist Lie algebras L, H satisfying the hypotheses of the
theorem, such that L is nilpotent of class precisely cd + (c-1)(d-1).
Now in [14] A. G. R. Stewart constructs a nilpotent torsion-free group

G having a normal subgroup N with N nilpotent of class c, G/N’ nilpotent
of class d, and G nilpotent of class precisely cd+(c-1)(d-1). Let G
be the completion of G, N the completion of N. Put L = £l( G), H =
Y(N). Using the results of chapter 2 it is easily seen that these have the
required properties.

3.3 The class In
Write L ~ Xn ~ ~HL~n ~ H for all H ~ L.

LEMMA 3.3.1

PROOF:

Trivial.

LEMMA 3.3.2

PROOF:

Let H ~ L E Z,, n U2, so that L(2) = 0. We show by induction on ni
that

m = 1:
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since L2 E 2t

since L2 ~ U.
Now if L ~ Dn it is clear that [L,nH] ~ H, and consequently ~HL~n

~ Hn + H = H, which shows that L E Xn as claimed.

LEMMA 3.3.3

If K is a minimal ideal of L E LR then K ~ 03B61(L).
PROOF:

See Hartley [5] lemma 10 p. 269.

LEMMA 3.3.4

If K  L E L% and K ~ Jh, then K ~ (h (L).
PROOF:

Induction on h. If h = 0 the result is clear. Let 0 = Ko  K1  ...
 K03B1 = K be a series of ideals Ki  L (i = 0, ..., a) such that the series
cannot be refined (this exists since K is finite-dimensional). Then
Ki+l/Ki is a minimal ideal of L/Ki. By our induction hypothesis
K03B1-1 ~ 03B6h-1(L), and K03B1+03B6h-1(L)/03B6h-1(L) is a minimal ideal of

L/03B6h-1(L), so by lemma 3.3.3 it is contained in 03B61(L/03B6h-1(L)) which
implies K ~ 03B6h(L). The result follows.

LEMMA 3.3.5

PROOF:

It is sufficient to show L ~ J03BC2(r,s). Now L is spanned (qua vector space)
by commutators of the form [g1, ···, gi ] (i ~ r) where the 9 j are chosen
from the given set of s generators. This gives the result.
Next we need an unpublished theorem of B. Hartley:

THEOREM 3.3.6 (Hartley)
J ~ LR.

PROOF:

Let L ~ J, and let M be maximal with respect to M ~ L, M E L9è
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(such an M exists by a Zorn’s lemma argument). Let u E I = IL(M).
Then K = M+~u~ ~ L. L e S so K E s, from which it is easy to deduce
that K has an ascending series (U03B1)03B1~03C3 with Ul - (u). Then

so

We show by transfinite induction on a that Ua E LR. Ul - ~u~ ~ U ~ LR.
M n U03B1+1  U03B1+1 (since Mo K) and M n U03B1+1 ~ LR; also U03B1  U03C3+1
and Ua E LR. By Hartley [5] lemma 7 p. 265 and (*) U03B1+1 E LR. At
limit ordinals the induction step is clear. Hence U,, = Ke LR. By
maximality of M we have K = M, so I = M. But L e 9 so M = L.
Therefore L E LR which finishes the proof.

LEMMA 3.3.7

PROOF:

Clearly Dn ~ D ~ 3. Now use theorem 3.3.6.

LEMMA 3.3.8

PROOF:

~xL~n ~ ~x~ since Le In. If ~xL~n = 0 we are home. If not, then
~x~ = ~xL~n ch ~xL~  L, so ~x~  L. Thus x ~ CL(x)  L, so

~xL~ ~ CL(x) and ~xL~n+1 = 0 as claimed.

LEMMA 3.3.9

PROOF :

Let L ~ U2 ~ Dn. Ln = ~[x1, ···, xn]L : xi ~ L~. Let X = ~x1, ···, xn~.
By lemma 3.3.2 L~Xn, so if X EL, then ~xL~~Rn by lemma 3.3.8.
Let T = ~XL~ = ~xL1~ + ··· + ~xLn~, a sum of n Rn-ideals of L. By
Hartley [5] lemma 1 (iii) p. 261 T ~ Rn2. Thus X ~ Rn2 ~ Bn, so by
lemma 3.3.5 every subalgebra of X has dimension ~ r = 03BC2(n2, n).
L ~ Xn so Tn ~ X. Y = ~[x1, ···, xn]L~ ~ Tn ~ X so dim (Y) ~ r. By
lemma 3.3.7 Dn ~ LR, and Fo L; consequently lemma 3.3.4 applies
and Y ~ ’,(L). Thus Ln ~ 03B6r(L), and L e Rn+r.
We may therefore take 03BC3(n) = n+Jl2(n2, n).
LEMMA 3.3.10
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PROOF:

Induction on d. If d = 1 we may take /14(n, 1) = 1. If d = 2, then by
lemma 3.3.9 we may take 03BCe(n, 4) = 03BC3(n). If d &#x3E; 2, let M = L(d-2).
Then M ~ 2!2 ~ Dn ~ R03BC3(n) by lemma 3.3.9, an L/M2 e 2!d-l ~ Dn ~
R03BC4(n,d-1) by induction. By theorem 3.2.3

where

PROOF:

See Schenkman [13] lemma 8.
Define

LEMMA 3.3.12

PROOF:
L is generated by abelian ideals , so by lemma 1 (iii) of Hartley [5] ]

p. 261 L E LR. Let the abelian ideals which generate L and are of dimen-
sion ~ n be {A03BB : 03BB E 039B}. By lemma 3.3.4 A03BB ~ (n(L) so L = (n(L) as
required.

LEMMA 3.3.13

PROOF:

It is easily seen that Hn - ~[x1, ···, xn]H : xi E 03B1(H)~. Let X =
~x1, ···, Xn). ~XH~ = T = ~xH1~ + ... + ~xHn~ E Rn by Hartley [14]
lemma 1 (iii) p. 261. Since H ~ Xn Tn ~ X E On n Rn. Therefore if

Y = ~[x1, ···, xn]H~ then Y ~ Tn ~ X so by lemma 3.3.5 Y E J03BC2(n,n).
Y ~ ~xH1&#x3E; C so Y C ~ J03BC2(n,n). Therefore Hn ~ ~03B103BC2(n,n) (H)~ = D,
say, and D = ~03B103BC2(n, n)(D)~. Thus H/D E $l(n -1, and by lemma 3.3.12
D E R03BC2(n,n) ~ U03BC2(n,n). Therefore H E U03BC5(n) where

LEMMA 3.3.14
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PROOF:

Let H ~ L ~ Xn. Then H ~ ~HL~n  L. ~HL~/~HL~n ~ Rn-1, so by
Hartley [5] lemma 1 (ii) p. 261 H/~HL~nn-1 ~HL~/~HL~n, so H n-1
~HL~ « L. Thus H a n L and LE Zn. Hence Xn ~ Dn ~ LIJI by lemma
3.3.7.

By lemma 3.3.8 x ~ L ~ ~xL~ E Wn - So if we define

then L1 &#x3E; 0 (since e.g. 0 ~ 03B61(~xL~) ~ L1). Similarly let

Then

Let y E L. Then Y = ~yL~ « L and Y ~ Rn. An easy induction shows
03B6l(Y) ~ Li so y E Ln . Therefore Ln = L. By lemma 3.3.1 Li+ lili E Xn,
and clearly we have Li+l!Li = ~03B1(Li+1/Li)~, so by lemma 3.3.13

Thus L E U03BC6(n) where 03BC6(n) = nJ1s(n).
We have now set up most of the machinery needed to prove the main

result by induction; this is done in the next section.

3.4 The Induction Step
LEMMA 3.4.1

PROOF:

Trivial.

LEMMA 3.4.2

PROOF: 

Let x, y E L ~ D1. Then ~x~, (y)  L. If x and y are linearly indepen-
dent then [x, y] ~ ~x~ n (y) = 0. If x and y are linearly dependent then
[x, y] = 0 anyway. Thus L ~ U = R1.
We now define the ideal closure series of a subalgebra of a Lie algebra.

Let L be a Lie algebra, K ~ L. Define Ko = L, Ki+ = ~KKi~. The
series

is the ideal closure series of K in L.
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LEMMA 3.4.3

PROOF:

1) By induction. For i = 0 we have equality. Now Ki+ 1 = ~KKi~ ~
~KLi~ ~ Li+ 1 so the induction step goes through.

2) Clearly Ki+1  Kb so that if Kn = K then

On the other hand, if K n L then

and by part

LEMMA 3.4.4

Let H ~ L E Z,,, Hi the i-th term of the ideal closure series of H in L.
Then Hi/Hi + 1 E Dn-i.

PROOF :

Suppose Hi+1 ~ K ~ Hi. If j ~ i then Kj ~ Hj by lemma 3.4.3.1, so
Ki ~ Hi. But H ~ Hi+1 ~ K so an easy induction on j shows that

Hj ~ Kj. Thus Hi = Ki. But L E Dn so K n L, and K has ideal closure
series

Therefore

Thus K/Hi+1  n-1 Hi/Hi + 1 and the lemma is proved.
It is this result that provides the basis for an induction proof of our

main result in this chapter, which follows:

THEOREM 3.4.5

PROOF :

As promised, by induction on n.
If n = 1 then by lemma 3.4.2 we may take p(1) = 1. If n &#x3E; 1 let

L E Dn, H ~ L. By lemma 3.4.4, if i ~ 1 Hi/Hi+1 E Dn-i ~ Dn-1 ~
W,(n-1) by inductive hypothesis. Let m = 03BC(n-1). Then certainly
Hi/Hi+1 ~ Um, and so H(m(n-1))1 ~ H for all H ~ L. Let Q =

H1/Him(n-l) E Dn n Um(n-1). By lemma 3.3.10 Q E 9èc, where c =

114(n, m(n -1 )). Thus Qc+1 = 0 so Hc+11 ~ H(m(n-1))1 ~ H, so that
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L ~ Xc+1. By lemma 3.3.14 L E Ud where d = 03BC6(c+ 1 ). Finally therefore
L E Ud ~ Dn ~ 9’èjl(n) by lemma 3.3.10, where

The theorem is proved.

REMARK

The value of 03BC(n) so obtained becomes astronomical even for small n,
and is by no means best possible. However, without modifying the
argument it is hard to improve it significantly.

It is not hard to see that this is equivalent to the following theorem,
which is stated purely in finite-dimensional terms:

THEOREM 3.4.6.

There exists a function b(n) of the integer n, taking positive integer
values, and tending to infinity with n, such that any finite-dimensional
nilpotent Lie algebra of class n has a subalgebra which is not a 03B4(n)-step
subideal.

This result holds both for characteristic zero and the modular case.
Using the Mal’cev correspondence we can now prove:

THEOREM 3.4.7

Let G be a complete torsion-free R-group (in the sense of lemma 2.1.2)
such that if H is a complete subgroup of G then H n G. Then G is
nilpotent of class  f1( 11 ).

PROOF:

Let x ~ G, X = {x03BB : 03BB E Q}. Since G is a complete R-group X ~ Q
(under addition) so X is abelian and complete. Therefore ~x~  X n G,
so ~x~ is subnormal in G and G is a Baer group (Baer calls then nilgroups)
so is locally nilpotent (Baer [1 ] § 3 Zusatsz 2). G is also complète and
torsion-free so we may form the Lie algebra 2( G) over Q. If K ~ 2( G)
then J(K) is a complete subgroup of G (theorem 2.4.2) so J(K) n G.
By lemma 2.4.5 K n J(G). By theorem 3.4.5 J(G) ~ Dn ~ R03BC(n).
By theorem 2.5.4 G is nilpotent of class ~ f1(n).
We may also recover Roseblade’s original result for the case of torsion-

free goups. Suppose G is a torsion-free group, every subgroup of which
is subnormal of defect ~ n. Then G is a Baer group so is locally nilpotent.
Let G be the completion of G (Note: we must again avoid Mal’cev and
appeal either to Kargapolov or Hall in order to maintain algebraic
purity). Then every complete subgroup of G is the completion of its
intersection with G (Kuros [8] p. 257) which is a n G. By lemma 2.4.4
we deduce that every complete subgroup of G is a n G. G is a complete
R-group, so theorem 3.4.6 applies.
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We have not been able to decide whether or not D = 91. The corre-

sponding result for groups is now known to be false (Heineken and
Mohamed [6]) but their counterexample is a p-group; so we cannot use
the Mal’cev correspondence to produce a counterexample for the Lie
algebra case.

4. Chain Conditions in spécial classes of Lie algebras

We now investigate the effect of imposing chain conditions (both
maximal and minimal) on more specialised classes of Lie algebras, with
particular regard to locally nilpotent Lie algebras. Application of the
Mal’cev correspondence then produces some information on chain
conditions for complete subgroups of complete locally nilpotent torsion-
free groups. Additional notation will be as in [15].

4.1 Minimal Conditions

[15] Lemma 2.7 immediately implies

PROPOSITION 4.1.1

If we relax the condition to Min- lemma 2.6 of [15] ] shows that
LR n Min- ~ EU n 2. But in contrast to proposition 4.1.1 we have

PROPOSITION 4.1.2

PROOF: 

Let f be any field. Let A be an abelian Lie algebra of countable dimen-
sion over with basis (xn)0n~Z. There is a derivation Q of A

defined by

Let L be the split extension (Jacobson [7] p. 18) A E9 ~03C3~. Clearly
L ~ LRB(R ~ J). Let A = ~x1,···,xi~. We show that the only ideals
of L are 0, Ai (i &#x3E; 0), A, or L. For let I  L, and suppose I  A. Then
there exists 03BB ~ 0, Â c- f, and x E A, such that 03BB03C3+x~I. Then xi =

[03BB-1xi+1, 03BB03C3+x] ~ I so A ~ l. Thus x ~ I, so u E I, and I = L.
Otherwise suppose 0 ~ I ~ A. For some n e Z we have

where 0 i= Àn, Ài ~  (i - 1, ..., n). Then [À; 1 x, n-1 Q ] = xl E I.
Suppose inductively that Am ~ I for some m  n. Then [À; 1 X, n-m-103C3]
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E I, and this equals xm+1+y for some y ~ Am. Thus xm+1 ~ I and
Am+1 ~ I. From this we deduce that either I = An for some n or I = A.
Thus the set of ideals of L is well-ordered by inclusion, so L ~ Min-.
For Lie algebras satisfying Min - si we may define a soluble radical

(which has slightly stronger properties when the underlying field has
characteristic zero).
THEOREM 4.1.3

Let L be a Lie algebra over a field of characteristic zero, satisfying Min-si.
Then L has a unique maximal soluble ideal 0"( L). 0"( L ) ~ J and contains
every soluble subideal of L.

PROOF:

Let F = beL) be the J-residual of L (i.e. the unique minimal ideal F
with L/F ~ J), 03B2(L) the Baer radical (see [15]). Let dim (L/F) = f,
dim (fi(F» = b. Both f and b are finite. Define B1 = 03B2(L), Bi+l/Bi =
03B2(LBi). By [15 ] lemmas 2.4 and 2.7 Bi E EU n Î5-. Bi n F  F and as
in [15] theorem 3.1 F has no proper ideals of finite codimension, so by
the usual centraliser argument Bi n F is central in F, so Bi n F ~ 03B2(F).
dim (Bi) = dim(Bi n F) + dim(Bi + F/F) ~ b + f. Consequently Bi+1 =
Bi for some i. Let 03C3(L) = Bi. Then 03C3(L)  L, 03C3(L) ~ EU n J. L/(1(L)
contains no abelian subideals, and hence no soluble subideals, other
than 0. Thus 6(L) contains every soluble subideal of L as claimed.
For the characteristic p ~ 0 case we prove rather less:

THEOREM 4.1.4

Let L be a Lie algebra over a field of characteristic &#x3E; 0, and suppose
L ~ Min-si. Then L has a unique maximal soluble ideal 03C3(L), and a(L) ~ J.
PROOF:

Let F = 03B4(L) as in the previous theorem. Suppose S « L, S E EU.
Then S E EU n Min-si ~ J, so F n S ~ J. The usual argument shows
F ~ S ~ 03B61(F) ~ J n U. Let dim((l(F» = z, dim (L/F) = f. Then

dim(S) = dim(F n S)+dim(S+F/F) ~ z + f. Clearly the sum of two
soluble ideals ofLisa soluble idéal ; the above shows that the sum of all
the soluble ideals of L is in fact the sum of a finite number of them, so
satisfies the required conclusions for u(L).
Suppose now that SB denotes the class of Lie algebras L such that

every non-trivial homomorphic image of L has a non-trivial abelian
subideal; and let ? dénote the class of all Lie algebras L such that every
non-trivial homomorphic image of L has a non-trivial abelian ideal.
Then immediately we have

THEOREM 4.1.5

1) For fields of characteristic zero
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2) For arbitrary fields

PROOF:
If L satisfies the hypotheses then we must have L = 03C3(L) E EU ~ J as

required. The converse is clear.

Digression
It is not hard to find alternative characterisations of the classes B, ID5.

? is clearly the class of all Lie algebras possessing an ascending X-series
of ideals. These are the Lie analogues of the 57*-groups of Kuros [8]
p. 183. ID5 is the Lie analogue of Baer’s subsoluble groups (see [1 ]), which
Phillips and Combrink [9] ] show to be the same as SJ*-groups (same
reference for notation). A simple adaptation of their argument shows
that SB consists precisely of all Lie algebras possessing an ascending
%-series of subideals. We omit the details.
A useful corollary of theorem 4.1.5 follows from

LEMMA 4.1.6

A minimal ideal of a locally soluble Lie algebra is abelian.

PROOF:

Let N be a minimal ideal of L E LEU and suppose N ~ U. Then there
exist a, b E N such that [a, b] = c ~ 0. By minimality N = (CL) so

there exist x1, ···, xn E L such that a, b E ~c, x1, ···, xn~ = H, say.
L E LE% so HE EU. Now C = (CH)  H, and a, b E C, so c = [a, b] E e2
ch C a H, so c E e2  H, and C = C2. But C ~ H E EU, a contradic-
tion. Thus 7Ve9t.

COROLLARY

PROOF:

It is sufficient to show LEU n Min-si  EX ~ J. By lemma 4.1.6
LEU n Min-si ~ B (since LEU is Q-closed). Theorem 4.1.5 finishes the job.

4.2. Maximal Conditions

Exactly as in [15] we may define maximal conditions for subideals,
namely Max-si, Max-n, and Max-. We do not expect any results like
theorem 2.1 of [15] and confine our attention mainly to Max-o.

LEMMA 4.2.1
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PROOF:

We show by induction on d that Ud n Max- ~ R. If d = 1 then
L E 2t n Max- ~ J ~ @. Suppose L E 2[l n Max-, and let A =

L(c-1). L/A E 2!d-l and LIA e Max-, so LIA E 0 by induction. A E U.
There exists H ~ @ such that L = A + H (Let H be generated by coset
representatives of A in L corresponding to generators of L/A.) By
Max-a there exist a1, ···, an E A such that A = ~aL1~ + ··· + ~aLn~.
But if a ~ A, h ~ H, then [ai’ a+h] = [ai, h] so A +H = ~aH1~ + ... +

REMARK

It is not true that EU n Max- ~ J. The example discussed in

Hartley [5] ] section 7 p. 269 shows this - indeed it shows that even

EU n Max-a n Min- is not contained in J. This contrasts with a
well known theorem of P. Hall which states that a soluble group satisfying
maximal and minimal conditions for normal subgroups is necessarily
finite.

It is easy to show that EU n Max-a 2 - E91 n J.

LEMMA 4.2.2

Let H a L E LEU n Max-a . Then H = 0 or H2  H.

PROOF:

Let P = n H(03B1). Then P ch H  L so P a L. Suppose if possible
P ~ 0. Then there exists K maximal with respect to K« L, K  P.

P/K is a minimal ideal of L/K ~ LE9f, so by lemma 4.1.6 P/K ~ U, so
that p2  P contradicting the definition of P. Thus P = 0 (so H2  H)
or H = 0.

LEMMA 4.2.3

If H ~ L e % and L = H+L2, then H = L.

PROOF:

We show by induction on n that H+Ln = L. If n = 2 this is our

hypothesis. Now H+L n = H+(H+L2)n = H+Hn+Ln+1 = H+Ln+1,
so L = H+Ln+1 as required. For large enough n Ln = 0 so L = H.

LEMMA 4.2.4
Let L be any Lie algebra with P a L, H ~ L, such that L = H+P2.

Then L = H+Pn for any integer n.

PROOF:
We show P = (H n P)+pn. Now P = (H ~ P)+P2. Modulo Pn

we are in the situation of lemma 4.2.3, so P == (H n P) (mod P"), which
provides the result.
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Let ?) be any class of Lie algebras, L any Lie algebra. Define

LEMMA 4.2.5

If L E LEU n Max-a and Lk = Â(L, 91k), then L/Lk e EU.

PROOF : 
Induction on k. If k = 0 the result is trivial. If k ~ 0 assume L/Lk e EU.

Then L/L2k ~ EU ~ Max- ~ R (by lemma 4.2.1). Thus there exists
H ~ L, H E R, such that L = H+L2k (coset representatives again). Since
L e LEU H ~ Ud for some d. Let Q  L with L/Q e 91k+ 1. Then there
exists P« L with Q ~ P, P/Q E 91, L/P E 91k. By definition Lk ~ P so
L2k ~ P2 and L = H+P2. By lemma 4.2.4 L = H+P" for any n, so
L = H+Q (P/Q e 91). L/Q ~ H/(H n Q) e Ud. Lk+1 is the intersection
of all such Q, so by standard methods L/Lk+1 is isomorphic to a subalge-
bra of the direct sum of all the possible L/Q, all of which lie in Ud.
Therefore L/Lk+1 e Ud as claimed.

LEMMA 4.2.6

If L e L(91k) n Max-, then L/Lk e 91k. Thus Lk is the unique minimal
ideal I of L with L/I e 91k.

PROOF : 

By lemma 4.2.5 (since Rk ~ EU) L/Lk e EU. But L/Lk e Max-a so by
lemma 4.2.1 L/Lk ~ R. The usual argument shows that there exists

X ~ L, X ~ R, L = Lk + X. Then L/Lk ~ X/(Lk ~ X). X ~ Rk since

L E L(Wk) so L/Lk ~ Rk.
THEOREM 4.2.7

PROOF :

Clearly all we need show is that if L E L(9èk) n Max-a then L E R.
Define Lk as above. Suppose if possible that Lk :0 0. Then Lk « L, so by
lemma 4.2.2 Lk  Lk. By definition and lemma 4.2.6, Lk+1 ~ L2k, so that
Lk+1  Lk. But L/Lk+1 E E2! n Max-a (lemma 4.2.5) ~ R (lemma
4.2.1). The usual argument now shows L/Lk+1 E 9èk, so that Lk ~ Lk + 1 ,
a contradiction. Thus Lk = 0, and L ~ LILK E EU n Max-a (lemma 4.2.5)
~ R (lemma 4.2.1 ).
COROLLARY

PROOF:
Put k = 1 and note that

Compare this with Proposition 4.1.2.
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4.3 Mal’cev Revisited

In order to apply the results of chapter 2 to obtain corresponding
theorems for locally nilpotent torsion-free groups, we must find what
property of the complete locally nilpotent torsion-free group G corre-
sponds to the condition 2( G) E J.

LEMMA 4.3.1

Let G be a complete locally nilpotent torsion-free group. Then 2( G) c-
if and only if G is nilpotent and of finite rank (in the sense of the Mal’cev
special rank, see Kuros [8 ] p. 158).

PROOF :

If 2( G) ~ J then 2( G) ~ J n 9è so has a series

such that dim(Li+1/Li) = 1 (i = 0, ···, n-1). Thus G has a series

with Gi = e(Li). By lemma 2.4.2.5 Gi+ 1/Gi ~ e(LI, 1/Li) ~ Q (additive
group). Q is known to be of rank 1, and it is also well-known that

extensions of groups of finite rank by groups of finite rank are themselves
of finite rank. Thus G is of finite rank. G is nilpotent since 2( G) is.

Conversely suppose G is nilpotent of finite rank. Let

be the upper central series of G. From lemma 2.4.3 corollary 2 each term
Zi is complete, so is isolated in G. Therefore Zi + 1/Zi is complete, torsion-
free, abelian, and of finite rank (since G is of finite rank). By standard
abelian group theory, Zi+ 1IZi is isomorphic to a finite direct sum of
copies of Q. Hence 2(Zi+ 1IZi) E J, so 2( G) ~ J as required.

This proves the lemma.

REMARK

Let rr(G) denote the rational rank of G as defined in the Plotkin
survey [10] p. 69. Then under the above circumstances we easily see that

dim(2(G» = rr(G). According to [10] p. 72 Gluskov [3] ] has proved
that for locally nilpotent torsion-free groups G the rank of G = rr(G).
Consequently dim(2(G» = rank(G), a stronger result than lemma

4.3.1 (which, however, is sufficient for our purposes and easier to prove).
Applying the correspondence of chapter 2 and using the results of the

present chapter, we clearly have

THEOREM 4.3.2

Let G be a complete locally nilpotent torsion-free group. Then the
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following conditions are equivalent:

1) G is nilpotent of finite rank.
2) G satisfies the minimal condition for complete subnormal subgroups.
3) G satisfies the minimal condition for complete subnormal subgroups

of defect ~ 2.
4) G satisfies the maximal condition for complete normal subgroups.
On the other hand G may satisfy the minimal condition for complete

normal subgroups without being either nilpotent or of finite rank.
(Some of these results have been obtained by Gluskov in [3 ]).
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