
COMPOSITIO MATHEMATICA

JAMES R. MOSHER
Generalized quotients of hemirings
Compositio Mathematica, tome 22, no 3 (1970), p. 275-281
<http://www.numdam.org/item?id=CM_1970__22_3_275_0>

© Foundation Compositio Mathematica, 1970, tous droits réservés.

L’accès aux archives de la revue « Compositio Mathematica » (http:
//http://www.compositio.nl/) implique l’accord avec les conditions géné-
rales d’utilisation (http://www.numdam.org/conditions). Toute utilisation
commerciale ou impression systématique est constitutive d’une infrac-
tion pénale. Toute copie ou impression de ce fichier doit contenir la
présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=CM_1970__22_3_275_0
http://http://www.compositio.nl/
http://http://www.compositio.nl/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


275

GENERALIZED QUOTIENTS OF HEMIRINGS1

by

James R. Mosher

COMPOSITIO MATHEMATICA, Vol. 22, Fasc. 3, 1970, pag. 275-281 1
Wolters-Noordhoff Publishing
Printed in the Netherlands

1.

This paper is concerned with generalizing some results of ring theory
to semiring theory. Using the Iizuka [5] congruence relation, the existence
of a quotient semiring for a commutative semisubtractive hemiring is
proven. The bulk of section 3 is devoted to stating and proving analogues
to several well-known theorems in the theory of generalized quotients of
rings.

In ring theory Nagata [9], Zariski and Samuel [11], Dieudonné [3],
Lambek [6], and others constructed mathematical concepts through the
development and use of certain quotient structures. The primary purpose
of this paper is to generalize these results to semirings and make available
these new methods for application.
A hemiring as LaTorre [7] defined it is a semiring with commutative

addition as well as a zero.

CONVENTION. In this paper all semirings considered will be assumed
to be hemirings with commutative multiplication.
A k-ideal K is an ideal such that if x, x + y E K then y E K. An h-ideal

H of R is an ideal of R in which, if x, z c- R and h, k c- H with
x + h + z = k + z, then x ~ H. A prime ideal of R is a proper ideal A of R
in which x E A or y E A whenever xy E A. A primary ideal A of R is a
proper ideal of R such that, if xy E A an x e A, then yn E A for some
positive integer n.

If A is an ideal of R, then the radical of A, denoted by R(A), is the set
of all x E R tor which xn E A for some positive integer n. This is an ideal
of R, contains A, and if 1 E R is the intersection of all the prime ideals
of R that contain A (see Allen [1 ]).
An ideal Q of R is primary to P if Q is a primary ideal that is contained

in a prime ideal of R and if P = R(Q). It is to be noted that P is prime.
Under these circumstances P is the associated prime ideal of Q.

1 This paper is taken from the author’s dissertation, written under the direction of
Professor Ben T. Goldbeck at Texas Christian University.
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If 1 E R, then R is Noetherian if any non-empty set of k-ideals of R
has a maximal member with respect to set inclusion. This definition is

equivalent to the ascending chain condition on k-ideals and as well to the
condition that each k-ideal of R be finitely generated. If R is Noetherian,
any homorphic image of R is Noetherian.
A semiring is semisubtractive if, for each x and y in the semiring,

x + h = y or x = y + h for some h in the semiring.
The zeroid of R as introduced by Bourne and Zassenhaus [2] is the set

Z of all x E R such that x + z = z for some z E R, and is an h-ideal of R.

PROPOSITION 1. If Z = (0) and R is semisubtractive, then R satisfies
the additive law of cancellation.

The proof is trivial.

2.

An ideal of R is irreducible if it is not a finite intersection of k-ideals
of R that properly contain it. Clearly a prime ideal is irreducible.

LEMMA 2. If R is Noetherian, then every k-ideal is a finite intersection
of irreducible k-ideals.

The proof is trivial.
If A is an ideal of R, let [A] denote the intersection of all k-ideals

of R that contain A. According to Henriksen [4], [A] is a k-ideal. If
x-y = {z ~ R|z + y = x}, then [A] = ~ {x -y|x, y e AI.
LEMMA 3. If R is Noetherian and semisubtractive and if Z = (0), then

every irreducible k-ideal is primary.

PROOF. Assume Q is a k-ideal that is not primary, implying there
exist b, c E R with bc E Q, c ~ Q, and bm ~ Q for all m. There exists

a positive integer n such that Q : (bn) = Q : (bn+1). Clearly Q c

[Q + (bn)] ~ [Q + (c) ] = T. If x E T, then q + sbn + x = q’+s’bn and

p + rc + x = p’ + r’c for some p, q, p’, q’ E Q and r, s, r’, s’ E R. In multi-
plying the second equation by b, it follows that bx E Q. There exists
t E R such that s’ + t = s or s’ = s + t. It is sufficient to let s’’ + t = s.

Hence q + s’bn + tbn + x = q’ + s’bn, and thus q + tbn + x = q’. Multiplying
by b, it is true that tbn+1 E Q, so that t E Q : (bn) and tbn E Q. Thus
x E Q and Q = T. Since Q is properly contained in [Q + (bn)] and in
[Q+(c)], Q cannot be irreducible. This proves the lemma.
Let D be a set of primary ideals of R whose intersection is an ideal A.

The set D is called a representation for A. Such a representation is

irredundant if each Q E D is in a prime ideal of R, if the Q’s have distinct
associated prime ideals (called associated prime ideals of A), and if no Q
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contains the intersection of the others. If D is finite, such a representation
is a finite irredundant primary representation.

THEOREM 4. If R is Noetherian and semisubtractive with Z = (0), then
every k-ideal of R has a finite irredundant primary representation in which
each member of the representation is a k-ideal.

The proof follows easily from the lemmas.

3.

If R has a multiplicatively cancellable element, then with R* denoting
the multiplicative subsemigroup of multiplicatively cancellable elements
of R a quotient semiring F of R by R* is a semiring with the following
properties: (1 ) R is a subsemiring of F, (2) 1 E F, (3) each element of R*
has a multiplicative inverse in F, and (4) each element of F has the form
r03C1-1 with r E R and p E R*.

Weinert [10] and Murata [8] proved that if R has a multiplicatively
cancellable element, then such a quotient structure exists for each R*.
Since R is a commutative hemiring, Fis also. It R has additive cancellation,
then F does also. The zeroid ot A is (0) if and cnly if the zeroid of F
is (0). Note that r03C1-1 = sa-l if ru = ps, r03C1-1+s03C3-1 = (r03C3 + 03C1s)(03C103C3)-1,
and (r03C1-1)(s03C3-1)=(rs)(03C103C3)-1.

Let M be a multiplicative subsemigroup of R such that M n Z = 0.
If N = {x E R|mx E Z for some m E M}, then from the fact that Z is an
h-ideal it follows that N is an h-ideal. Define x[~]y (N) if there exist
n, m E N and r E R such that x + n + r = y + m + r. Iizuka [5 ] introduced
this congruence. If R [/]N denotes the corresponding set of equivalence
classes, then R [/]N is a commutative hemiring with additive cancellation.
The map x - Cx, where Cx is the class that contains x, is the natural
homomorphism of R onto R [/]N, which will be denoted by ~. According
to LaTorre [7], N is the zero of ~(R). The following lemmas and proposi-
tion hold trivially.

LEMMA 8. If R is semisubtractive and has additive cancellation, then
each element that is not a zero divisor is multiplicatively cancellable.

LEMMA 9. If R is semisubtractive, then any homomorphic image of R
is semisubtractive.

PROPOSITION 10. If R is semisubtractive, then every element of ~(M)
is multiplicatively cancellable.

Hence, if R is semisubtractive, then there exists a quotient semiring of
~(R) by ~(M) which will be denoted by RM .
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CONVENTION. It will be assumed that R is semisubtractive. It is to

be observed that this implies that RM is semisubtractive.
If A is an ideal of R, then Ae denotes the ideal it RM generated by

~(A). If A * is an ideal of RM, then (A*)C denotes the ideal ~-1(A* ~ ~(R)).
Clearly Ae = {(a~)(m~)-1|a ~ A, m ~ M}.

THEOREM 1l. If f is a homomorphism of R to an additively cancellative
hemiring S in which mf has an inverse in S for each m E M, then there
is a homomorphism g of RM to S with f = 4Jg.

PROOF. It is true that N c ker ( f ). The map g of RM to S defined by
((r~)(m~)-1)g = (rf)(mf)-’ is a homomorphism such that f = 4Jg.

THEOREM 12. If A is an h-ideal of R such that A n M = Ø, and if 01
is the natural homorphism of R onto R[/]A, then RM[/]Ae is isomorphic
to ~1(R)~1(M).

PROOF. Let ~2 be the natural homomorphism of ~1(R) onto

~1(R)[/]N1 where N1 = {x~1|(mx)~1 = 0 for some m ~ M}. A quotient
semiring ~1(R)~1(M) of ~2(~1(R)) by ~2(~1(M)) exists. By Theorem 11,
the map g defined by ((x~)(m~)-1)g = (x~1~2)(m1~2~)-1 is a homo-
morphism of RM onto ~1(R)~1(M) such that 4J 9 = ~1~2. If ~3 is the
natural homomorphism of RM onto RM[/]Ae, then Ae = ker (~3) =
ker (g). By LaTorre [7], Theorem 2.5, there is a semi-isomorphism h of
RM[/]Ae onto ~1(R)~1(M) with g = ~3h. Since a semi-isomorphism of a
semisubtractive semiring into a semiring whose zeroid is zero is an

isomorphism, h is an isomorphism.
An ideal A of R is a contracted ideal if A ec = A. An ideal A* of RM

is an extended ideal if (A *)ce = A*.

THEOREM 13. Every ideal of RM is an extended ideal.

PROOF. Clearly (A*)ce ~ A*. If (x~)(m~)-1 E A* then x4J E A*, so
that x ~ (A*)C. Hence (xo)(mo) 1 E (A*)ce and A* = (A*)ce.
THEOREM 14. If R is Noetherian, then RM is Noetherian.
The proof’ is trivial.
An element x in a hemiring is prime to an ideal A if A : {x} = A.

A subset E is prime to A if each element of E is prime to A.

THEOREM 15. If A is an ideal of R, and if Z = (0), then (1 ) Aec =
{x E Rlmx EA for some m E M} and (2) A = A ec if and only if M is prime
to A.

PROOF. Let D = {x ~ R|mx ~ A for some m c- MI. If b ~ Aec then

b~ ~ Ae, so that b~ = (a~)(m~)-1 with a E A. Hence bmo = a4J, and
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bm + n1 = a + n2 for some nl, n2 E N. Now ml nl - M2 n2 = 0 for some
m1, m2 E M. Hence bmm1m2 = am1m2 ~ A, implying b E D. Since

D c Aec trivially, D = Aec.
Statement (2) follows easily from (1).
THEOREM 16. Let Z = (0) and let P be an ideal of R. If P meets M,

then P’ = RM . If P is prime and disjoint from M, and if Q is primary to
P, then (1) N c Q, (2) Q n M = 0, (3) Qec = Q and pec = P, and
(4) Qe is primary to pe in RM .

PROOF. If P n M ~ 0, then pe contains a unit and is RM . Statements

(1) and (2) follow easily. If m E M then x E Q : {m} implies xm E Q and,
since m 1= P, x E Q. Thus Q : {m} = Q. By Theorem 15, Qec = Q.
Similarly pec . P.

Let ((r~)(m~)-1)((s~)(n~)-1)~ Qe and (r~)(m~)-1 ~ Qe, so that r ~ Q
and (rs~)(mn~)-1 = (q~)(p~)-1 where q E Q. Hence rspcp = mnqo,
which implies rsp + n1 = mnq + n2 for some nl, n2 E N. Also m1n1 =
M2 n2 = 0 for some mi, m2 E M. Hence mnqm1m2 = rspm1m2 E Q
and thus rs E Q. For some positive integer t, s’ E Q. Thus ((s~)(n~)-1)t E
Qe. Clearly Qe 0 RM , so that Qe is primary. Similarly pe is prime. Further
R(Qe) = pe. 

THEOREM 17. If Z = (0) and if P is a prime ideal of R, then pe is a
maximal ideal of RM if and only if P is maximal with respect to M.

PROOF. Let P be maximal with respect to M. Since P = pec, Pe ~ RM .
There is a maximal ideal A* of RM with Pe c A*. Hence P c (A*)c.
Since (A*)c does not meet M, P = (A*)c and hence pe = A*.

Conversely P does not meet M. There is an ideal A of R which is
maximal with respect to M and contains P. Now Aec = A and either
Ae - pe or Ae = RM . The latter implies A = R, a contradiction. Hence
Ae = pe and thus A = P.

COROLLARY 18. If Z = (0) and if A is an ideal of R, then A e = RM
if and only if A meets M.

Part of the proof is in Theorem 16 and the other is clear from

Theorem 17.

THEOREM 19. If Z = (0), and if Q1, ···, 6n are primary ideals

of R such that, for some r ~ {0, 1, ···, n}, Qi ~ M = Ø for i ~ r
and Qi ~ M ~ Ø for i &#x3E; r, then (~ni=1 Qi)e = ~ni=1 Qei. For r ~ 1,
~ri=1 Qi - ~ni=1 Qei. Further, if ~ni=2 Qi ~ Ql and Qe1 e RM , then
~ni=2Qei 4: Qi ·
The proof follows analogously to the corresponding theorem in ring

theory.
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COROLLARY 20. If Z = (0), if Q1, ···, Qn are primary ideals of R
such that, for some r ~ {1, ···, n}, Q j (B M = 0 for i ~ r and Qi ~ M ~ 0
for i &#x3E; r, and if ntC= 1 Qi = (0), then N = ~ri=1 Qi.
The proof is clear.

COROLLARY 21. If R is Noetherian and if Z = (0), then the following
ideals of R are equal: N, the intersection N’ of all primary ideals of R
which are disjoint from M, and the intersection N" of all primary com-
ponents of (0) that are disjoint from M.

PROOF. By Theorem 4, N and (0) are finite intersections of primary
k-ideals, say N = n Q and (0) = ~Q’j. Some 6f is disjoint from M
and some Qj is also disjoint from M. By Theorem 16, N c N’. Clearly
N’ c N". By Corollary 20, N = N".

THEOREM 22. Suppose Ml is a multiplicative subsemigroup of RM with
0 e Ml . If M2 is the multiplicative subsemigroup of R generated by M
and all r E R such that (r~)(m~)-1 E Ml for some m E M, then RM2 is
semi-isomorphic to (RM)Ml.

PROOF. Let N1 = {x ~ RM|xm = 0 for some m ~ M1}, let N2 -
{x E R|xm E Z for some m ~ M2}, let ~1 be the natural homomorphism
of RM onto RM [/]Nl , and let ~2 be the natural homomorphism of R onto
R[/]N2. For each m E M2, m~~1 has an inverse in (RM)Ml. Also
(RM)Ml is generated by ~1(~(R)) and the inverses of elements of

~1(~(M2)). By Theorem 11, the map f of RM2 to (RM)Ml defined by
((x~2)(m~2)-1)f = (x~~1)(m~~1)-1 is a homomorphism with ~~1 =

~2f. Clearly f is onto and ker (~~1) c N2 = ker (~2). Hence ker ( f ) =
(0) and RM2 is semi-isomorphic to (RM)M1.
THEOREM 23. Let Z = (0), let every element of M be multiplicatively

cancellable in R, let R’ be a semisubtractive commutative hemiring such
that R c R’, R’ c RM , and its zeroid is (0). Then RM = R’
The proof is trivial.

THEOREM 24. If 1 E R and M’ is a multiplicative subsemigroup of R
such that M c M’, 0 ~ M’, and every element of M’ is the product of
an element of M and a unit of R, then RM ~ RM’.

The proof follows easily.
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