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Introduction

Recently F. E. Browder, M. Edelstein, W. A. Kirk and others inves-
tigated the conditions under which the nonexpansive mapping of a
closed, bounded and convex subset of a Banach space has a fixed point.
The Kirk’s result is fairly strong and states that it is sufficient to assume
that the set is weakly compact and the space has the normal structure.
We shall try to extend this result to the case of mappings with the non-

expansive second iteration. To investigate these problems we shall use
the method based on the property of the modulus of convexity and on
some classification of Banach spaces with respect to convexity of balls.

Notations and definitions

Let B be an arbitrary Banach space and let ~ ~, O be the norm and the
zero element in B. The elements of B will be denoted x, y, z, ···, d(X)
will denote the diameter of a set X c B and Kr will denote the ball with
the radius r centered at 0.

First of all we quote some classical definitions connected with the
various classes of B spaces.

DEFINITION 1 [4]. The space B is called uniformly convex iff for

every positive number e, there exist a positive number ô such that for
arbitrary x, y E K1, the inequality

implies

DEFINITION 2 [2]. The space B has normal structure iff every bounded
and convex subset Y of B containing more than one point contains a
nondiametral point, i.e. such point that sup [~x-y~ : y ~ X]  d(X).
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DEFINITION 3 [5]. The space is called uniformly non-square iff there
is a positive number 03B4 such that there do not exist x, y E K1 for which

and

DEFINITION 4 [4]. The space B is called strictly convex iff there are not
segments laying on the boundary of K1.

It is known that every uniformly convex space is strictly convex and
has normal structure [7]. Moreover every uniformly nonsquare space
is reflexive [5].

Modulus and characteristic of convexity

DEFINITION 5 [7]. The modulus of convexity of the space B is the func-
tion b : [0, 2] ~ [0, 1 ] defined by the following formula

LEMMA 1. The function 03B4(03B5) is nondecreasing and convex.

PROOF. Monotonicity of à(8) is obvious. Let u, v E B be two arbitrary
points such that u ~ 0, v :0 e. Denote N(u, v) the set of all pairs (x, y)
such that x ~ K1, Y E K1 and x - y = au, x + y = bv for some real

numbers a, b.

Consider the function:

Obviously (x3, y3) E N(u, v) and hence

and



271

Taking the infimum of right hand side of (3) and using the definition of
03B4(u, v, 03B5) we obtain

so 03B4(u, v, 03B5) is convex. Because each pair (x, y), x ~ Kl , y E K1 belongs
to some set N(u, v) than

Obviously the infimum of arbitrary family of convex functions is convex.
Monotonicity and convexity of 03B4(03B5) imply that 03B4(03B5) is continuous

except in at most one point 8 = 2. Moreover for arbitrary x, y E Kr and
for arbitrary number a such that 0 ~ a ~ 2r and ~x-y~ ~ a, the in-
equality

holds.

DEFINITION 6. The characteristic of convexity of the space B is the
number B 0 = sup [e : 03B4(03B5) = 0].
Some of the mentioned above classes of B-spaces can be fully character-

ised by the number Bo and the modulus of convexity. The following
lemmas can be easily proved:

LEMMA 2. B is uniformly convex iff 03B50 = 0.

LEMMA 3. B is uniformly non-square iff 03B50  2.

LEMMA 4. B is strictly convex iff 03B4(2) = 1.

An interesting subclass of the class of B-spaces with normal structure
can also be described by the characteristic of convexity.

LEMMA 5. If eo  1, then B has normal structure.

PROOF. Suppose X is a convex subset of B, containing more than one
point and such that all its points are diametral. Let x, y, z are any points
of X satisfying the conditions

where d = d(X) and oc is an arbitrary number from the interval (0, d).
Put u = z - x, v = z - y. Because Iluil ~ d, ~v~ ~ d, liu-vii =

~x-y~ ~ d - oc so in view of (4) we have
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what is the contradiction for sufhciently small a.

Fixed-points theorems

Let C be a closed and convex subset of B and let F be a continuous

transformation of C into C. By F" we denote the n-th iteration of F and
by I the identity transformation of C.

THEOREM 1. If F 2 = I and if for arbitrary x, y E C we have

where k is a constant such that

then F has at least one fixed point.

PROOF. Let x be an arbitrary point of C. Because of

we obtain

Now if we put G = I+ F/2 we see that

hence the sequence x,, = G"x is convergent. Let y = lim Xn. Obviously
y ~ C and y = Gy = Fy.

Let us notice that the inequality (6) holds for k  2 in arbitrary
Banach space. The necessary and sufficient condition to satisfy (6) with
some k ~ 2 is ao  1.
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For example in Il space as well as in arbitrary Hilbert space we have

03B4(03B5) = 1 - 1 - (e/2)2 so (6) is satisfied for k  5.
It is not known whether the evaluation (6) is sharp for Theorem 1.

Although if we assume that F is only continuous our theorem become
false even in Hilbert space. To show it we use the known result [1 ] that
every infinitely dimensional Hilbert space H is homeomorphic with
H%0. If h is such homeomorphism then F = h-1(-h) is the fixed-point-
free involution of H.

THEOREM 2. Suppose C is as in Theorem 1 but bounded and suppose B

is such that so  1 and ô(2) = 1. If F satisfies the conditions (5), (6)
and if

for x, y E C, then there exist a fixed point of F.

PROOF. Since 80  1 B is uniformly non-square and in view of [5],
it is reflexive. Moreover, in view of Lemma 5, B has normal structure.
According to (7) and Kirk’s fixed-point theorem [6] the set C* =

[x : x = F2 x] is nonempty. The strict convexity of B implies that C* is
convex [7]. Obviously we have F(C*) = C* and F2 = I on C*. Hence
using Theorem 1 we obtain our result.

Some unsolved problems

The following questions seem to be interesting:
1 °. Does exist the B-space with a. = 1 and without normal structure?
2°. Is the condition (6) exact? It means, does exist the space B, the

convex set C c B and the involution F of C satisfying the condition
(6) with k such that

and without fixed points?
3°. What are the sufficient condition for existence of the fixed points

for the involutions of higher order (i.e. such mappings F that F’ = I for
some integer n)?

4°. It is not known whether Kirk’s theorem is true in arbitrary re-
flexive B-space. Is it true in the spaces with eo = 1? If yes, is it true in
the space with E o  2? What is the greatest lower bound of such numbers
03B5 that Kirk’s theorem is true for all spaces with so  e1
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