
COMPOSITIO MATHEMATICA

ROBERT A. MCGUIGAN, JR.
Two near-isometry invariants of Banach spaces
Compositio Mathematica, tome 22, no 3 (1970), p. 265-268
<http://www.numdam.org/item?id=CM_1970__22_3_265_0>

© Foundation Compositio Mathematica, 1970, tous droits réservés.

L’accès aux archives de la revue « Compositio Mathematica » (http:
//http://www.compositio.nl/) implique l’accord avec les conditions géné-
rales d’utilisation (http://www.numdam.org/conditions). Toute utilisation
commerciale ou impression systématique est constitutive d’une infrac-
tion pénale. Toute copie ou impression de ce fichier doit contenir la
présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=CM_1970__22_3_265_0
http://http://www.compositio.nl/
http://http://www.compositio.nl/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


265

TWO NEAR-ISOMETRY INVARIANTS

OF BANACH SPACES

by

Robert A. McGuigan, Jr.

COMPOSITIO MATHEMATICA, Vol. 22, Fasc. 3, 1970, pag. 265-268
Wolters-Noordhoff Publishing
Printed in the Netherlands

1. Introduction

In [1, p. 242], Banach defines the quantity D(X, Y) = log inf
~T~~T-1~, for topologically isomorphic normed linear spaces X and
Y, the infimum being taken over all isomorphisms T mapping X onto Y.
If D(X, Y) = 0 then X and Y are said to be nearly isometric. An un-
published example due to Pelczynski shows that two Banach spaces can
be nearly isometric without being isometric. Thus the properties of
Banach spaces that are invariant under near-isometry form a proper
subset of the properties invariant under isometry. In this paper we présent
two numerical-valued functions of Banach spaces related to the metric

geometry of the unit ball and show, among other things, that they are
invariant under near-isometry.

This paper is based on a portion of the author’s doctoral dissertation
written in 1968 at the University of Maryland under the supervision of
Professor Robert Whitley. The research was partially supported by
the N.S.F.

2. The numerical functions

Let S(X) denote the unit ball of the normed space X. If K is a compact
Hausdorff space, C(K) is the space of all continuous scalar-valued func-
tions on K normed with the supremum norm. f E C(K) is an extreme
point of ~f~S(C(K)) iff |(k)| = ~f~ for all k E K. It is easily seen that
if g is any element of C(K) and f is an extreme point of I If Il s(C(K)) then
sup|03B1|=1 ~f+03B1g~ = ~f~+~g~. Imitating this phenomenon, we are led
to define a sort of measure of the existence of extreme points on the unit
ball of a Banach space. We know that if x is extreme on IlxIIS(X) then
for every y ~ 0, at least one of Ilx + yll and Ilx - yll is greater th an Ilxll.
Our adaptation of this fact requires that the size of sup|03B1|=1 ~x+03B1y~
depends on ~y~.

DEFINITION 1 : If X is a Banach space then
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From the triangle inequality it follows that 0 ~ 03BE (X) ~ 1, and the
above discussion shows that ç(C(K» = 1 for all K.

PROOF: By hypothesis, there is a sequence {Tn} of isomorphisms of X
onto Y such that 1 Ixl ~ ~Tnx~ ~ (1 + 1/n)~x~ for all x ~ X. Let 8 &#x3E; 0

be given and let 0 ~ 03B3 ~ 03BE(X). Then there is an x E X such that 1 Ixl | ~ 1

and sup|03B1|=1 ~x+T-1n cxyll ~ ~x~+03B3~T-1n y~-03B5/(2+03B3) for all y E Y

and all n. Now, for every n we have

We can choose N large enough that ~x~ ~ ~TNx~-03B5(2+03B3) and
~T-1N y~ ~ ~y~-03B5/(2+03B3). Then we have sup|03B1|=1 ~TNx+03B1y~ ~
~TNx~+03B3~y~-03B5. Thus 03B3 ~ 03BE(X) implies that 03B3 ~ 03BE(Y). The argument is
symmetric in X and Y, so it follows that j(X) = 03BE(Y). Q.E.D.
REMARK: We have seen that 03BE(C(K)) = 1 for all K. It is easily shown

that if Q is a non-compact, locally compact Hausdorff space, and
if Co(Q) is the Banach space of all continuous, scalar-valued func-

tions on Q that vanish at infinity, normed by the supremum norm, then
ç(Co(Q» = 0. In particular 03BE(c) = 1 and 03BE(c0) = 0, providing a new
proofthat D(c, co) &#x3E; 0. The question ofwhether D(c, co) &#x3E; 0 originated
with Banach [1, p. 243], and a considerable amount of work has been
devoted to it [2, 3, 4]. However, our proof has the merit that it relates
the fact that D(c, co) &#x3E; 0 to the extreme point structure of the unit
balls of these spaces.

DEFINITION 2: If X is a Banach space we define

In the case of real scalars, to say that q(X) &#x3E; 0 is to say that for every
x on the unit sphere one can find a segment of length arbitrarily close
to 2q(X) that is arbitrarily close to the surface of the unit ball, and such
that x is the midpoint of the segment.

THEOREM 2: If D(X, Y) = 0, then I(X) = il(Y).
PROOF: By hypothesis there is a sequence {Tn} of isomorphisms

mapping Y onto X such that ~y~ ~ ~Tny~ ~ (1+1/n)~y~, for all
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y E Y. Suppose first that l1(X) &#x3E; 0 and l1(Y) &#x3E; 0 and let y  l1(X). Then
for every B &#x3E; 0 and every x E X such that ~x~ ~ 1 there is a w such

that ~w~ ~ y and sup|03B1|=1 ~x+03B1w~ ~ ~x~+03B5. Let eo &#x3E; 0 and y E Y

with ~y~ ~ 1 be given. Then ~Tny~ ~ 1 for every n, so for each n

there is a wn ~ X with ~wn~ ~ 03B3 such that sup|03B1|=1 ~Tny+03B1wn~ ~ ~Tny~
+so/2. Since Tn is norm-increasing, Tn-1 is norm-decreasing for every n,
so we have sup|03B1|=1 ~y+03B1T-1n wn~ ~ ~Tny~+03B50/2. There is an N such
that if n &#x3E; N then ~Tny~ ~ ~y~+03B50/2. Thus, if n ~ N we have

sup|03B1|=1 ~y+03B1T-1n wn~ ~ ~y~+03B50. We also have ~T-1n wn~~~wn~n/(n+1)
for all n. Thus we know that if n ~ N and 03B3~~(X), then ~(Y)~ n y/(n + 1).
But n/(n+1) ~ 1 as n - oo, so we conclude that ~(Y) ~ y. This proves
that ~(Y) ~ l1(X) and interchanging X and Y in the argument above
proves the reverse inequality.

If both l1(X) and l1(Y) are 0 there is nothing to prove. Suppose, without
loss of generality, that ~(X) &#x3E; 0 and ~(Y) = 0. The argument above
shows that if ~(X) &#x3E; 0 then ~(Y) &#x3E; 0, proving that if either ~(X) = 0
or l1(Y) = 0 and D(X, Y) = 0 then both must be 0. Q.E.D.

REMARK: It is easily shown that if one of q(X) and 03BE(X) is non-zero
then the other is 0. It follows then that ~(C(K)) = 0 for any compact
Hausdorff space K. A simple computation shows that 11( Co(Q) = 1

for Q a locally compact non-compact Hausdorff space. Thus 11( c) = 0
and ~(c0) = 1 giving another proof that D(c, c0) &#x3E; 0.

3. The continuity of 03BE and q

Banach observed in [1, p. 243] that D defines a pseudometric on the
class of all Banach spaces topologically isomorphic to a Banach space X,
with isometric spaces identified. Since 03BE and q are functions from this
pseudometric space to the real line, it is natural to ask about their con-
tinuity. In this direction we have the following two results.

EXAMPLE: Let K be an infinite compact Hausdorff space and let

p ~ K be a point which is not isolated. Let ~ ~ denote the supremum
norm on C(K) and let 111 Illa, for 0  03B1 ~ 1 denote the norm on C(K),
equivalent to ~ ~, that is defined by

It can be shown that 03BE((C(K), ||| |||03B1)) = 0 when oc  1. When oc = 1

we have ||| |||1 = Il Il. It can also be shown that D«C(K), 11 11), (C(K),
111 |||03B1)) ~ log (1/03B1). Thus, as 03B1 ~ 1, ç«C(K), 111 |||03B1))  1.

THEOREM 3: If D(X., X) ~ 0 as n - oo then ~(X) ~ lim sup il(X.).
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PROOF: By hypothesis there exist norm-increasing isomorphisms
Tn : X ~ Xn which are onto and such that ~Tn~ ~ 1+1/n. Let 8 &#x3E; 0

and x ~ X such that ~x~ ~ 1 be arbitrary but fixed. Then for each n
there exists xn ~ Xn such that ~xn~ ~ ~ (Xn) - 1/n and sup|03B1|=1
~Tnx+03B1xn~ ~ ~Tnx~+03B5/2. Tri 1 is norm-decreasing so sup|03B1|=1 ~x+
03B1T-1n Xn Il ~ ~Tnx~+03B5/2. There exists an N such that if n &#x3E; N then ~Tnx~
~ 1 lxl + e/2. Thus, for n &#x3E; N, we have sup|03B1| =1 1 lx + 03B1T-1n xn~ ~ 1 Ixl + 8.
From the inequality ~xn~/~Tn~ ~ ~T-1n xn~ and the above we obtain
(1/~Tn~)(~(Xn)-1/n) ~ ~T-1n xnll for n &#x3E; N. Taking limits superior gives
us ~(X) ~ lim sup ~(Xn), since Il Tnll ~ 1 and 1 /n - 0. Q.E.D.
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