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1. Introduction

Recently H. I. Brown [1] introduced the concept of entire methods
of summation and proved a necessary and sufficient condition that an
infinite matrix A = (an,k) be an entire method. In this paper we prove
directly the necessity and sufnciency of a different condition which

ensures that the matrix A is an entire method. We conclude the paper

by considering applications of this theorem to the Sonnenschein matrix
and to two recent generalizations of the Taylor matrix.

2. Entire methods

Let x = {xk}~0 be a sequence of complex numbers. The sequence x
is entire (x E ç) provided

for every positive integer q.

The infinite matrix A = (an,k) is an entire method provided the A-trans-
form of XE ç (written A(x)) is an entire sequence, i.e., the sequence
y = {yn}~0~03BE where

In order to prove the main result (Theorem 3) we first state and prove
two preparatory lemmas.

LEMMA 1. If A = (an, k) is an entire method then

and
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PROOF. (2.1) Let v be a fixed non-negative integer and define the se-
quence x = {xn}~0 by

otherwise.

Since x ~ 03BE and A is an entire method we have that A(x) e 03BE. So, for

q &#x3E; 0 an integer, it follows that

in particular, 0 = limn~~ yn qn = lim,,- . a,,,, q".

(2.2) Suppose there exists a non-negative integer N such that for each
integer p &#x3E; 0 there exists an integer kp ~ 0 where

So, for pi = 1 there exists k 1 such that laN,kll &#x3E; 1k1 + 1 = 1. In general,
choose pm &#x3E; pm-1 (m ? 2) such that

There exists km &#x3E; km-1 such that |aN, km| &#x3E; pkm+1m. Define the sequence
x = {xn}~0 by

otherwise.

The sequence XE ç since, for q &#x3E; 0 an integer, we have that

Since A is an entire method we have that A(x) ~ 03BE, however,

diverges since |aN,kmp-(km+1)m| ~ 1 for all m ~ 1. L1

LEMMA 2. If A = (an, k) has properties (2.1) and (2.2) and, in addition,

(2.3) there exists an integer q &#x3E; 0 such that for each integer p &#x3E; 0

and each constant M &#x3E; 0 there exist integers n, k where

|an,k|qn &#x3E; pkM
then for a given integer p &#x3E; 0, constant M &#x3E; 0, and integers no, ko
there exist integers N &#x3E; no K &#x3E; ko such that
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PROOF. By (2.1 ) there exists Bk &#x3E; 0 (for each k = 0, 1, ···) such that
|an,kqn|  Bk for all n = 0, 1, ···. Let

where Pn is given in (2.2). Therefore

Also

Therefore

with either

By (2.3) there exist N, K such that

So, by (1), N &#x3E; n0 and K &#x3E; k0. 
Before stating Theorem 3 we note that it can be proved using Brown’s

theorem [1]. Brown’s theorem, however, used results of l-l methods
[3] (which depended upon the Uniform Boundedness Principle) and,
thus, it is of interest that Theorem 3 can be proved directly. Such a proof
is given.

THEOREM 3. A matrix A = (an, k) is an entire method if and only if for
each integer q &#x3E; 0 there exists an integer p = p(q) &#x3E; 0 and a constant
M = M(q) &#x3E; 0 such that

PROOF. (~) Let x ~ 03BE, y = A(x), and q &#x3E; 0 be an arbitrary fixed
integer. We have that

There exists p = p(2q) &#x3E; 0 and M = M(2q) &#x3E; 0 such that

Therefore
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(~) Suppose there exists and integer q &#x3E; 0 such that for each integer
p &#x3E; 0 and each constant M &#x3E; 0 there exists integers n, k where

|an,k|qn &#x3E; pk M. By Lemma 1 (2.2) choose a sequence of positive integers
{pn}~0 such that

Let pn = max {pi : 1 = 0, ···, n}. Construct the sequence {anj,kj}~j=1 as
follows:

Choose nl, kl such that ani, ki ~ 0. Suppose that nl, ..., nj; kl, ...,
kj (j ~ 1) have been chosen. By Lemma 1 (2.1), given

there exists iï j = n; (e, k j) such that

By Lemma 2 there exists nj+1 &#x3E; max {nj, nj} and kj+1 &#x3E; kj such that

So, we have a sequence {anj,kj}~j=1 such that

and

Define the sequence x = {xm}~1 by

otherwise.

By (4) it follows that

Therefore |xn| ~ (1 In)n (n ~ 1) and, hence, x e ç. So y = A(x) E ç. Now

From (3) we have that

and, from (2) and (4), we have that
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So, from (5), (6), and (7), it follows that

Therefore,

which diverges, i.e., y = A(x) ~ ç. This contradicts the fact that A is an
entire method. L1

COROLLARY 4. An upper triangular matrix A = (an, k) is an entire

method if and only if there exists an integer p &#x3E; 0 and a constant M &#x3E; 0

such that

PROOF. (~) This follows from Theorem 3 (let q = 1). (G) Let q &#x3E; 0

be given. Thus

Since an, k = 0 for n &#x3E; k we have, by Theorem 3, that A is an entire
method. d

3. Applications

The Sonnenschein matrix A(f) = (an, k) has been studied by many
people including Meyer-Kônig [4]. It is defined by

where f is analytic at z = 0 and a0, 0 = 1, a0, k = 0 for k ~ 1.

LEMMA 5. The Sonnenschein matrix A(f) is an entire method if and only
if 1(0) = 0.

PROOF. (~) Suppose that f(0) ~ 0. Choose an integer q &#x3E; 0 such
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that 1/(0)1 q &#x3E; 1. By Theorem 3 there exists an integer p = p(q) &#x3E; 0

and a constant M = M(q) &#x3E; 0 such that 

However, there exists N such that if n ~ N then

Therefore f(0) = 0.

(~) If f(0) = 0 then A(f) = (an,k) is upper triangular. Since f(z)
is analytic at z = 0 there exists R &#x3E; 0 such that f(z) is analytic on
{z : Izi  2R} (hence [f(z)]" is analytic on {z : Izl  2R}). Let F =
{t : |t| = R}. There exists M &#x3E; 0, such that sup {|f(z)| : t ~ 0393} ~ M.
So, by the Cauchy Integral Formula, we have that

Choose an integer p &#x3E; R-1(M+1) and M* = 1. So

So, by Corollary 4, A(f) is an entire method. L1
In the special case of the Karamata matrix (see [4]) where

we have 

COROLLARY 6. The Karamata matrix is an entire method if and only
ifa=0.

In this case the Karamata matrix gives us the Taylor matrix T(03B2) hence

COROLLARY 7. The Taylor matrix T(03B2) is an entire method for all

complex numbers p.
Brown proved this result in his examples [1].
There are two other generalizations of the Taylor matrix which are of

interest, namely, the T(r,,) matrix (see [2]) and the (rn) matrix (see
[5]). For {rn}~0, a sequence of complex numbers, the T(r n) = (bn,k)
matrix is defined by

and the (rn) = (cn,k) matrix is defined by
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By applying Corollary 4 and the technique used in the proof of Lemma 5
we have

LEMMA 8. (i) The T(rn) matrix is an entire method if and only if {rn}~0
is bounded.

(ii) The s(rn) matrix is an entire method if and only if {rn}~0 is bounded.
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