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Let f(z) be a polynomial of degree n (n &#x3E;_ 2). If the moduli of all the
zeros of f’(z) are greater than or equal to cosec (n/n) then by a theorem of
S. Kakeya [1] f(z) is univalent in Izi  1. M. Robertson [2] gave a
necessary and sufficient condition for f (z) to have the radius of univalence
exactly equal to 1. 1 [3] formed a counter example to show that this
result is not sufficient. In connection with the same problem 1 will now
prove another necessary and sufficient condition, Theorem 1, and by
this proof will also deduce Kakeya’s result. Then 1 will consider a result
given by L. N. Cakalov, which will follow from Theorem 1, and will give
some improved results.

THEOREM 1. Let f(z) be a polynomial of degree n (n ~ 2). If the moduli
of all the zeros of f’(z) are greater than or equal to cosec (n/n) then the
necessary and sufficient condition for f(z) to have the radius of univalence
exactly equal to 1 is that all the zeros of f’(z) should be concentrated at the
same point on izl = cosec (nln).
The condition is sufficient for all n ~ 2. If n = 2 this can be seen by

the polynomial z2+2z, since cosec (03C0/n) = 1 and the derivative vanishes
at z = -1. If n &#x3E; 2 let us consider f’(z) = (z-cosec(03C0/n))n-1. Then f(z)
takes the same value at the points a = e03C0(2-n)i/2n, 03B2 = e1t(n- 2)i/2n.
because if we put w = e(203C0i)/n, then et, 03B2 satisfy the equation

which implies that

In order to prove that the condition is also necessary 1 will use the

principle of apolarity of polynomials. Therefore first I will define this
principle and state a theorem of Grace about apolarity.
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DEFINITION. If the coefficients of two polynomials

of degree n satisfy the condition

then f(z) and g (z) are called apolar polynomials.
Let

where the coefficients satisfy a linear relation

then

is apolar to f(z). If we write the same relation for the particular poly-
nomial

regarding x as a parameter, we find that

Therefore if the coefficients of a polynomial f(z) satisfy a linear relation
then we can obtain a polynomial g(z) apolar to f(z) directly from this
relation 2. 1 will use this fact in order to prove Theorem 1.
For the relative location of the zeros of apolar polynomials we have

the following theorem of Grace 3.

THEOREM 2. If two polynomials are apolar then any circular domain 4
containing all the zeros of one of these polynomials contains at least one
zero of the other.

By using arguments similar to those used in the proof of Theorem 2
1 will prove the following result.

THEOREM 3. Let f(z) and g(z) be apolar polynomials of degree n ~ 2.
Let C be the circle |z| = r such that one zero of f(z) is on C and this is

1 Ci denotes the (p+1)th coefhcient of the n’th power of the binomial, i.e.

2 See, e.g. [4] p. 19-20. 
3 [5], see e.g., [4] p. 16-19.
4 By a circular domain we mean the interior or exterior of a circle or half plane.
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not a zero of f’(z); and n-1 zeros of f(z) lie in the interior of C. If all the
zeros of g(z) are not concentrated at the same point on C then there
exists at least one zero of g(z) in the interior of C.

PROOF. Let two polynomials

of degree n be apolar. Then their coefficients satisfy the condition of
apolarity (1). We denote the zeros of f(z) by Otl, OC2, - - -, ce. and the
zeros of g(z) by Z1, Z2, ..., Zn.

Putting

the relation (1) can be written as

where

In this way we associate the relation (3) with the equation (2). We will
show that, if zl , z2 , ... , Z. is a system of solutions of equation (3)
and if all zk’s are not concentrated at the same point on C then at least
one Zk lies in the interior of C. We may assume that at least one of the

points zk is exterior to or on C, otherwise there is nothing to prove.
Supposing that this point is zn = 03B6 we will show that one of the points
z1 , z2 , ... , zn-1 lies in the interior of C. Let us put

Then

By substituting these values in (3) then we obtain the relation
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but this relation is associated with the equation

Now it is sufficient to show that all the roots of this last equation are in
the interior of C. Since zl , Z2, - - -, Zn-1 are the zeros of a polynomial
apolar to G(z), then by Grace’s theorem at least one zk lies in the interior
of C. Writing G(z) as

since

we have

and subtracting

we obtain

Division by f(z) gives

First we will show that if G(z) had a zero, zo, outside or on C then we
would have f(zo) ~ 0, and so G(zo) = 0 would imply that h(zo) = 0.
Then we will show that h(z) cannot have any zero outside or on C which
will complete the proof. Now let us suppose that zo is outside or on C
and G(zo ) = 0, f(zo) = 0. Then by equation (4) we have either f’ (zo ) = 0
or ( = zo. If zo is on C, since there exists just one zero of f(z) on C
which is not a zero of f’(z), then f’(zo) ~ 0. If zo is exterior to C, then
zo cannot be a zero of f’(z) because the circle C encloses all the zeros of
f (z) and therefore encloses all the zeros of f’(z) 6. The second possibility,

03B6 = zo, does not hold either since at the beginning we can choose 03B6
such thatf«() i= 0. This can be done because the zeros of g(z) are not

5 - an-llan lies in the interior of C because

and since all the zeros of f(z) do not have the same modulus then |an-1/an|, is less
than the maximum modulus. Therefore e ~ - an-1/an and so G(z) is a polynomial
of degree n-l.

6 [6], p. 15, Thm. (6.2).
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concentrated at the same point, therefore there exists at least one zero of
g(z) which lies either in the interior of C, when there is nothing to prove,
or lies on or outside C and is not a zero of f(z). So we can choose this
zero as 03B6.
Now h(z) cannot have a zero exterior to or on C, for suppose that zo

is a zero exterior to or on C, then

and

The image of the interior of C under the transformation

is a convex domain. Let us denote this domain by F. Since 03B6 is not in the
interior of C, Z = 0 is exterior to F. By (5) the sum of the transforms of
03B1i’ S is 0; so Z = 0 is their centre of gravity. But the transform of at least
one a; is in F ; thus Z = 0 is also in F 1. This contradiction completes the
proof.
Now I will prove the necessary condition of Theorem 1, and by the

same proof I will also deduce Kakeya’s Theorem.

PROOF. Let f(z) be a polynomial of degree n ~ 2 which attains the
same value at two distinct points zi , Z2 in the closed unit circle. The
relation

is a linear relation between the coefficients of f’(z). As it is explained in
the argument following the definition of apolarity, by writing the same
linear relation between the coefficients of

we find that

where y(z) and f’(z) are apolar polynomials. Now let Z be the zero of
y(z) of maximum modulus. By writing equation (6) as

1 If n points are located in or on the boundary of a convex domain and if at least
one of them lies in the domain then the centre of gravity of thèse points also lies in the
domain.
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we have

where w is an n’th root of unity different from 1. If we allow zl , Z2 to vary
in the closed unit circle, then we have

Thus |Z| ~ cosec 7rln. Suppose that n &#x3E; 2 and [Z | = cosec n/M, then

y(z) satisfies the conditions of f(z) in Theorem 3 8. Therefore if all the
zeros of f’(z) are not concentrated at the same point on izi = cosec 03C0/n
then there exists at least one zero off’(z) in the interior of Izi = cosec 7EIn.
Thus if the zeros of f’(z) are not concentrated at the same point on
|z| = cosec (03C0/n), and if f’(z) does not vanish in Izl  cosec (03C0/n) then f(z)
cannot attain the same value at two distinct points in |z| ~ 1. Hence by
an argument of J. Dieudonné 9 the radius of univalence of f(z) is greater
than 1 10. Thus the necessary condition of Theorem 1 follows.

In the above proof if we allow zl , z2 to vary only in the interior of the
unit circle then by applying Grace’s Theorem we deduce Kakeya’s
Theorem.

L. N. Cakalov [8, Theorem 2] formed a special type of distribution of
the zeros of f’(z) outside the unit disc, for which he showed that f(z)

8 Max. modulus of the zeros of y’(z) cannot be greater than cosec (03C0/n-1), and
since n &#x3E; 2 then cosec (n/n-1)  cosec (03C0/n).

9 [7], p. 309-310. If Izl = R is the largest circle about the origin in which a poly-
nomial f(z) is univalent then either f(z) takes the same value at two distinct points on
|z} = R or f’ (z) vanishes on 1 z = R. Otherwise f (z) is univalent in a larger circle.

lo If n = 2 then cosec (03C0/n) = 1, and if the derivative does not vanish inside or on
the unit circle then by Kakeya’s Theorem the radius of univalence of f (z) is greater
than 1.
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is univalent in a larger circle than that given by Kakeya’s Theorem.
His result is as follows:

THEOREM 4. Suppose that m is a non-negative integer less than (n + 1 )/2,
and let

Let m of the zeros of the polynomial Q(z) = 03A0k=1n(1- (z/zk)) lie in the
annulus 1 ~ izl ~ R and the remaining n-m be situated in the region
Izl &#x3E; R. Then the polynomial P(z) = S Q(z)dz is univalent in izl  ro
where ro is larger than the radius sin [03C0/(n+1)] given by the theorem of
Kakeya.
Now this result follows from Theorem 1 since the zeros of Q(z) are

not concentrated at the same point on the unit cicle. By using arguments
similar to Cakalov’s, we can obtain the following improved results,
Theorems 5 and 6.

THEOREM 5. Suppose that n &#x3E; 1, x is a real number such that

l/nz  x  lIn and

Let one of the zeros of the polynomial Q (z) = 03A0k=1n(z/zk)) lie in

the annulus 1 ~ 1 z | ~ R and the remaining n-1 be situated in the region
izl &#x3E; R. Then the polynomial P(z) = S Q(z)dz is univalent in izi  ro
where

THEOREM 6. Suppose that n &#x3E; 1, x is a real number such that x &#x3E; 1,
k is an integer such that 0  k  n and

Let k of the zeros of the polynomial Q(z) = 03A0k=1n(1-(z/zk)) lie in the

annulus 1 ~ izi ~ R and the remaining n-k be situated in the region
Izl &#x3E; R. Then the polynomial P(z) = S Q(z)dz is univalent in Izi  ro
where

11 If x is near to 1 In then R becomes large and sin x03C0n/(xn+1) is near to 1.
Il For k = 1 and for large x, R becomes large, and sin (x03C0n/2k(xn+1)) is near to 1.
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1 wish to thank Professor F. R. Keogh for suggesting that I should
prove whether or not the condition of Theorem 1 is necessary.
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13 In [9, Theorem 2], by considering the distribution of the zeros of a polynomial
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