Compositio Mathematica

TÜRKÂN BAŞGÖZE

On the univalence of polynomials

Compositio Mathematica, tome 22, no 2 (1970), p. 245-252
http://www.numdam.org/item?id=CM_1970__22_2_245_0
© Foundation Compositio Mathematica, 1970, tous droits réservés.
L'accès aux archives de la revue «Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

ON THE UNIVALENCE OF POLYNOMIALS

by
Türkân Bașgöze

Let $f(z)$ be a polynomial of degree $n(n \geqq 2)$. If the moduli of all the zeros of $f^{\prime}(z)$ are greater than or equal to $\operatorname{cosec}(\pi / n)$ then by a theorem of S. Kakeya [1] $f(z)$ is univalent in $|z|<1$. M. Robertson [2] gave a necessary and sufficient condition for $f(z)$ to have the radius of univalence exactly equal to 1 . I [3] formed a counter example to show that this result is not sufficient. In connection with the same problem I will now prove another necessary and sufficient condition, Theorem 1, and by this proof will also deduce Kakeya's result. Then I will consider a result given by L. N. Cakalov, which will follow from Theorem 1, and will give some improved results.

Theorem 1. Let $f(z)$ be a polynomial of degree $n(n \geqq 2)$. If the moduli of all the zeros of $f^{\prime}(z)$ are greater than or equal to $\operatorname{cosec}(\pi / n)$ then the necessary and sufficient condition for $f(z)$ to have the radius of univalence exactly equal to 1 is that all the zeros of $f^{\prime}(z)$ should be concentrated at the same point on $|z|=\operatorname{cosec}(\pi / n)$.

The condition is sufficient for all $n \geqq 2$. If $n=2$ this can be seen by the polynomial $z^{2}+2 z$, since $\operatorname{cosec}(\pi / n)=1$ and the derivative vanishes at $z=-1$. If $n>2$ let us consider $f^{\prime}(z)=(z-\operatorname{cosec}(\pi / n))^{n-1}$. Then $f(z)$ takes the same value at the points $\alpha=e^{\pi(2-n) i / 2 n}, \beta=e^{\pi(n-2) i / 2 n}$, because if we put $w=e^{(2 \pi i) / n}$, then α, β satisfy the equation

$$
\operatorname{cosec} \frac{\pi}{n}=\frac{\alpha-\beta w}{1-w},
$$

which implies that

$$
\left(\frac{\alpha-\operatorname{cosec} \frac{\pi}{n}}{\beta-\operatorname{cosec} \frac{\pi}{n}}\right)^{n}=1
$$

In order to prove that the condition is also necessary I will use the principle of apolarity of polynomials. Therefore first I will define this principle and state a theorem of Grace about apolarity.

Definition. If the coefficients of two polynomials

$$
\begin{aligned}
& f(z)=a_{0}+C_{n}^{1} a_{1} z+C_{n}^{2} a_{2} z^{2}+\cdots+a_{n} z^{n 1} \\
& g(z)=b_{0}+C_{n}^{1} b_{1} z+C_{n}^{2} b_{2} z^{2}+\cdots+b_{n} z^{n}
\end{aligned}
$$

of degree n satisfy the condition

$$
\begin{equation*}
a_{0} b_{n}-C_{n}^{1} a_{1} b_{n-1}+C_{n}^{2} a_{2} b_{n-2}-\cdots+(-1)^{n} a_{n} b_{0}=0 \tag{1}
\end{equation*}
$$

then $f(z)$ and $g(z)$ are called apolar polynomials.
Let

$$
f(z)=a_{0}+C_{n}^{1} a_{1} z+C_{n}^{2} a_{2} z^{2}+\cdots+a_{n} z^{n}
$$

where the coefficients satisfy a linear relation

$$
a_{0} l_{n}+C_{n}^{1} a_{1} l_{n-1}+C_{n}^{2} a_{2} l_{n-2}+\cdots+a_{n} l_{0}=0
$$

then

$$
g(z)=l_{0}-C_{n}^{1} l_{1} z+C_{n}^{2} l_{2} z^{2}-\cdots+(-1)^{n} l_{n} z^{n}
$$

is apolar to $f(z)$. If we write the same relation for the particular polynomial

$$
F(x)=(x-z)^{n}=x^{n}-C_{n}^{1} x^{n-1} z+\cdots
$$

regarding x as a parameter, we find that

$$
g(z)=0
$$

Therefore if the coefficients of a polynomial $f(z)$ satisfy a linear relation then we can obtain a polynomial $g(z)$ apolar to $f(z)$ directly from this relation ${ }^{2}$. I will use this fact in order to prove Theorem 1.

For the relative location of the zeros of apolar polynomials we have the following theorem of Grace ${ }^{3}$.

Theorem 2. If two polynomials are apolar then any circular domain ${ }^{4}$ containing all the zeros of one of these polynomials contains at least one zero of the other.

By using arguments similar to those used in the proof of Theorem 2 I will prove the following result.

Theorem 3. Let $f(z)$ and $g(z)$ be apolar polynomials of degree $n \geqq 2$. Let C be the circle $|z|=r$ such that one zero of $f(z)$ is on C and this is
${ }^{1} C_{n}^{p}$ denotes the $(p+1)$ th coefficient of the n 'th power of the binomial, i.e.
${ }^{2}$ See, e.g. [4] p. 19-20.
${ }^{3}$ [5], see e.g., [4] p. 16-19.
${ }^{4}$ By a circular domain we mean the interior or exterior of a circle or half plane.
not a zero of $f^{\prime}(z)$; and $n-1$ zeros of $f(z)$ lie in the interior of C. If all the zeros of $g(z)$ are not concentrated at the same point on C then there exists at least one zero of $g(z)$ in the interior of C.

Proof. Let two polynomials

$$
\begin{align*}
f(z) & =a_{0}+C_{n}^{1} a_{1} z+C_{n}^{2} a_{2} z^{2}+\cdots+a_{n} z^{n} \tag{2}\\
g(z) & =b_{0}+C_{n}^{1} b_{1} z+C_{n}^{2} b_{2} z^{2}+\cdots+b_{n} z^{n}
\end{align*}
$$

of degree n be apolar. Then their coefficients satisfy the condition of apolarity (1). We denote the zeros of $f(z)$ by $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}$ and the zeros of $g(z)$ by $z_{1}, z_{2}, \ldots, z_{n}$.

Putting

$$
S_{k}=(-1)^{k} C_{n}^{k} \frac{b_{n-k}}{b_{n}}
$$

the relation (1) can be written as

$$
\begin{equation*}
a_{0} S_{0}+a_{1} S_{1}+\cdots+a_{n} S_{n}=0 \tag{3}
\end{equation*}
$$

where

$$
\begin{aligned}
& S_{0}=1 \\
& S_{1}=z_{1}+z_{2}+\cdots+z_{n} \\
& \cdots \cdots \cdots \\
& S_{n}=z_{1} z_{2} \cdots z_{n}
\end{aligned}
$$

In this way we associate the relation (3) with the equation (2). We will show that, if $z_{1}, z_{2}, \ldots, z_{n}$ is a system of solutions of equation (3) and if all z_{k} 's are not concentrated at the same point on C then at least one z_{k} lies in the interior of C. We may assume that at least one of the points z_{k} is exterior to or on C, otherwise there is nothing to prove. Supposing that this point is $z_{n}=\zeta$ we will show that one of the points $z_{1}, z_{2}, \ldots, z_{n-1}$ lies in the interior of C. Let us put

$$
\begin{aligned}
& s_{0}=1 \\
& s_{1}=z_{1}+z_{2}+\cdots+z_{n-1} \\
& \cdots \cdots \cdots \\
& s_{n-1}=z_{1} z_{2} \cdots z_{n-1} .
\end{aligned}
$$

Then

$$
\begin{aligned}
& S_{0}=s_{0} \\
& S_{1}=s_{1}+\zeta s_{0}, \\
& \cdots \cdots \\
& S_{n}=\zeta s_{n-1} .
\end{aligned}
$$

By substituting these values in (3) then we obtain the relation

$$
\left(a_{0}+a_{1} \zeta\right) s_{0}+\left(a_{1}+a_{2} \zeta\right) s_{1}+\ldots+\left(a_{n-1}+\zeta a_{n}\right) s_{n-1}=0
$$

but this relation is associated with the equation

$$
G(z)=\left(a_{0}+a_{1} \zeta\right)+C_{n-1}^{1}\left(a_{1}+a_{2} \zeta\right) z+\cdots+\left(a_{n-1}+\zeta a_{n}\right) z^{n-1}=0^{5}
$$

Now it is sufficient to show that all the roots of this last equation are in the interior of C. Since $z_{1}, z_{2}, \cdots, z_{n-1}$ are the zeros of a polynomial apolar to $G(z)$, then by Grace's theorem at least one z_{k} lies in the interior of C. Writing $G(z)$ as

$$
\begin{aligned}
G(z)= & a_{0}+C_{n-1}^{1} a_{1} z+\cdots+a_{n-1} z^{n-1} \\
& +\zeta\left(a_{1}+C_{n-1}^{1} a_{2} z+\cdots+a_{n} z^{n-1}\right)
\end{aligned}
$$

since

$$
f^{\prime}(z)=n\left[a_{1}+C_{n-1}^{1} a_{2} z+\cdots+a_{n} z^{n-1}\right]
$$

we have

$$
n G(z)=\zeta f^{\prime}(z)+n\left[a_{0}+C_{n-1}^{1} a_{1} z+\cdots+a_{n-1} z^{n-1}\right]
$$

and subtracting

$$
n f(z)=n a_{0}+n C_{n}^{1} a_{1} z+\cdots+n a_{n} z^{n}
$$

we obtain

$$
\begin{equation*}
n G(z)=n f(z)+(\zeta-z) f^{\prime}(z) \tag{4}
\end{equation*}
$$

Division by $f(z)$ gives

$$
h(z)=n+(\zeta-z) \frac{f^{\prime}(z)}{f(z)}
$$

First we will show that if $G(z)$ had a zero, z_{0}, outside or on C then we would have $f\left(z_{0}\right) \neq 0$, and so $G\left(z_{0}\right)=0$ would imply that $h\left(z_{0}\right)=0$. Then we will show that $h(z)$ cannot have any zero outside or on C which will complete the proof. Now let us suppose that z_{0} is outside or on C and $G\left(z_{0}\right)=0, f\left(z_{0}\right)=0$. Then by equation (4) we have either $f^{\prime}\left(z_{0}\right)=0$ or $\zeta=z_{0}$. If z_{0} is on C, since there exists just one zero of $f(z)$ on C which is not a zero of $f^{\prime}(z)$, then $f^{\prime}\left(z_{0}\right) \neq 0$. If z_{0} is exterior to C, then z_{0} cannot be a zero of $f^{\prime}(z)$ because the circle C encloses all the zeros of $f(z)$ and therefore encloses all the zeros of $f^{\prime}(z)^{6}$. The second possibility, $\zeta=z_{0}$, does not hold either since at the beginning we can choose ζ such that $f(\zeta) \neq 0$. This can be done because the zeros of $g(z)$ are not

$$
\begin{aligned}
& 5-a_{n-1} / a_{n} \text { lies in the interior of } C \text { because } \\
& \frac{-C_{n}^{n-1} a_{n-1}}{a_{n}}=\alpha_{1}+\alpha_{2}+\cdots+\alpha_{n} \text {, and so }-\frac{a_{n-1}}{a_{n}}=\frac{\alpha_{1}+\alpha_{2}+\cdots+\alpha_{n}}{n},
\end{aligned}
$$

and since all the zeros of $f(z)$ do not have the same modulus then $\left|a_{n-1} / a_{n}\right|$, is less than the maximum modulus. Therefore $\zeta \neq-a_{n-1} / a_{n}$ and so $G(z)$ is a polynomial of degree $n-1$.
${ }^{6}$ [6], p. 15, Thm. (6.2).
concentrated at the same point, therefore there exists at least one zero of $g(z)$ which lies either in the interior of C, when there is nothing to prove, or lies on or outside C and is not a zero of $f(z)$. So we can choose this zero as ζ.

Now $h(z)$ cannot have a zero exterior to or on C, for suppose that z_{0} is a zero exterior to or on C, then

$$
\frac{f^{\prime}\left(z_{0}\right)}{f\left(z_{0}\right)}=\sum_{i=1}^{n} \frac{1}{z_{0}-\alpha_{i}}
$$

and

$$
\begin{equation*}
h\left(z_{0}\right)=\sum_{i=1}^{n}\left(1+\frac{\zeta-z_{0}}{z_{0}-\alpha_{i}}\right)=\sum_{i=1}^{n} \frac{\zeta-\alpha_{i}}{z_{0}-\alpha_{i}}=0 \tag{5}
\end{equation*}
$$

The image of the interior of C under the transformation

$$
Z=\frac{\zeta-z}{z_{0}-z}
$$

is a convex domain. Let us denote this domain by Γ. Since ζ is not in the interior of $C, Z=0$ is exterior to Γ. By (5) the sum of the transforms of α_{i} 's is 0 ; so $Z=0$ is their centre of gravity. But the transform of at least one α_{i} is in Γ; thus $Z=0$ is also in Γ^{7}. This contradiction completes the proof.

Now I will prove the necessary condition of Theorem 1, and by the same proof I will also deduce Kakeya's Theorem.

Proof. Let $f(z)$ be a polynomial of degree $n \geqq 2$ which attains the same value at two distinct points z_{1}, z_{2} in the closed unit circle. The relation

$$
f\left(z_{1}\right)=f\left(z_{2}\right)
$$

is a linear relation between the coefficients of $f^{\prime}(z)$. As it is explained in the argument following the definition of apolarity, by writing the same linear relation between the coefficients of

$$
F(x)=(x-z)^{n-1}
$$

we find that

$$
\begin{equation*}
y(z)=\int_{z_{1}}^{z_{2}}(x-z)^{n-1} d x=0 \tag{6}
\end{equation*}
$$

where $y(z)$ and $f^{\prime}(z)$ are apolar polynomials. Now let Z be the zero of $y(z)$ of maximum modulus. By writing equation (6) as

[^0]$$
\left(\frac{z_{1}-z}{z_{2}-z}\right)^{n}=1
$$
we have
$$
z=\frac{z_{1}-w z_{2}}{1-w}
$$
where w is an n 'th root of unity different from 1 . If we allow z_{1}, z_{2} to vary in the closed unit circle, then we have
\[

$$
\begin{aligned}
\max \left|\frac{z_{1}-w z_{2}}{1-w}\right| & =\frac{2}{\min |1-w|}=\frac{2}{\left|1-\cos \frac{2 \pi}{n}-i \sin \frac{2 \pi}{n}\right|} \\
& =\frac{2}{\sqrt{\left(1-\cos \frac{2 \pi}{n}\right)^{2}+\sin ^{2} \frac{2 \pi}{n}}} \\
& =\frac{2}{\sqrt{2\left(1-\cos \frac{2 \pi}{n}\right)}}=\frac{2}{\sqrt{4 \sin ^{2} \frac{\pi}{n}}}=\operatorname{cosec} \frac{\pi}{n} .
\end{aligned}
$$
\]

Thus $|Z| \leqq \operatorname{cosec} \pi / n$. Suppose that $n>2$ and $[Z \mid=\operatorname{cosec} \pi / n$, then $y(z)$ satisfies the conditions of $f(z)$ in Theorem 3^{8}. Therefore if all the zeros of $f^{\prime}(z)$ are not concentrated at the same point on $|z|=\operatorname{cosec} \pi / n$ then there exists at least one zero of $f^{\prime}(z)$ in the interior of $|z|=\operatorname{cosec} \pi / n$. Thus if the zeros of $f^{\prime}(z)$ are not concentrated at the same point on $|z|=\operatorname{cosec}(\pi / n)$, and if $f^{\prime}(z)$ does not vanish in $|z|<\operatorname{cosec}(\pi / n)$ then $f(z)$ cannot attain the same value at two distinct points in $|z| \leqq 1$. Hence by an argument of J . Dieudonné ${ }^{9}$ the radius of univalence of $f(z)$ is greater than 1^{10}. Thus the necessary condition of Theorem 1 follows.

In the above proof if we allow z_{1}, z_{2} to vary only in the interior of the unit circle then by applying Grace's Theorem we deduce Kakeya's Theorem.
L. N. Cakalov [8, Theorem 2] formed a special type of distribution of the zeros of $f^{\prime}(z)$ outside the unit disc, for which he showed that $f(z)$

[^1]is univalent in a larger circle than that given by Kakeya's Theorem. His result is as follows:

Theorem 4. Suppose that m is a non-negative integer less than $(n+1) / 2$, and let

$$
R=\sin \frac{\pi}{n+1}: \sin \frac{(n+1-2 m) \pi}{(n-m)(2 n+2)}
$$

Let m of the zeros of the polynomial $Q(z)=\prod_{k=1}^{n}\left(1-\left(z / z_{k}\right)\right)$ lie in the annulus $1 \leqq|z| \leqq R$ and the remaining $n-m$ be situated in the region $|z|>R$. Then the polynomial $P(z)=\int Q(z) d z$ is univalent in $|z|<r_{0}$ where r_{0} is larger than the radius $\sin [\pi /(n+1)]$ given by the theorem of Kakeya.

Now this result follows from Theorem 1 since the zeros of $Q(z)$ are not concentrated at the same point on the unit cicle. By using arguments similar to $\tilde{C} a k a l o v ' s, ~ w e ~ c a n ~ o b t a i n ~ t h e ~ f o l l o w i n g ~ i m p r o v e d ~ r e s u l t s, ~$ Theorems 5 and 6.

Theorem 5. Suppose that $n>1, x$ is a real number such that $1 / n^{2}<x<1 / n$ and

$$
R=\sin \frac{x \pi n}{x n+1}: \sin \frac{(1-x n) \pi}{2(n-1)(x n+1)}
$$

Let one of the zeros of the polynomial $Q(z)=\prod_{k=1}^{n}\left(1-\left(z / z_{k}\right)\right)$ lie in the annulus $1 \leqq|z| \leqq R$ and the remaining $n-1$ be situated in the region $|z|>R$. Then the polynomial $P(z)=\int Q(z) d z$ is univalent in $|z|<r_{0}$ where

$$
r_{0}>\sin \frac{x \pi n}{x n+1}>\sin \frac{\pi}{n+1} .^{11}
$$

Theorem 6. Suppose that $n>1, x$ is a real number such that $x>1$, k is an integer such that $0<k<n$ and

$$
R=\sin \frac{x \pi n}{2 k(x n+1)}: \sin \frac{\pi}{2(n-k)(x n+1)}
$$

Let k of the zeros of the polynomial $Q(z)=\prod_{k=1}^{n}\left(1-\left(z / z_{k}\right)\right)$ lie in the annulus $1 \leqq|z| \leqq R$ and the remaining $n-k$ be situated in the region $|z|>R$. Then the polynomial $P(z)=\int Q(z) d z$ is univalent in $|z|<r_{0}$ where

$$
r_{0}>\sin \frac{x \pi n}{2 k(x n+1)} .{ }^{12}
$$

[^2]If $k<\left(x n^{2}+x n\right) / 2(x n+1)$ we have further

$$
r_{0}>\sin \frac{x \pi n}{2 k(x n+1)}>\sin \frac{\pi}{n+1} .{ }^{13}
$$

I wish to thank Professor F. R. Keogh for suggesting that I should prove whether or not the condition of Theorem 1 is necessary.

REFERENCES

S. Kakeya

[1] On zeros of a polynomial and its derivatives, Tôhoku Mathematical Journal, vol. 11, p. 5-16 (1917).
M. Robertson
[2] A note on schlicht polynomials, Transactions of the Royal Society of Canada, Section III, vol. 26, (1932), p. 43-48.
T. BaşGÖze
[3] On the Radius of Univalence of a Polynomial, Mathematische Zeitschrift, vol. 105, p. 299-300 (1968).
P. Montel
[4] Leçons sur les fonctions univalentes ou multivalentes, Gauthier-Villars, Éditeur (1933).
J. H. Grace
[5] The zeros of a polynomial, Proceedings of the Cambridge Philosophical Society, vol. 11, (1902) p. 352-357.
M. Marden
[6] The geometry of the zeros of a polynomial in a complex variable, American Mathematical Society (1949)
J. Dieudonné
[7] Recherches sur quelques problèmes relatifs aux polynomes et aux fonctions bornées d'une variable complexe, Annales de l'École Normale supérieure, vol. 48, (1931), p. 247-358.
L. N. $\tilde{C}_{\text {akalov }}$
[8] On domains of univalence of certain classes of analytic functions, Soviet Mathematics, vol. 1, No. 3, (1960), p. 781-783.
T. BaşGÖze
[9] On the univalence of certain classes of analytic functions, Journal of the London Mathematical Society, (2), 1 (1969), p. 140-144.
(Oblatum 18-VIII-69)

Middle East Technical University
Dept. of Mathematics Ankara, Turkey

[^3]
[^0]: ${ }^{7}$ If n points are located in or on the boundary of a convex domain and if at least one of them lies in the domain then the centre of gravity of these points also lies in the domain.

[^1]: ${ }^{8}$ Max. modulus of the zeros of $y^{\prime}(z)$ cannot be greater than $\operatorname{cosec}(\pi / n-1)$, and since $n>2$ then $\operatorname{cosec}(\pi / n-1)<\operatorname{cosec}(\pi / n)$.
 ${ }^{9}$ [7], p. 309-310. If $|z|=R$ is the largest circle about the origin in which a polynomial $f(z)$ is univalent then either $f(z)$ takes the same value at two distinct points on $|z|=R$ or $f^{\prime}(z)$ vanishes on $|z|=R$. Otherwise $f(z)$ is univalent in a larger circle.
 ${ }^{10}$ If $n=2$ then $\operatorname{cosec}(\pi / n)=1$, and if the derivative does not vanish inside or on the unit circle then by Kakeya's Theorem the radius of univalence of $f(z)$ is greater than 1.

[^2]: ${ }^{11}$ If x is near to $1 / n$ then R becomes large and $\sin x \pi n /(x n+1)$ is near to 1 .
 ${ }^{12}$ For $k=1$ and for large x, R becomes large, and $\sin (x \pi n / 2 k(x n+1))$ is near to 1 .

[^3]: ${ }^{13}$ In [9, Theorem 2], by considering the distribution of the zeros of a polynomial $g(z)$ relative to an annulus, I obtained the best possible results for the minimum radius of univalence and the minimum radius of starlikeness of $f(z)=z g(z)$. These results are valid for every annulus about the origin and for every type of distribution of the zeros relative to an annulus.

