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1. Introduction

One of the central concerns of abstract harmonic analysis is the study
of the commutative Banach algebra L1(G) consisting of all the equiv-
alence classes of complex valued functions on the locally compact
abelian (LCA) group G which are integrable with respect to Haar measure
m on G and with the usual convolution product

Since m is invariant under translàtion by elements of G it is trivially ap-
parent that {TSm|s ~ G} spans a one dimensional space of measures,
where Tsm(E) = m(Es). This observation suggests the development of a
theory involving algebras which arise in a manner analogous to the
group algebra L1(G) but where Haar measure is replaced by an almost
invariant measure, that is, by a regular complex valued Borel measure
p on G such that {Ts03BC|s ~ G} spans a finite dimensional space of measures.
In this paper we shall construct such a class of algebras and examine 
various aspects of their structure.

Before proceeding to the construction of these algebras we wish to recall
the characterization theorem for almost invariant measures, namely,
p is an almost invariant measure on G if and only if there exists a
unique continuous almost invariant function h on G such that dp = hdm.
A function h is almost invariant provided that {Tsh|s ~ G} spans a finite
dimensional space of functions and where Tsh(t) = h(ts). This and other
results related to almost invariant measures are available in (4, 5). To
insure that the algebras under consideration are nontrivial we shall al-
ways assume that the supremum norm ~h~~ of h is finite. In this case h
will be a trigonometric polynomial and, in particular, an almost periodic
function. The characterization theorem will also permit us to phrase our
definitions and results in terms of the function h rather than the almost
invariant measure dp = hdm, thus allowing a certain simplification of
terminology.
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2. The algebra F1(h)

Given a trigonometric polynomial h on an LCA group G, h ~ 0, we
shall define a new multiplication in the Banach space underlying the group
algebra L2(G), that is, the Banach space of equivalence classes of func-
tions f absolutely integrable with respect to Haar measure under the norm
II.ÎII = ~G|g(t)|dm(t), in such a way that the new product involves h
in an essential fashion and reduces to the convolution product when h == 1.
This is accomplished by defining f o g = fh * gh,f, g ~ L1(G). The alge-
bra so obtained will be denoted by F1(h). The next theorem is easily
established.

THEOREM 1. Let G be a LCA group, h ~ 0 a trigonometric polynomial
on G, ~h~~ ~ 1. Then 2 1 (h) is a commutative nonassociative Banach
algebra under the multiplication o.

REMARKS. a) By a nonassociative Banach algebra we mean a Banach
space equipped with a multiplication which satisfies all the requirements
of a Banach algebra with the possible exception of the associative law
of multiplication. In accordance with the usual terminology for such
algebras (10) a nonassociative algebra may be associative. If the as-

sociative law fails then the algebra is said to be not associative.
b) It is not difficult to show that F1(h) may be not associative. Indeed

if G is any nontrivial LCA group and y E éi, the dual group of G, is not
identically one then, appealing to well known properties of the Fourier
transform, one can readily verify that 21 (h) is not associative when

h(t) = (t, y). The question of associativity for F1(h) will be further
investigated below.

c) The restrictions that ~h~~ ~ 1 is only one of convenience. If

1  ~h~~  oo then one defines f 03BF g = fh * gh/(~h~~)2.
d) Among possible products involving h the one chosen above seems

most amenable to study. For instance the product f o g = f * gh leads, in
general, to a noncommutative algebra.

e) In view of the translation invariance of Haar measure one might
suspect that the appropriate linear space to begin with in the construction
of the algebras 21 (h) should consist of all Borel measurable functions
such that ~G|Ts-1 f(t)h(t)|dm(t)  oo, S E G. However, one can show that
this space is identical with the linear space L 1 (G). The proof depends on
the almost periodicity of h.

f) Obviously when h is a constant then the algebras 21(h) are essen-
tially identical with the group algebra L1(G). Thus in what follows we
shall always assume that h is nonconstant.

Since the algebra F1(h) we wish to study may not be associative, it
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is not immediately apparent to what extent we can employ the theory of
(associative) Banach algebras in our investigations. For example, the usual
proofs of the Gelfand-Mazur theorem seem to depend on the associative
law of multiplication. Consequently, most of the following theorems will
be established by direct arguments rather than through an appeal to the
general theory of Banach algebras.
On the other hand the majority of the concepts involved in the theory

of Banach algebras can be transferred verbatim to the nonassociative
context, and we shall do so without further comment.

3. The multiplicative linear functionals on F1(h)

Our first concern will be to describe the multiplicative linear functionals
for the algebras F1(h), that is, the continuous homomorphisms of
21 Ch) into the complex numbers. As in the study of the group algebra
L1(G) we first reduce the problem to the solution of a certain functional
equation.

THEOREM 2. Let G be a LCA group, h a nonconstant trigonometric poly-
nomial on G, 1 Ihl 1 . ~ 1. Then the following are equivalent.

i) F is a multiplicative linear. functional on 21(h).
ii) There exists a unique bounded continuous function oc on G such that

and

PROOF. If F is a multiplicative linear functional on 21 (h), then clearly
there exists a bounded measurable function a on G which satisfies (*).
Appealing to Fubini’s theorem one deduces that for all f, g E 21 (h) we
have

Hence for each g e 21(h),

for almost all t in G. But since the right hand member of this identity
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is continuous, we may assume without loss of generality that 03B1 is continu-

ous. A repetition of the previous deduction and the continuity of h and oc
reveals that ce satisfies (**). Thus i) implies ii).
The converse assertion is easily verified.
Consequently the description of the multiplicative linear functionals

on F1(h) is equivalent to finding the continuous solutions of the func-
tional equation (**). We have discussed this equation elsewhere (6) and
the main theorem of that paper immediately provides us with the follow-
ing result. By a radical algebra we mean an algebra whose only multipli-
cative linear functional is the zero homomorphism. For any function k
on a LCA group G we set z(k) = {t|k(t) = 0} and z(k) = G - z(k). e
denotes the identity element of G.

THEOREM 3. Let G be a LCA group, h a nonconstant trigonometric poly-
nomial on G, ~h~~ ~ 1.

1. !fl(h) is a radical algebra if any one of the following conditions is
satisfied:

i) G is connected
ii) z(h) = ~
iii) e E z(h)
iv) G is infinite, e E z(h) and z(h) contains no nontrivial subgroups.
2. If G is disconnected then the following are equivalent:
i) F1 (h) is not a radical algebra.
ii) There exists a unique open and closed subgroup K c z(h) such that

a) h(t) = h(e), t E K.

b) If t, SE (h)~K then ts e K.

Moreover, if F1(h) is not a radical algebra then the multiplicative
linear functionals on F1(h) are precisely those continuous linear func-
tionals of the form

where

and y e K. The correspondence 03B3 ~ - ~ 03B103B3 is bijective.
REMARKS. a) In view of this theorem we shall now restrict our atten-

tion to disconnected groups. If h is a trigonometric polynomial on such
a group, then any subgroup K of Z(h) which satisfies the restrictions in
2 ii) of Theorem 3 will be called the solution group for 21 (h). Clearly the
solution group is unique.

b) Some concrete examples of solutions for (**) can be found in (6).
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4. A décomposition theorem

Suppose F1(h) is not a radical algebra and K is the solution group
for .IL’ 1 (h). It is evident that L 1 (K), the Banach space of functions ab-
solutely integrable with respect to Haar measure on K, can be considered
as a closed linear subspace of .IL’ 1 (h). Thus for any f E .IL’ 1 (h) we see that
f2 = ~Kf ~ L1(K) ~ .IL’ 1 (h), where XK denotes the characteristic function
of K. We set fl = f f2. Clearly fl can be considered as an element of
L 1 (G ~ K), the Banach space of functions absolutely integrable with respect
to the restriction to G -K of Haar measure on G. This space can also in

an obvious manner be considered as a subspace of .IL’ 1 (h). Moreover Theo-
rem 3 shows that fl is an element of the radical of F1(h), that is, a mem-
ber of the intersection of the kernels of the multiplicative linear function-
als on .IL’ 1 (h). Thus we see that .IL’ 1 (h) is a sum of its radical and L 1 (K).
The next theorem shows that somewhat more can be said about this

decomposition. We shall denote the radical of 21(h), which is a closed
ideal, by R.

THEOREM 4. Let G be a disconnected LCA group, h a nonconstant

trigonometric polynomial on G, 1 Ihl 1 . ç 1, and suppose F1(h) is not a
radical algebra. If K is the solution group for F1(h) then:

i) R = {f|f~ F1(h), f = 0 a. e. on K} .
ii) F1(h) = R ~+L1(K).
iii) L1(K) is an associative subalgebra of .IL’ 1 (h).
iv) There exists a homeomorphic algebra isomorphism of F1(h)/R onto

L 1 (K).
PROOF. i) and ii) are easily verified. Suppose f2, g2 E L 1 (K). Then

as K c {t|h(t) = h(e)} and g2 = 0 a.e. on G~K. Since K is a group it
follows that if s 0 K then st-1 ~ K for all t e K. This, combined with
the fact that f2 - 0 a.e. on G ~K, reveals at once that

The validity of iii) is now evident.
Some routine computations together with the results in i)-iii) show

that the mapping 03B2 : 21(h)/R --+ L1(K) defined by P(f2 + R) = (h(e))2f2
satisfies the requirements of part iv).
REMARKS. a) Parts ii)-iv) of the theorem show that the Wedderburn

first principal structure theorem is valid for nonradical 21 (h) (8, p. 59).
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b) Moreover the theorem also provides examples of Banach algebras
where the Wedderburn theorem holds but the sufficient conditions uti-

lized by Feldman (2) to insure the validity of this theorem may not be
satisfied. In particular it is evident that neither R nor F1(h)/R need be
finite dimensional (2, p. 776).

c) In the sequel for any f e F1(h) we shall always write f = f1 + f2
where fl e R and f2 ~ L1(K) is the decomposition given by the preceding
theorem.

It is clear that the decomposition theorem should be a powerful tool
in the study of the algebras Y, (h). We apply it first in the next section to
the question of associativity.

5. The question of associativity

As indicated previously the algebras 21(h) need not satisfy the asso-
ciative law of multiplication. In this section we shall examine this prob-
lem more closely. To begin we shall prove a lemma which will also be
useful in the investigation of the ideal structure of F1(h).
LEMMA 1. Let G be a disconnected LCA group, h a nonconstant trigo-

nometric polynomial on G, ~h~~ ~ 1. Suppose 21(h) is not a radical
algebra and K is the solution ,group for 21(h). Then the following are
equivalent:

PROOF. If K = 2(h) and g E R then by Theorem 4 i) we conclude that
gh = 0 a.e. It is then immediate that i) implies ii), iii) and iv). Clearly
iv) implies ii) and iii).
On the other hand suppose that (h) ~ K ~ 0. Then since (h) ~ K is

open we may choose an open set E contained in (h)~K such that
0  m(E)  + oo. Let f = XEh, where the bar denotes complex conju-
gation. f ~ R by Theorem 4 i) and f o f = xEl hl2 * ;(E 1 h 1’. Since E has pos-
itive measure it is evident that fo f ~ 0 a.e., and we conclude that ii)
implies i). A similar type of argument shows that iii) implies i).
Combining all of these implications we see that i) - iv) are equivalent.
An immediate consequence of the lemma is the observation that

fo 9 = (h(e))2,Îz * g2, f, g ~ 21(h), whenever K = z(h). The proof of the
next theorem is then apparent.

THEOREM 5. Let G be a disconnected LCA group, h a nonconstant tri-
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gonometric polynomial on G, ~h~~ ~ 1. Suppose 21(h) is not a radical
algebra and K is the solution group for .ft/ 1 (h). If K = z(h), then 21 (h)
is a commutative (associative) Banach algebra.

It is not clear whether the converse of this theorem is valid. Some

results in the converse direction are given after the following lemma.

LEMMA 2. Let G be a disconnected LCA group, h a nonconstant trigono-
metric polynomial on G, 1 Ihl 00 ~ 1. Suppose that .ft/ 1 (h) is not a radical
algebra and K is the solution group for 21 (h). If K ~ z(h), then there exists
s, t, E (h) ~ K such that st ~ z(h).

PROOF. Suppose the conclusion of the lemma is not valid. Then since
K is the solution group for 21 (h) we must have st E (h) ~ K for all
s, t in (h) ~ K. In particular if to E (h) ~ K then tô E (h) ~ K, k = 1, 2,
3, ···. When G is finite this clearly leads to a contradiction since K is a
group, whereas if G is infinite then a simple argument reveals that all the
positive integral powers of to are distinct. Furthermore by Proposition
5 ii) in (6) we see that to-k ~ G~(h), k = 1, 2, 3, ···. Thus the function
h restricted to the infinite discrete group generated by to has the property
that h(tko) ~ 0, k = 0, 1, 2, ···, while h(t-ko) = 0, k = 1, 2, 3, .... Such
a property is however incompatible with the almost periodicity of h, and
hence leads to a contradiction. This latter assertion can be proved by an
argument used several tines in (6). (See for example the proof of Propo-
sition 2 in (6)).
THEOREM 6. Let G be a disconnected LCA group, h a nonconstant

trigonometric polynomial on G, Ilhlloo ~ 1. Suppose 21(h) is not a radi-
cal algebra and K is the solution group for 21 (h). If z(h) is a closed set
and K ~ z(h) then 21(h) is not associative.

PROOF. By the preceding lemma there exists s, t ~ (h) ~ K such that
st 0 z(h). Since f(h) is closed and (h) ~ K is open we can choose neigh-
bourhoods U and V of the identity in G with finite measure such that
a) st U n (A) = 0, b) sV ~ tV c (h) ~ K and c) stV2 c st U. Moreover
we may assume without loss of generality that there exists a 03B4 &#x3E; 0 such

that |h(u)| ~ ô, u ~ sV ~ tV. Let g = Xsvlh, k = Xtvlh. Clearly g, k c- Y 1 (h)
and g o k = ~sV * xtv . Thus g o k = 0 a.e. on G~sVtV ~ G~st U which
implies that (g o k)h = 0 a.e. as st U n (h) = 0. Hence for any f E F1(h)
we have f o (g o k) = fh * (g o k)h = 0.
On the other hand since K is open we can choose an open neighbour-

hood W of the identity in G which is contained in K, has finite measure
and is such that sV W ~ (h) ~ K. If f = ~w then ( f 03BF g) 03BF k = h(e)
((xw * Xsv)h) * ~tV, which is clearly a continuous function on G which is
not identically zero. Therefore 21 (h) is not associative.
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COROLLARY 1. Let G be a discrete LCA group, h a nonconstant trigo-
nometric polynomial on G, ~h~~ ~ 1. Suppose F1(h) is not a radical
algebra and K is the solution group for 21(h). Then the following are
equivalent:

REMARKS. a) For finite groups it is possible that K ~ z(h) whereas
for infinite discrete groups it is not known whether this can occur or not

(6).
b) The question of associativity can also be connected with the exis-

tence of an involution on 21(h). To be precise, one can show whenever
h(e) is either real or pure imaginary that K = z(h) if and only if the
mapping f ~ f* is an involution on F1(h). As usual f*(t) = f(t-1).

6. The idéal structure of F1(h)

As to be expected the ideal structure of F1(h) is closely related to
that of the group algebra L 1 (K) where K is the solution group for
F1(h). Nevertheless there are several differences which set the algebras
21 (h) apart from the usual group algebras. When K = z(h) a fairly
complete description of the ideals in 21 (h) can be given, whereas if
K ~ î(h) then the situation appears to be a good deal more complicated
and no really satisfactory results are yet available.

Suppose 21 (h) is not a radical algebra and K is the solution group for
21 (h). Then it is apparent that if I is a closed ideal in F1(h) then
I = Il ~ I2 where I1 c R is a closed ideal in F1(h) and 12 c L1(K)
is a closed ideal in the group algebra L1(K). However /2 need not be an
ideal in !f 1 (h), nor is the sum of ideals I1 and I2 satisfying the previous
conditions necessarily an ideal in !f 1 (h). As is easily seen, in order for
/2 to be an ideal in 21 (h) it is necessary and sufficient that R03BF I2=0.
Thus, for example, if K ~ z(h), then by Lemma 1 we see that L 1 (K) is
not an ideal in 21(h). The simplest way to avoid such difhculties is to
concentrate ones attention on the case where = z(h). It is then easily
seen that the closed ideals I in 21 (h) are precisely the closed subspaces
of 21(h) of the form I1 ~ I2 where h E R and I2 c L1(K) satisfy the
above mentioned conditions.

It is equally easy, using the observation that f2 o g2 = (h(e))2f2 * 92 ,
to verify in all cases where F1(h) is not a radical algebra that R ~ I2 is
a closed proper regular ideal in F1(h) whenever 12 is such an ideal
in the group algebra L 1 (K). This however does not give a complete pic-
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ture of the regular ideals even in the case where K = z(h). For example
the radical itself may be a regular ideal in 21(h).
THEOREM 7. Let G be a disconnected LCA group, h a trigonometric

polynomial on G, ~h~~ ~ 1. Suppose 21(h) is not a radical algebra and
K is the solution group for F1 (h). Then the following are equivalent:

i) K is discrete.
ii) R is a regular ideal in 21(h).
PROOF. If K is discrete then as is well known (9, p. 6) the group al-

gebra L1(K) possesses an identity b. Setting e2 = 03B4/(h(e))2 E L 1 (K)
we see at once that e2 o f2 -, f2 = 0, f2 E L 1 (K). Thus for any f ~ 21(h)
we have e2 03BFf-f = e2 ofl -fl E R, that is, R is regular.

Conversely, if R is regular then there exists some e = el + e2 E F1 (h),
e2 ¥= 0, such that e of-f = e o fl + ei o f2 -fi + e2 03BFf2-f2 E R, lE 21(h).
Since R is an ideal it follows at once that e2 o f2-f2 E R n L 1 (K), and
hence e2 o f2 f2 = (h(e))2e2 * fi -f2 = 0, f2 EL1(K), by Theorem 4 ii).
Thus b = (h(e))2e2 is an identity for L1(K) and K is discrete (9, p. 30).
An argument similar to the one just given and Lemma 1 establish the

following corollary.

COROLLARY 2. Let G be a disconnected LCA group, h a nonconstant

trigonometric polynomial on G, 11 hl |~ ~ 1. Suppose 21 (h) is not a radical
algebra and K is the solution group for 21 (h).

i) K is nondiscrete if and only if R contains no ideals of F1 (h) which
are regular in F1(h).

ii) If K is discrete and K = z(h), then if Il c R is a regular ideal in
if1(h) then h - R.

This theorem and corollary combined with the foregoing discussion
allow us to establish a complete description of the ideals in F1(h)
when K = z(h).
THEOREM 8. Let G be a disconnected LCA group, h a nonconstant trigo-

nometric polynomial on G, llhll. ~ 1. Suppose F1(h) is not a radical
algebra, and the solution group K = z(h).

i) If K is discrete then I is a closed proper regular ideal in 21 (h) if
and only if I = R or I = R ~ 12 where 12 is a closed proper regular
ideal in the group algebra L1(K).

ii) If K is nondiscrete then I is a closed proper regular ideal in 21 (h) if
and only if I = R (D 12 where 12 is a closed proper regular ideal in
the group algebra L1(K).

iii) I is a maximal regular ideal in 21 (h) if and only if I = R Q 12
where 12 is a maximal regular ideal in the group algebra Li ( K).
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iv) I is a closed ideal in 21 (h) such that kh(I) = I if and only if
I = R (D 12 where I2 is a closed ideal in the group algebra Ll(K)
such that kh(I2) = lz.

PROOF. In view of the preceding results it is evident that to establish
i) and ii) it is sufficient to show that if I = Il E9 12 is a regular ideal in
21(h) where 12 is a proper regular ideal in L1(K) then Il = R. But in
this case if e E F1(h) ~ I is an identity modulo I we conclude from Lem-
ma 1 that e o fl -fi = -fi e li ~ I2, f1 ~ R. That is, R c Il , which
proves the assertion.

iii) and iv) are easily verified using Theorems 3 and 4.

REMARKS. a) As indicated previously the situation when K:O z(h)
seems a good deal more complicated. One can for example show that
I = Il E9 L1(K) is a regular ideal in 21(h) if and only if Il c R is an
ideal in 21 (h) which is a regular ideal in the subalgebra R such that
R o L, (K) c-- Il.

b) For group algebras it is well known (9, p. 157) that the collection of
closed ideals is identical with the collection of closed linear subspaces in-
variant under translation by the group. Such a result is no longer valid
for the algebras 21(h). One can, however, show that every closed linear
subspace which is invariant under translation by the solution group K
is a closed ideal provided that K = z(h). The converse is, however, not
valid.

As the last subject of this section we shall discuss some results con-
cerning convex ideals. In (1) Aubert studied the existence and character
of convex and absolutely convex ideals in the real Banach algebra El (G)
consisting of the real functions in the group algebra Ll(G). If we set
F1r(h) = {f|f ~ F1(h), f real} then it is easily seen when 21(h) is not
a radical algebra, the solution group K = z(h) and (h(e))2 is real that

F1r(h) is a real Banach algebra. With the same definitions of convexity
and almost the same proofs as in (1) it is not difficult to see that the only
convex maximal regular ideal Ir in F1r(h) is l’ - {f|f ~ 2;(h),f(e) = 01
where (y) = (h(e))2 ~Kf(t)(t-1, y)dm(t), y ~ . And furthermore that the
intersection of a family of maximal regular ideals in F1r(h) is convex if
and only if it is contained in {f|f ~ 2;(h), f (e) = 0}. Thus the results
for convex ideals in F1r(h) are completely analogous to those for L1r(G)
(1, p. 183 and 186).
On the other hand 2;(h) may contain proper regular absolutely con-

vex ideals and always contains closed proper absolutely convex ideals
while both sorts of ideals fail to exist in Li(G)(1, p. 183). For example
R’ = R n 2;(h) and Lr1(K) = L1(K) n Lr1(h) are closed proper ab-
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solutely convex ideals. More precise information is contained in the fol-
lowing theorem.

THEOREM 9. Let G be a disconnected LCA group, h a nonconstant tri-

gonometric polynomial on G, ~h~~ ~ 1. Suppose 21(h) is not a radical
algebra, the solution group K = z(A) and (h(e))2 is real.

i) If K is discrete, then Ir is a proper regular absolutely convex ideal
in L1r(h) if and only if Ir = Rr.

ii) If K is nondiscrete, then there exists no proper regular absolutely
convex ideals in L1r(h).

iii) If G is discrete, then Ir ~ Rr is a closed proper absolutely convex
ideal in L1r(h) if and only if there exists a subset E c G~K such that
Ir = {f|f ~ Lr1(h), f = 0 a.e. on E v K}.

PROOF. If Ir - Rr then by Theorem 4 i) and 7 it is evident that y is
a proper regular absolutely convex ideal when K is discrete. Conver-
sely suppose that Ir is a proper regular absolutely convex ideal in Lr1(h).
Then, as is easily seen, I = Ir ~ iIr is a proper regular ideal in L1(h).
Thus by Theorem 8 i) and ii) we see that either I = R or I = R ~ I2
when K is discrete or I = R ~ I2 when K is nondiscrete, where I2 is a
proper regular ideal in the group algebra L1(K). If I = R ~ I2 then
Ir = I n Lr1(h) = Rr O h implies that Ir2 is a proper regular absolutely
convex ideal in Lr1(K) since Ir is such an ideal in Lr1(h). But this contra-
dicts the fact that no such ideals exist in Lr1(K) (l, p. 183). Consequently
Ir - Rr when K is discrete, proving i); and when K is nondiscrete we
must conclude that no proper regular absolutely convex ideals exist

in Lr1(h), thereby proving ii).
Since by Lemma 1 and Theorem 4 i) every closed linear subspace of

Lr1(G~K) is a proper closed ideal in Lr1(h) it is sufficient in establishing
iii) to show that each closed absolutely convex ideal Ir has the desired
form. If Ir - Rr then iii) holds with E = ~. While if Ir ~ Rr and no such
E exists then for each t e G ~ K there is some f ~ I’’ such that f (r) &#x3E; 1.

The absolute convexity of Ir then shows that ~{t} e Ir, t e G ~ K, and hence
Ir = Lr1(G ~ K) = Rr as Ir is closed, contrary to assumption.

REMARKS. In passing we mention two further structural results without
proof. When h is nonconstant then .;e 1 (h ) never possesses an approximate
identity. Thus the algebras L1(h) cannot be group algebras in the gen-
eral sense considered in (3). Furthermore, when 21(h) is not radical
and K = z(h) then .;el (h) o 21 (h) is always a proper subset of L1(h),
that is, factorization is not generally valid as in group algebras.
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7. The multipliers for L1(h)

A multiplier for 21 (h) is a bounded linear operator S’ : L1(h) ~
21 (h) such that Sf o g = f o Sg, f, g e 21 (h). It is evident that the mul-
tipliers form an operator norm closed linear subspace M(21(h) of the
Banach algebra E(L1(h)) of all bounded linear operators on 21(h).
When L1(h) is not a radical algebra and the solution group K = z(h)
then it is quite easy to exhibit several different kinds of elements in

M(L1(h)). For example translation by an element of K, the projections
Pl and P2 of 21(h) onto R and L1(K) respectively, the mapping Sf =
(h( e ) )2f2 *03BC, f ~ L1(h), where y is a bounded regular Borel measure on
K, and the mapping Sf = S1f1, f ~ L1(h), where S1 is any bounded

linear operator on Ll (G"-’ K), are all instances of multipliers for 21 (h).
The latter three examples actually provide us with a complete de-

scription of M(L1(h)). This and other facts about the multipliers are con-
tained in the next theorem. The proof of the theorem, which relies on
Theorem 4 and Lemma 1, is relatively straight forward and will be omitted.
E(Ll (G - K)) will denote the Banach algebra of all bounded linear oper-
ators on the Banach space Li(G - K) and M(L1(K)) the commutative
Banach algebra of multipliers for the group algebra Ll (K). This latter
algebra can be identified with the Banach algebra under convolution of
all bounded regular Borel measures on K (9, p. 75).

THEOREM 10. Let G be a disconnected LCA group, h a nonconstant

trigonometric polynomial on G, 1 Ihl 00 ~ 1. Suppose 21 (h) is not a radical
algebra and the solution group K = z(h). Then the following are equivalent:

Moreover M(21(h» is a closed subalgebra of E(21(h») and the cor-
respondence determined by the relationship in ii) defines an isometric al-
gebra isomorphism of M(L1(h)) onto E(L1(G~K)) ~ M(L1(K)).

REMARKS. a) One cannot use the more general definition of multiplier
as given in (11) since 21(h) is not without order.

b) In the cases considered one should note several differences between
the multipliers for the group algebra Li (G) and those for .If 1 Ch). First,
M(21(h») is clearly not commutative while M(L1(G)) is (11, p. 1133).
Secondly, translations by elements of G are multipliers for Ll(G) while
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only the translations by elements of the solution group K are multipliers
for 21 (h). Finally, the multipliers for Ll(G) can be characterized as
the bounded linear operators which commute with translation by G

(9, p. 74). This characterization fails to hold for the elements of M[L1 (h)].
The most that can be said is contained in Theorem 10 iii).

8. Almost periodic functions

With the exception of the second remark following Corollary 1 all of
the preceding results remain valid if the trigonometric polynomial h is
replaced by a bounded continuous almost periodic function. The proofs
remain the same. If one does this, however, then the measures dp = h dm
need not be almost invariant. Moreover a characterization of such mea-

sures li in terms of relatively simple intrinsic properties of il which are
abstractions of well known properties of Haar measure does not seem to
exist. Some results in the direction of such a description are given in (7).
Consequently we have restricted our attention in the body of the paper
to trigonometric polynomials.
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