
COMPOSITIO MATHEMATICA

S. SANKARAN
Representations of semi direct products of groups
Compositio Mathematica, tome 22, no 2 (1970), p. 215-225
<http://www.numdam.org/item?id=CM_1970__22_2_215_0>

© Foundation Compositio Mathematica, 1970, tous droits réservés.

L’accès aux archives de la revue « Compositio Mathematica » (http:
//http://www.compositio.nl/) implique l’accord avec les conditions géné-
rales d’utilisation (http://www.numdam.org/conditions). Toute utilisation
commerciale ou impression systématique est constitutive d’une infrac-
tion pénale. Toute copie ou impression de ce fichier doit contenir la
présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=CM_1970__22_2_215_0
http://http://www.compositio.nl/
http://http://www.compositio.nl/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


215

REPRESENTATIONS OF SEMI DIRECT PRODUCTS OF GROUPS

by

S. Sankaran

COMPOSITIO MATHEMATICA, Vol. 22, Fasc. 2, 1970, pag. 215-225
Wolters-Noordhoff Publishing
Printed in the Netherlands

Introduction

Let G 1 be a locally compact Abelian group, G2 a locally compact group
of continuous automorphisms of G1. In this paper we characterise all
pairs of unitary representations p and J of G1 and G2 respectively in a
Hilbert space S, where p is cyclic and

A set of necessary and sufficient conditions for a pair (pi, 03C31) to be uni-
tarily equivalent to a pair (pz, U2) is given.

It can be shown that the commutation relations (*) define a system
of imprimitivity for the representation u. In [[3] § 14.] Mackey investi-
gates these representations, from a different point of view from ours,
primarily as an application of his theory of induced representations.

I would like to thank the referee for his helpful comments.

1. Preliminaries

DEFINITION 1.1. Let G be a locally compact group. A unitary repre-
sentation of G is a homomorphism 03A0 : g ~ II(g) of G into the group of
unitary transformations of a Hilbert space S(03A0), such that 03A0 is con-

tinuous in the weak topology for operators. A closed linear manifold
9R is called an invariant subspace for II if 03A0(g) 03BE e M for all g e G and
all 03BE e 3K. An invariant subspace 3R is said to be a cyclic subspace for II
if there is an element Ço in S(03A0), such that the smallest invariant sub-
space for II containing ç 0 is m. 03BE0 is called a relative cyclic vector for
03A0. If J(1I) is a cyclic subspace, then 03A0 is said to be cyclic. The inter-
twining algebra of a representation II is the set

T being bounded, everywhere defined, linear transformations on S(03A0).
DEFINITION 1.2. Let S be a Hilbert space. A-* algebra u of (bounded,
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everywhere defined, linear) transformations of S is called a von Neumann
algebra, if 21 is closed in the weak topology for operators. A closed linear
manifold 3R is called an invariant subspace for 21, if Ae E 9R for all

A E 21 and all 03BE E 8R. An invariant subspace 9 is said to be a cyclic sub-
space four 21 if there is an element Ça in S, such that the smallest invariant
subspace for u containing 03BEo is m. If S is an invariant subspace for 91,
then 21 is said to be cyclic. The commutant of % is the set

T being bounded, everywhere defined, linear transformations on S.
It is easy to prove that a closed linear manifold R c S(03A0) (resp.

9R ~ S) is a cyclic subspace for Il (resp. %) if and only if there is an ele-
ment 03BEo ~ S (03A0) (resp. 03BEo ~ S) such that the closed linear manifold

generated by (03A0(g)03BEo : g E G) (resp. (A03BEo : A E u)) is 9N.
If S is a set of elements in a Hilbert space the closed linear manifold

generated by S is denoted by [s : s e S].
Let il : g ~ H(g) be a representation of a locally compact group G.

We shall often use the following well-known results

LEMMA 1.1.

(i) R(03A0, il) is a von Neumann algebra;
(ii) R(17, Hl’ is the smallest von Neumann algebra containing the

operators (II(g) : g E G);
(iii) 9N is an invariant subspace for II (resp. R(Il, Il)’) if and only if P,

the projection whose range is m, belongs to R(n, H).
(iv) A closed linear manifold 9N is a cyclic subspace for il if and only if

9R is a cyclic subspace for R(n, 03A0)’.
DEFINITION 1.3. Let X be a locally compact space, 03BC a finite regular

measure defined on the a-ring of Borel subsets of X. We denote by L(X)
the set of all continuous functions with compact support; C(X) the set of
all continuous functions on X. If f ~ L(X) we denote by Mf the operator
on L2(X, 03BC) defined by (Mfh)(x) = f(x)h(x), where h E L2(X, 03BC).
LEMMA 1.2. Let Gl be a locally compact Abelian group, 01 the char-

acter group of Gl and 11 a finite regular measure defined on the a-ring of
Borel subsets of 01. The mapping M : x ~ Mx, where (Mxf)(03C4) =
x(03C4)f(03C4), f ~ L2(1, 03BC), x E G1 is a cyclic representation of G1.

PROOF. It is easy to verify that M : x ~ Mx is a weakly continuous
unitary representation of Gl. We shall show that M is cyclic.

Let e be the function on G1, e(03C4) = 1. Since y is a finite measure on
Gl, e belongs to L2(1, 03BC) and therefore x = MxeEL2(Gl,Jl) for
all x E G1. Denote by Fthe set of all finite linear combination of elements
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of G1. We recall [[4] § 31, cor. 4] that every continuous function on Cil
can be approximated uniformly on compact sets by members of F. If
f, hl, h2 are continuous functions with compact supports and 8 &#x3E; 0, we
can find s E F such that

where Ki is the support of hi. Hence

This is true for all hl ~ L (1) and h2 ~ L(1). Since L(1) is dense in
L2(1, Il), we have proved that (Mf : f ~ L(1)) belongs to the weakly
closed algebra generated by (Mx : x E G1 ). From Lemma 1.1 (ii) we de-
duce that (Mf : f ~ L(1)) ~ R(II, 03A0)’ and therefore from the (iv) of
Lemma 1.1. we deduce that f = M f e E [Mxe : XE G1]. That is L(1) c
[Mx e : x E G1]. We complete the proof by observing that L(1) is dense
in £2(G1, Il).
LEMMA 1.3. Let H : x - 03A0(x) be a cyclic representation of a locally

compact Abelian group G1. There is a regular , finite measure Il on 01,
and a linear isometry S : S(03A0) ~ L2(1, Il) such that S03A0(x)S-1 = Mx,
where M : x ~ Mx is the representation of Gl defined in Lemma 1.2.

PROOF. Let 03BEo be a cyclic element for the cyclic representation II, and
let 4l(x) = (03A0(x)03BEo, 03BEo). There is a positive functional P on R(G1), the
group algebra of G1, which corresponds to the continuous positive
definite function 0. Since R(G1 ) is a commutative Banach algebra,
the positive functional P can be represented in the form

The spectrum A of R(Gl) is homeomorphic to 1 ~ (L1(G1)} and
03BC({L1(G1)}) = 0. Therefore, the measure y may be considered as a mea-
sure defined on ôj[4]§31, sec. 3].
The Gelfand isomorphism theorem allows us to regard P as a positive

functional on C(d ), where C(J) is the set of all continuous functions on
J. The positive functional P defines a representation of C(d) which is
equivalent to the representation M:I -+ Mf on L’(A, 03BC), where
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[[4 ]. ch. 4. § 17]. Since G1 ~ C(J), we obtain a representation M : x ~
Mx of G, in

where

Since the representations M and II of G, define the same representation
of R(G1), namely the representation defined by the positive functional
P, the representations M and 77 are equivalent. [[4] § 29, sec. 3 ].

2. Semi-direct products

Let G be a locally compact group, G2 a locally compact group of auto-
morphisms of G such that the mapping (g, 03B1) ~ a [g] of G  G2 into G
is continuous in both variables. The semi-direct product GpG2 is the set
of all pairs (g, a), g E G, a E G2, whose group operation is defined by

GQG2 is a locally compact group in the product topology. The mapping
g ~ (g, 8) where 8 is the identity of G2 is an isomorphism between G and
a closed normal subgroup of GOG2. The mapping ce ~ (e, oc) where e
is the identity element of G is an isomorphism between G2 and a closed
subgroup of GQ)G2. Finally, (g, 03B1) = (g, 03B5)(e, oc). [[2] pp. 6-7, 58-59,
[3] § 14]. The proof of the following lemma is routine.

LEMMA 2.1. Let p : g ~ p(g) and 0’ : ce ~ 03C3(03B1) be representations of G
and G2 respectively in a Hilbert space S. The mapping 11 : (g, 03B1) ~
11(g, oc), where II(g, a) = p(g)u(ot) is a representation of G(DG2 if and
only if

In the following pages let G1 be a locally compact Abelian group, 61
the character group of G1, G2 a locally compact group of continuous
automorphisms of G1 such that the mapping (x, a) ~ a [x] of G1 x G2
to G1 is continuous in both variables. The group G2 acts as a group
of automorphisms of 61, if we define [03C4]03B1 by the equation ([03C4]03B1)(x) =
T(ot[x]), x ~ Gl. [[2] 26.9].

DEFINITION 2.1. Let p be a finite Borel measure defined on 61, and
for each oc E G2 let 03BC03B1 be the measure on 61 defined by 03BC03B1(B) = 03BC([B]03B1).
The measure y is said to be G2-quasi invariant if 03BC03B1 is absolutely contin-
uous with respect to 03BC for all a E G2 .

LEMMA 2.2. Lety be a G2-quasi invariant measure on 61. The mapping
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where

and

is a representatinn of G1G2 in LZ(61, 03BC).
As the proof consists of a routine verification of the condition given

in lemma 2.1, we omit the proof.

THEOREM 2.1. Let II : (x, oc) ~ 11(x, oc) be a representation of G1G2
in a Hilbert space S(03A0) such that the representation 03A0(x, 8) ofG1 in S(03A0)
is cyclic. There is a G2-quasi invariant measure Il on 61 and a linear iso-
metry S from Sj(II) on to LZ(61, 03BC) such that

and

where a (i, a) is a Borel function on Cl x G2 with the following properties:
i |a(03C4, 03B1)| = 1 almost everywhere, and
ii a(i, 03B11 03B12) = a(T, al) a ([03C4]03B11, V.2), a.e.

PROOF. Let p(x) = II(x, e) and a(ot) = 03A0(e oc). Since p is a cyclic
representation of Ci in S(03A0), it follows from Lemma 1.2 that there is a
finite Borel measure y on 61 and a linear isometry S from S(03A0) onto
L2(61, 03BC) such that Sp(x)S-lf(t) = x(t)f(t). The well-known Stone-
Naimark-Ambrose-Godement theorem asserts that there is a projection
valued measure P : B ~ PB on the Borel subsets of 01 to the projections
in the intertwining algebra R(p, p)’ such that [[4] § 31. Th. 6]

for every pair of elements 03BE and il in S(03A0). Moreover, if Ço is a cyclic ele-
ment for the representation p then the measure Il is equivalent to the
measure v where v(B) = ~PB03BEo~2. Now

From (1) we have
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Also,

It follows from (2), (3) and (4) that

Now p(B) = 0 implies v(B) = 0 and consequently PBÇo = 0. Since
PB E R(p, p), the equation 0 = TPB03BEo = PBT03BEo, TER(p,p)’ implies
PBE = 0 where E is the projection on the closed linear manifold generated
by (T03BEo : Te R(p, 03C1)’). However, E = I because Ço is a cyclic element for
p. Therefore PB = 0. Thus 1À(B) = 0 implies PB = 0, and from (5) it

follows that P[B]03B1-1 = 0. That is, Jl(B) = 0 implies v([B]03B1-1) = 0.
Since y and v are equivalent, v([B]03B1-1) = 0, implies 03BC([B]03B1-1) = 0.
Hence 03BC03B1-1 i is absolutely continuous with respect to ,u. Since a E G2

is arbitrary, we have shown that p is G2 quasi invariant.
Let

and

where S is the linear isometry S(03A0) ~ L2(1, Jl) introduced in the first
paragraph of this proof. It is clear that 0’1 (03B1) is a unitary transformation.
Now, from the relation 03C3o(03B1-1)Mx = M03B1-1[x]03C3o(03B1-1), we have
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This shows that £rl(a) commutes with S03C1(x)S-1 = Mx and consequently
03C31(03B1) commutes with the von Neumann algebra generated by M.. It
is known [[5] cor. 1.1] that a commutative von Neumann algebra with
a cyclic vector is maximal Abelian. Therefore 03C31(03B1) belongs to the von
Neumann algebra generated by (Mx : x E Gl) which is the algebra of
multiplication by essentially bounded measurable functions on (1, 03BC).
Hence 03C31(03B1)f(03C4) = a(r, 03B1)f(03C4) where a(r, a) is, for each a a measurable
essentially bounded function of modulus 1. We introduce the operator
M« in L2(1, Il) where (Maf)(03C4) = a(03C4)f(03C4).
From the equation S03C3(03B1)S-103C3o(03B1-1) = Ma we obtain S03C3(03B1)S-1 =

M03B103C3o(03B1): that is

Finally,

Since S03C3(03B1103B12)S-1 = S03C3(03B11)03C3(03B12)S-1 we have

oc(ï, 03B11 03B12) = 03B1([03C4]03B11, 03B12)03B1(03C4, oc,), a.e.

This completes the proof of the theorem.

DEFINITION 2.2. A Borel measure y on 1 is said to be G2-ergodic if

1. Il is G2-quasi invariant, and
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2. the G2-quasi-invariant non zero measures on 62 which are abso-
lutely continuous with respect to p are equivalent to ,u.

THEOREM 2. Let G1 and G2 be as in the paragraph preceding Definition
2.1. Let II : (x, ce) - 11(x,,x) = p(x),7(,x) be a representation of G1fS).G2.
If the measure 03BC defined by the cyclic representation p is G2 ergodic, then Il
is irreducible.

PROOF. Suppose a closed linear manifold 9N of S(03A0) is invariant for
II. Then clearly 3R is invariant for p and 03C3. Let E be the projection whose
range is 9X. E belongs to R(p, p). The representation pl being cyclic, the
von Neumann algebra R(p, p)’, generated by the operators 03C1(x) : x ~ G1,
is a commutative von Neumann algebra with a cyclic element. Conse-
quently [[5]. cor. 1.1]. R(p, p)’ is maximal Abelian. Therefore R(p, p’) =
R(p, p). Since every projection of R(p, p)’ is of the form PB, where
P : B - PB is the projection valued measure defined by p, there is a
Borel set Bo of 61 such that E = PBo.

Let po(B) = Jl(Bo n B). Clearly po is absolutely continuous with re-
spect to y. We shall show that po is G2-quasi invariant. The measure
p is equivalent to the measure v where v(B) = ~PB03BE 0 IIZ . We may for the
purpose of this proof assume, without loss of generality, that 03BC(B) =
~PB03BEo~2. From equation (5) in the proof of Theorem 2.1 we have

However,

Now suppose Po(B) = 0. Then 03BC(Bo n B) = 0, and by the G2-quasi
invariance of p, it follows that p([Bo n B]03B1-1) = 0. Consequently,

Since a in G2 is arbitrary, we have shown that po is G2-quasi invariant.
The measure P is G2-ergodic. Therefore either Po is equivalent to 03BC or
po is the zero measure. That is either Bo = 61 or Bo = 0. Consequently,
m = 5) or M = {0}.

This completes the proof.

DEFINITION 2.3. Let N, : (x, 03B1) ~ Ili(x, a) = 03C1i(x)03C3i(03B1) be represen-
tations of G1 s G2 in 5)( II i), i = 1, 2. II is said to be equivalent to II2 if
there is a linear isometry S : S (03A01) ~ S(03A02) such that
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THEOREM 2.3. Let ni : (x, 03B1) ~ Ili(x, 03B1) be representations of G,(DG2
on S (03A0i) where

are cyclic. A set of necessary andsufficient condition that 03A01 is equivalent to
to il z is

1. 03BC1 is equivalent to p2 where pi is the measure on Ci defined by 03A0i
(o, e) i = 1, 2; and

2. there exists a Borel function b on 1 with the properties
2.1. Ib(r)1 = 1 almost everywhere, and
2.2. a2(03C4, 03B1) = b(-r)al(-r, 03B1)b-1([03C4]03B1) where ai(03C4, 03B1) is the function

associated with 03A0i(e, o) : oc ~ 03A0i(e, 03B1) in theorem 2.1.

PROOF. It is evident from Theorem 2.1 that, ni is equivalent to H2
if and only if the following is true: (*) there is a linear isometry S : L 2
(ci, 03BC1) ~ LZ(61, ,u2) such that SP1(X) = P2(X)S where

and Sal(ot) = 03C32(03B1)S, where

Assume that the conditions (*) are satisfied. We recall that L(1), the
set of all continuous functions with compact support, is dense in LP(Gi , /1i)
where p = 1, 2 and 1 = 1, 2. In the course of the proof of lemma 1.2 we
saw that the operators Pi(g) where (Pi(g)f)(c:) = g(03C4)f(03C4), gEL(61)
and f ~ L2(1, /1i) belong to R(p i , 03C1i)’. It is easily verified that S03C11(x)S-1
03C12(x) implies S03C11(g)S-1 = 03C12(g) for all g ~ L (1).

Since S03C11(x)S-1 = 03C12(x) for all x in G1, the commutative von Neu-
mann algebra R(pl , pl)’ generated by (pl(x) : x E G) is unitarily equiv-
alent to the von Neumann algebra R(P2, P2)’ generated by (P2(X) :
x ~ G1 ). Since Pi are cyclic representations, the commutative von Neu-
mann algebras R(03C1i, p i)’ are cyclic. A commutative von Neumann al-
gebra with a cyclic vector is maximal Abelian ([5] corollary 1.1) and is
unitarily equivalent to a multiplication algebra ([5] Lemma 1.2).
Consequently, the multiplication algebra on L2 (61, 03BC1) is unitarily
equivalent to the multiplication algebra on L 2( 61 , /12) and therefore
([6] Theorem 4.1)03BC1 is equivalent to 03BC2.
The function e, where e(T) = 1 for all i e 61, belongs to L2(G1, 03BC1).

Let Se = c E L 2 ( 61, 03BC2). We shall show that c is an essentially bounded
function. If g ~ L (1), we have
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Let

Hence |C(g)| ~ ~g~1 (the L1-norm of g E L1(Gl, 03BC1).
That is, C(g) is bounded on a dense linear subset L(1) of L1(1, Ill),
and can therefore be extended to L1(1, 03BC1). Hence C E L 00 (G 1 , 03BC1), and
therefore c is essentially bounded with respect to Ill. Since III and 112
are equivalent it follows that c is essentially bounded with respect to 1l2.

Since the function c is essentially bounded the equation (i) can be
written in the form Sg = Mg where M, is the operation of multiplying
by c. Since Mc is a bounded operator and L(1) is dense in L2(1, Il), the
equation Su = Mcg holds for all g in L2( 61, Ill). It follows from the
equivalence of 1À’ and M2 and the equation (ii) that

Hence

almost everywhere, and

where

almost everywhere.
Now,
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Hence the equation S03C31(03B1)g = 03C32(03B1)Sg yields

i.e.

The converse is easy to verify and we omit the details.
This completes the proof.
The condition 2 of the last theorem can be reformulated in terms of a

one dimensional cohomology group. To this end we observe first that
G2 as a group of automorphisms of L~(1, 03BC) : a[g](T) = g([03C4]03B1).
Furthermore, the function a(T, a) of Theorem 2.1 defines a mapping
a : G2 ~ L~(1, 03BC) where ((03B1))(·) = 03B1(·, a). From ii of theorem 2.1 we
see that  is a crossed homomorphism. It is evident that ((03B1))(·) = b(·)
b-1([·]03B1), where b e L°°, is a principal crossed homomorphism. In view
of these observations the condition 2 of Theorem 2.3 states al and a2
define the same element of the one dimensional cohomology group
Hl( Gz , L-).
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