COMPOSITIO MATHEMATICA

S. SANKARAN

Representations of semi direct products of groups

Compositio Mathematica, tome 22, nº 2 (1970), p. 215-225

http://www.numdam.org/item?id=CM_1970__22_2_215_0

© Foundation Compositio Mathematica, 1970, tous droits réservés.

L'accès aux archives de la revue « Compositio Mathematica » (http://http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

REPRESENTATIONS OF SEMI DIRECT PRODUCTS OF GROUPS

by

S. Sankaran

Introduction

Let G_1 be a locally compact Abelian group, G_2 a locally compact group of continuous automorphisms of G_1 . In this paper we characterise all pairs of unitary representations ρ and σ of G_1 and G_2 respectively in a Hilbert space \mathfrak{H} , where ρ is cyclic and

$$\sigma(\alpha)\rho(x)\sigma(\alpha^{-1}) = \rho(\alpha[x]), \ \alpha \in G_2, x \in G_1.$$
 (*)

A set of necessary and sufficient conditions for a pair (ρ_1, σ_1) to be unitarily equivalent to a pair (ρ_2, σ_2) is given.

It can be shown that the commutation relations (*) define a system of imprimitivity for the representation σ . In [[3] § 14.] Mackey investigates these representations, from a different point of view from ours, primarily as an application of his theory of induced representations.

I would like to thank the referee for his helpful comments.

1. Preliminaries

DEFINITION 1.1. Let G be a locally compact group. A unitary representation of G is a homomorphism $\Pi:g\to\Pi(g)$ of G into the group of unitary transformations of a Hilbert space $\mathfrak{H}(\Pi)$, such that Π is continuous in the weak topology for operators. A closed linear manifold \mathfrak{M} is called an invariant subspace for Π if $\Pi(g) \xi \in \mathfrak{M}$ for all $g \in G$ and all $\xi \in \mathfrak{M}$. An invariant subspace \mathfrak{M} is said to be a cyclic subspace for Π if there is an element ξ_0 in $\mathfrak{H}(\Pi)$, such that the smallest invariant subspace for Π containing ξ_0 is \mathfrak{M} . ξ_0 is called a relative cyclic vector for Π . If $\mathfrak{H}(\Pi)$ is a cyclic subspace, then Π is said to be cyclic. The intertwining algebra of a representation Π is the set

$$R(\Pi, \Pi) = \{T : T\Pi(g) = \Pi(g)T, g \in G\},\$$

T being bounded, everywhere defined, linear transformations on $\mathfrak{H}(\Pi)$.

DEFINITION 1.2. Let \mathfrak{H} be a Hilbert space. A^{-*} algebra \mathfrak{A} of (bounded,

everywhere defined, linear) transformations of \mathfrak{H} is called a von Neumann algebra, if \mathfrak{A} is closed in the weak topology for operators. A closed linear manifold \mathfrak{M} is called an invariant subspace for \mathfrak{A} , if $A\xi \in \mathfrak{M}$ for all $A \in \mathfrak{A}$ and all $\xi \in \mathfrak{M}$. An invariant subspace \mathfrak{M} is said to be a cyclic subspace for \mathfrak{A} if there is an element ξ_0 in \mathfrak{H} , such that the smallest invariant subspace for \mathfrak{A} containing ξ_0 is \mathfrak{M} . If \mathfrak{H} is an invariant subspace for \mathfrak{A} , then \mathfrak{A} is said to be cyclic. The commutant of \mathfrak{A} is the set

$$\mathfrak{A}' = \{T : TA = AT, A \in \mathfrak{A}\},\$$

T being bounded, everywhere defined, linear transformations on \mathfrak{H} .

It is easy to prove that a closed linear manifold $\mathfrak{M} \subseteq \mathfrak{H}(\Pi)$ (resp. $\mathfrak{M} \subseteq \mathfrak{H}$) is a cyclic subspace for Π (resp. \mathfrak{A}) if and only if there is an element $\xi_0 \in \mathfrak{H}(\Pi)$ (resp. $\xi_0 \in \mathfrak{H}$) such that the closed linear manifold generated by $(\Pi(g)\xi_0:g\in G)$ (resp. $(A\xi_0:A\in \mathfrak{A})$) is \mathfrak{M} .

If S is a set of elements in a Hilbert space the closed linear manifold generated by S is denoted by $[s:s\in S]$.

Let $\Pi: g \to \Pi(g)$ be a representation of a locally compact group G. We shall often use the following well-known results

LEMMA 1.1.

- (i) $R(\Pi, \Pi)$ is a von Neumann algebra;
- (ii) $R(\Pi, \Pi)'$ is the smallest von Neumann algebra containing the operators $(\Pi(g): g \in G)$;
- (iii) \mathfrak{M} is an invariant subspace for Π (resp. $R(\Pi, \Pi)'$) if and only if P, the projection whose range is \mathfrak{M} , belongs to $R(\Pi, \Pi)$.
- (iv) A closed linear manifold \mathfrak{M} is a cyclic subspace for Π if and only if \mathfrak{M} is a cyclic subspace for $R(\Pi, \Pi)'$.

DEFINITION 1.3. Let X be a locally compact space, μ a finite regular measure defined on the σ -ring of Borel subsets of X. We denote by L(X) the set of all continuous functions with compact support; C(X) the set of all continuous functions on X. If $f \in L(X)$ we denote by M_f the operator on $L^2(X, \mu)$ defined by $(M_f h)(x) = f(x)h(x)$, where $h \in L^2(x, \mu)$.

Lemma 1.2. Let G_1 be a locally compact Abelian group, \hat{G}_1 the character group of G_1 and μ a finite regular measure defined on the σ -ring of Borel subsets of \hat{G}_1 . The mapping $M: x \to M_x$, where $(M_x f)(\tau) = x(\tau)f(\tau)$, $f \in L^2(\hat{G}_1, \mu)$, $x \in G_1$ is a cyclic representation of G_1 .

PROOF. It is easy to verify that $M: x \to M_x$ is a weakly continuous unitary representation of G_1 . We shall show that M is cyclic.

Let e be the function on \hat{G}_1 , $e(\tau) = 1$. Since μ is a finite measure on \hat{G}_1 , e belongs to $L^2(\hat{G}_1, \mu)$ and therefore $x = M_x e \in L^2(\hat{G}_1, \mu)$ for all $x \in G_1$. Denote by F the set of all finite linear combination of elements

of G_1 . We recall [[4] § 31, cor. 4] that every continuous function on \hat{G}_1 can be approximated uniformly on compact sets by members of F. If f, h_1 , h_2 are continuous functions with compact supports and $\varepsilon > 0$, we can find $s \in F$ such that

$$|f(\tau)-s(\tau)| < \frac{\varepsilon}{||h_1|| \, ||h_2||}$$
 for all $\tau \in k_1 \cap k_2$

where K_i is the support of h_i . Hence

$$\begin{aligned} |((M_f - M_s)h_1, h_2)| &= \left| \int_{G_1} (f(\tau) - s(\tau))h_1(\tau)\overline{h_2(\tau)} d\mu(\tau) \right| \\ &< \frac{\varepsilon}{||h_1|| \, ||h_2||} \, ||h_1|| \, ||h_2|| = \varepsilon. \end{aligned}$$

This is true for all $h_1 \in L(\hat{G}_1)$ and $h_2 \in L(\hat{G}_1)$. Since $L(\hat{G}_1)$ is dense in $L^2(\hat{G}_1, \mu)$, we have proved that $(M_f: f \in L(\hat{G}_1))$ belongs to the weakly closed algebra generated by $(M_x: x \in G_1)$. From Lemma 1.1 (ii) we deduce that $(M_f: f \in L(\hat{G}_1)) \subseteq R(\Pi, \Pi)'$ and therefore from the (iv) of Lemma 1.1. we deduce that $f = M_f e \in [M_x e: x \in G_1]$. That is $L(\hat{G}_1) \subseteq [M_x e: x \in G_1]$. We complete the proof by observing that $L(\hat{G}_1)$ is dense in $L^2(G_1, \mu)$.

LEMMA 1.3. Let $\Pi: x \to \Pi(x)$ be a cyclic representation of a locally compact Abelian group G_1 . There is a regular finite measure μ on \hat{G}_1 , and a linear isometry $S: \mathfrak{H}(\Pi) \to L^2(\hat{G}_1, \mu)$ such that $S\Pi(x)S^{-1} = M_x$, where $M: x \to M_x$ is the representation of G_1 defined in Lemma 1.2.

PROOF. Let ξ_0 be a cyclic element for the cyclic representation Π , and let $\Phi(x) = (\Pi(x)\xi_0, \xi_0)$. There is a positive functional P on $R(G_1)$, the group algebra of G_1 , which corresponds to the continuous positive definite function Φ . Since $R(G_1)$ is a commutative Banach algebra, the positive functional P can be represented in the form

$$P(f) = \int_{A} f(\tau) d\mu(\tau).$$

The spectrum Δ of $R(G_1)$ is homeomorphic to $\hat{G}_1 \cup \{L^1(G_1)\}$ and $\mu(\{L^1(G_1)\}) = 0$. Therefore, the measure μ may be considered as a measure defined on $\hat{G}_1[[4] \S 31$, sec. 3].

The Gelfand isomorphism theorem allows us to regard P as a positive functional on $C(\Delta)$, where $C(\Delta)$ is the set of all continuous functions on Δ . The positive functional P defines a representation of $C(\Delta)$ which is equivalent to the representation $M: f \to M_f$ on $L^2(\Delta, \mu)$, where

$$(M_f g)(\delta) = f(\delta)g(\delta), g \in L^2(\Delta, \mu).$$

[[4]. ch. 4. § 17]. Since $G_1 \subseteq C(\Delta)$, we obtain a representation $M: x \to M_x$ of G_1 in

$$L^2(\Delta,\mu)=L^2(\widehat{G}_1,\mu),$$

where

$$(M_x g)(\tau) = x(\tau)g(\tau).$$

Since the representations M and Π of G_1 define the same representation of $R(G_1)$, namely the representation defined by the positive functional P, the representations M and Π are equivalent. [[4] § 29, sec. 3].

2. Semi-direct products

Let G be a locally compact group, G_2 a locally compact group of automorphisms of G such that the mapping $(g, \alpha) \to \alpha[g]$ of $G \times G_2$ into G is continuous in both variables. The semi-direct product $G \otimes G_2$ is the set of all pairs (g, α) , $g \in G$, $\alpha \in G_2$, whose group operation is defined by

$$(g, \alpha)(h, \beta) = (g\alpha[h], \alpha\beta).$$

 $G \otimes G_2$ is a locally compact group in the product topology. The mapping $g \to (g, \varepsilon)$ where ε is the identity of G_2 is an isomorphism between G and a closed normal subgroup of $G \otimes G_2$. The mapping $\alpha \to (e, \alpha)$ where e is the identity element of G is an isomorphism between G_2 and a closed subgroup of $G \otimes G_2$. Finally, $(g, \alpha) = (g, \varepsilon)(e, \alpha)$. [[2] pp. 6-7, 58-59, [3] § 14]. The proof of the following lemma is routine.

LEMMA 2.1. Let $\rho: g \to \rho(g)$ and $\sigma: \alpha \to \sigma(\alpha)$ be representations of G and G_2 respectively in a Hilbert space \mathfrak{H} . The mapping $\Pi: (g, \alpha) \to \Pi(g, \alpha)$, where $\Pi(g, \alpha) = \rho(g)\sigma(\alpha)$ is a representation of $G \otimes G_2$ if and only if

$$\sigma(\alpha)\rho(g)\sigma(\alpha^{-1}) = \rho(\alpha[g]).$$

In the following pages let G_1 be a locally compact Abelian group, \hat{G}_1 the character group of G_1 , G_2 a locally compact group of continuous automorphisms of G_1 such that the mapping $(x, \alpha) \to \alpha[x]$ of $G_1 \times G_2$ to G_1 is continuous in both variables. The group G_2 acts as a group of automorphisms of \hat{G}_1 , if we define $[\tau]\alpha$ by the equation $([\tau]\alpha)(x) = \tau(\alpha[x]), x \in G_1$. [[2] 26.9].

DEFINITION 2.1. Let μ be a finite Borel measure defined on \hat{G}_1 , and for each $\alpha \in G_2$ let μ_{α} be the measure on \hat{G}_1 defined by $\mu_{\alpha}(B) = \mu([B]\alpha)$. The measure μ is said to be G_2 -quasi invariant if μ_{α} is absolutely continuous with respect to μ for all $\alpha \in G_2$.

Lemma 2.2. Let μ be a G_2 -quasi invariant measure on \hat{G}_1 . The mapping

$$\Pi:(x,\alpha)\to\Pi(x,\alpha)=\Pi(x,\varepsilon)\Pi(e,\alpha),$$

where

$$(\Pi(x,\varepsilon)f)(\tau)=x(\tau)f(\tau)$$

and

$$(\Pi(e,\alpha)f)(\tau) = \sqrt{\frac{d\mu_{\alpha}}{d\mu}}(\tau)f([\tau]\alpha), f \in L^2(G_1,\mu)$$

is a representation of $G_1 \otimes G_2$ in $L^2(\hat{G}_1, \mu)$.

As the proof consists of a routine verification of the condition given in lemma 2.1, we omit the proof.

THEOREM 2.1. Let $\Pi:(x,\alpha)\to\Pi(x,\alpha)$ be a representation of $G_1\otimes G_2$ in a Hilbert space $\mathfrak{H}(\Pi)$ such that the representation $\Pi(x,\epsilon)$ of G_1 in $\mathfrak{H}(\Pi)$ is cyclic. There is a G_2 -quasi invariant measure μ on \hat{G}_1 and a linear isometry S from $\mathfrak{H}(\Pi)$ on to $L^2(\hat{G}_1,\mu)$ such that

$$S\Pi(x,\varepsilon)S^{-1}f(\tau) = x(\tau)f(\tau)$$

and

$$S\Pi(e,\alpha)S^{-1}f(\tau) = a(\tau,\alpha)\sqrt{\frac{d\mu_{\alpha}}{d\mu}}(\tau)f([\tau]\alpha)$$

where $a(\tau, \alpha)$ is a Borel function on $\hat{G}_1 \times G_2$ with the following properties:

i
$$|a(\tau, \alpha)| = 1$$
 almost everywhere, and
ii $a(\tau, \alpha_1, \alpha_2) = a(\tau, \alpha_1) a([\tau]\alpha_1, \alpha_2)$, a.e.

PROOF. Let $\rho(x) = \Pi(x, \varepsilon)$ and $\sigma(\alpha) = \Pi(e, \alpha)$. Since ρ is a cyclic representation of G_1 in $\mathfrak{H}(\Pi)$, it follows from Lemma 1.2 that there is a finite Borel measure μ on \hat{G}_1 and a linear isometry S from $\mathfrak{H}(\Pi)$ onto $L^2(\hat{G}_1, \mu)$ such that $S\rho(x)S^{-1}f(\tau) = x(\tau)f(\tau)$. The well-known Stone-Naimark-Ambrose-Godement theorem asserts that there is a projection valued measure $P: B \to P_B$ on the Borel subsets of \hat{G}_1 to the projections in the intertwining algebra $R(\rho, \rho)'$ such that [[4] § 31. Th. 6]

$$(\rho(x)\xi,\eta) = \int_{\hat{G}_{\tau}} x(\tau)d(P_{\tau}\xi,\eta) \tag{1}$$

for every pair of elements ξ and η in $\mathfrak{H}(\Pi)$. Moreover, if ξ_0 is a cyclic element for the representation ρ then the measure μ is equivalent to the measure ν where $\nu(B) = ||P_B \xi_0||^2$. Now

$$(\sigma(\alpha)\rho(x)\sigma(\alpha^{-1})\xi,\,\eta)=\rho(\alpha[x]\xi,\,\eta). \tag{2}$$

From (1) we have

$$(\sigma(\alpha)\rho(x)\sigma(\alpha^{-1})\xi, \eta) = (\rho(x)\sigma(\alpha^{-1})\xi, \sigma(\alpha^{-1})\eta)$$

$$= \int_{\hat{G}_1} x(\tau)d(P_{\tau}\sigma(\alpha^{-1})\xi, \sigma(\alpha^{-1})\eta)$$

$$= \int_{\hat{G}_1} x(\tau)d(\sigma(\alpha)P_{\tau}\sigma(\alpha^{-1})\xi, \eta)$$
(3)

Also,

$$(\rho(\alpha[x])\xi,\eta) = \int_{\hat{G}_1} \alpha[x](\tau)d(P_{\tau}\xi,\eta)$$

$$= \int_{\hat{G}_1} x([\tau]\alpha)d(P_{\tau}\xi,\eta) = \int_{\hat{G}_1} x(\tau)d(P_{[\tau]\alpha-1}\xi,\eta) \quad (4)$$

It follows from (2), (3) and (4) that

$$\sigma(\alpha)P_B\sigma(\alpha^{-1}) = P_{\lceil B\rceil\alpha^{-1}}. \tag{5}$$

Now $\mu(B)=0$ implies $\nu(B)=0$ and consequently $P_B\xi_0=0$. Since $P_B\in R(\rho,\rho)$, the equation $0=TP_B\xi_0=P_BT\xi_0$, $T\in R(\rho,\rho)'$ implies $P_BE=0$ where E is the projection on the closed linear manifold generated by $(T\xi_0:T\in R(\rho,\rho)')$. However, E=I because ξ_0 is a cyclic element for ρ . Therefore $P_B=0$. Thus $\mu(B)=0$ implies $P_B=0$, and from (5) it follows that $P_{[B]\alpha^{-1}}=0$. That is, $\mu(B)=0$ implies $\nu([B]\alpha^{-1})=0$. Since μ and ν are equivalent, $\nu([B]\alpha^{-1})=0$, implies $\mu([B]\alpha^{-1})=0$.

Hence $\mu_{\alpha^{-1}}$ is absolutely continuous with respect to μ . Since $\alpha \in G_2$ is arbitrary, we have shown that μ is G_2 quasi invariant.

Let

$$\sigma_0(\alpha)f(\tau) = \sqrt[]{\frac{d\mu_\alpha}{d\mu}}(\tau)f([\tau]\alpha), \, f \in L^2(\hat{G}_1, \mu)$$

and

$$\sigma_1(\alpha) = S\sigma(\alpha)S^{-1}\sigma_0(\alpha^{-1})$$

where S is the linear isometry $\mathfrak{H}(\Pi) \to L^2(\hat{G}_1, \mu)$ introduced in the first paragraph of this proof. It is clear that $\sigma_1(\alpha)$ is a unitary transformation. Now, from the relation $\sigma_0(\alpha^{-1})M_x = M_{\alpha^{-1}[x]}\sigma_0(\alpha^{-1})$, we have

$$\begin{split} \sigma_{1}(\alpha)S\rho(x)S^{-1}(\tau) &= S\sigma(\alpha)S^{-1}\sigma_{0}(\alpha^{-1})M_{x}f(\tau) \\ &= S\sigma(\alpha)S^{-1}M_{\alpha^{-1}[x]}\sigma_{0}(\alpha^{-1})f(\tau) \\ &= S\sigma(\alpha)S^{-1}S\rho(\alpha^{-1}[x])S^{-1}\sigma_{0}(\alpha^{-1})f(\tau) \\ &= S\sigma(\alpha)\rho(\alpha^{-1}[x])S^{-1}\sigma_{0}(\alpha^{-1})f(\tau) \\ &= S\rho(\alpha\alpha^{-1}[x])\sigma(\alpha)S^{-1}\sigma_{0}(\alpha^{-1})f(\tau) \\ &= S\rho(x)\sigma(\alpha)S^{-1}\sigma_{0}(\alpha^{-1})f(\tau) \\ &= S\rho(x)S^{-1}S\sigma(\alpha)S^{-1}\sigma_{0}(\alpha^{-1})f(\tau) \\ &= S\rho(x)S^{-1}\sigma_{1}(\alpha)f(\tau). \end{split}$$

This shows that $\sigma_1(\alpha)$ commutes with $S\rho(x)S^{-1}=M_x$ and consequently $\sigma_1(\alpha)$ commutes with the von Neumann algebra generated by M_x . It is known [[5] cor. 1.1] that a commutative von Neumann algebra with a cyclic vector is maximal Abelian. Therefore $\sigma_1(\alpha)$ belongs to the von Neumann algebra generated by $(M_x:x\in G_1)$ which is the algebra of multiplication by essentially bounded measurable functions on (\hat{G}_1,μ) . Hence $\sigma_1(\alpha)f(\tau)=a(\tau,\alpha)f(\tau)$ where $a(\tau,\alpha)$ is, for each α a measurable essentially bounded function of modulus 1. We introduce the operator M_a in $L^2(\hat{G}_1,\mu)$ where $(M_af)(\tau)=a(\tau)f(\tau)$.

From the equation $S\sigma(\alpha)S^{-1}\sigma_0(\alpha^{-1})=M_\alpha$ we obtain $S\sigma(\alpha)S^{-1}=M_\alpha\sigma_0(\alpha)$: that is

$$S\sigma(\alpha)S^{-1}f(\tau) = a(\tau,\alpha)\sqrt{\frac{d\mu_{\alpha}}{d\mu}}(\tau)f([\tau]\alpha).$$

Finally,

$$S\sigma(\alpha_{1} \alpha_{2})S^{-1}f(\tau) = a(\tau, \alpha_{1} \alpha_{2}) \sqrt{\frac{d\mu_{\alpha_{1}\alpha_{2}}}{d\mu}}(\tau)f([\tau]\alpha_{1} \alpha_{2})$$

$$S\sigma(\alpha_{1})\sigma(\alpha_{2})S^{-1}f(\tau) = S\sigma(\alpha_{1})S^{-1}S\sigma(\alpha_{2})S^{-1}f(\tau)$$

$$= S\sigma(\alpha_{1})S^{-1}a(\tau, \alpha_{2}) \sqrt{\frac{d\mu_{\alpha_{2}}}{d\mu}}(\tau)f([\tau]\alpha_{2})$$

$$= a(\tau, \alpha_{1}) \sqrt{\frac{d\mu_{\alpha_{1}}}{d\mu}}(\tau)\alpha([\tau]\alpha_{1}, \alpha_{2}).$$

$$\sqrt{\frac{d\mu_{\alpha_{2}}}{d\mu}}([\tau]\alpha_{1})f([\tau]\alpha_{1}\alpha_{2})$$

$$= a(\tau, \alpha_{1})a([\tau]\alpha_{1}, \alpha_{2}) \sqrt{\frac{d\mu_{\alpha_{1}\alpha_{2}}}{d\mu}}(\tau)$$

$$\sqrt{\frac{d\mu_{\alpha_{1}}}{d\mu}}(\tau)f([\tau]\alpha_{1}\alpha_{2})$$

$$= a(\tau, \alpha_{1})a([\tau]\alpha_{1}, \alpha_{2}) \sqrt{\frac{d\mu_{\alpha_{1}\alpha_{2}}}{d\mu}}(\tau)f([\tau]\alpha_{1}\alpha_{2}).$$

Since
$$S\sigma(\alpha_1 \alpha_2)S^{-1} = S\sigma(\alpha_1)\sigma(\alpha_2)S^{-1}$$
 we have
$$\alpha(\tau, \alpha_1 \alpha_2) = \alpha([\tau]\alpha_1, \alpha_2)\alpha(\tau, \alpha_1), \text{ a.e.}$$

This completes the proof of the theorem.

DEFINITION 2.2. A Borel measure μ on \hat{G}_1 is said to be G_2 -ergodic if 1. μ is G_2 -quasi invariant, and

2. the G_2 -quasi-invariant non zero measures on \hat{G}_2 which are absolutely continuous with respect to μ are equivalent to μ .

THEOREM 2. Let G_1 and G_2 be as in the paragraph preceding Definition 2.1. Let $\Pi: (x, \alpha) \to \Pi(x, \alpha) = \rho(x)\sigma(\alpha)$ be a representation of $G_1 \otimes G_2$. If the measure μ defined by the cyclic representation ρ is G_2 ergodic, then Π is irreducible.

PROOF. Suppose a closed linear manifold \mathfrak{M} of $\mathfrak{H}(\Pi)$ is invariant for Π . Then clearly \mathfrak{M} is invariant for ρ and σ . Let E be the projection whose range is \mathfrak{M} . E belongs to $R(\rho, \rho)$. The representation ρ being cyclic, the von Neumann algebra $R(\rho, \rho)'$, generated by the operators $\rho(x): x \in G_1$, is a commutative von Neumann algebra with a cyclic element. Consequently [[5]. cor. 1.1]. $R(\rho, \rho)'$ is maximal Abelian. Therefore $R(\rho, \rho') = R(\rho, \rho)$. Since every projection of $R(\rho, \rho)'$ is of the form P_B , where $P: B \to P_B$ is the projection valued measure defined by ρ , there is a Borel set B_0 of \hat{G}_1 such that $E = P_{B_0}$.

Let $\mu_0(B) = \mu(B_0 \cap B)$. Clearly μ_0 is absolutely continuous with respect to μ . We shall show that μ_0 is G_2 -quasi invariant. The measure μ is equivalent to the measure ν where $\nu(B) = ||P_B \xi_0||^2$. We may for the purpose of this proof assume, without loss of generality, that $\mu(B) = ||P_B \xi_0||^2$. From equation (5) in the proof of Theorem 2.1 we have

$$\sigma(\alpha)P_{B_0\cap B}\sigma(\alpha^{-1})=P_{[B_0\cap B]\alpha^{-1}}.$$

However,

$$\sigma(\alpha)P_{B_0 \cap B} \sigma(\alpha^{-1}) = \sigma(\alpha)P_{B_0} P_B \sigma(\alpha^{-1})$$
$$= \sigma(\alpha)P_{B_0} \sigma(\alpha)^{-1} \sigma(\alpha)P_B \sigma(\alpha^{-1}).$$

Now suppose $\mu_0(B)=0$. Then $\mu(B_0\cap B)=0$, and by the G_2 -quasi invariance of μ , it follows that $\mu([B_0\cap B]\alpha^{-1})=0$. Consequently,

$$0 = ||P_{[B_0 \cap B]\alpha^{-1}} \xi_0||^2$$

$$= ||P_{B_0 \cap [B]\alpha^{-1}} \xi_0||^2$$

$$= \mu(B_0 \cap [B]\alpha^{-1}) = \mu_0([B]\alpha^{-1}).$$

Since α in G_2 is arbitrary, we have shown that μ_0 is G_2 -quasi invariant. The measure μ is G_2 -ergodic. Therefore either μ_0 is equivalent to μ or μ_0 is the zero measure. That is either $B_0 = \hat{G}_1$ or $B_0 = \phi$. Consequently, $\mathfrak{M} = \mathfrak{H}$ or $\mathfrak{M} = \{0\}$.

This completes the proof.

DEFINITION 2.3. Let $\Pi_i: (x, \alpha) \to \Pi_i(x, \alpha) = \rho_i(x)\sigma_i(\alpha)$ be representations of G_1 s G_2 in $\mathfrak{H}(\Pi_i)$, i = 1, 2. Π_i is said to be equivalent to Π_2 if there is a linear isometry $S: \mathfrak{H}(\Pi_1) \to \mathfrak{H}(\Pi_2)$ such that

$$S\rho_1(x)S^{-1} = \rho_2(x) \quad S\sigma_1(\alpha)S^{-1} = \sigma_2(\alpha).$$

Theorem 2.3. Let $\Pi_i:(x,\alpha)\to\Pi_i(x,\alpha)$ be representations of $G_1 \otimes G_2$ on \mathfrak{H} (Π_i) where

$$\Pi_i(\circ, \varepsilon): x \to \Pi_i(x, \varepsilon) \quad i = 1, 2$$

are cyclic. A set of necessary and sufficient condition that Π_1 is equivalent to to Π_2 is

- 1. μ^1 is equivalent to μ^2 where μ^i is the measure on \hat{G}_i defined by Π_i $(0, \varepsilon)$ i = 1, 2; and
- 2. there exists a Borel function b on \hat{G}_1 with the properties
 - 2.1. $|b(\tau)| = 1$ almost everywhere, and
 - 2.2. $a_2(\tau, \alpha) = b(\tau)a_1(\tau, \alpha)b^{-1}([\tau]\alpha)$ where $a_i(\tau, \alpha)$ is the function associated with $\Pi_i(e, \circ) : \alpha \to \Pi_i(e, \alpha)$ in theorem 2.1.

PROOF. It is evident from Theorem 2.1 that, Π_1 is equivalent to Π_2 if and only if the following is true: (*) there is a linear isometry $S: L^2$ $(\hat{G}_1, \mu^1) \to L^2(\hat{G}_1, \mu^2)$ such that $S\rho_1(x) = \rho_2(x)S$ where

$$\rho_i(x)f(\tau) = x(\tau)f(\tau), f \in L^2(\widehat{G}_1, \mu^i)$$

and $S\sigma_1(\alpha) = \sigma_2(\alpha)S$, where

$$\sigma_i(\alpha)(\tau) = a_i(\tau, \alpha) \sqrt{\frac{d\mu_{\alpha}^i}{du^i}}(\tau) f([\tau]\alpha), \ i = 1, 2.$$

Assume that the conditions (*) are satisfied. We recall that $L(\hat{G}_1)$, the set of all continuous functions with compact support, is dense in $L^p(G_1, \mu^i)$ where p=1,2 and i=1,2. In the course of the proof of lemma 1.2 we saw that the operators $\rho_i(g)$ where $(\rho_i(g)f)(\tau)=g(\tau)f(\tau), g\in L(\hat{G}_1)$ and $f\in L^2(\hat{G}_1,\mu^i)$ belong to $R(\rho_i,\rho_i)'$. It is easily verified that $S\rho_1(x)S^{-1}$ $\rho_2(x)$ implies $S\rho_1(g)S^{-1}=\rho_2(g)$ for all $g\in L(\hat{G}_1)$.

Since $S\rho_1(x)S^{-1}=\rho_2(x)$ for all x in G_1 , the commutative von Neumann algebra $R(\rho_1,\rho_1)'$ generated by $(\rho_1(x):x\in G)$ is unitarily equivalent to the von Neumann algebra $R(\rho_2,\rho_2)'$ generated by $(\rho_2(x):x\in G_1)$. Since ρ_i are cyclic representations, the commutative von Neumann algebras $R(\rho_i,\rho_i)'$ are cyclic. A commutative von Neumann algebra with a cyclic vector is maximal Abelian ([5] corollary 1.1) and is unitarily equivalent to a multiplication algebra ([5] Lemma 1.2). Consequently, the multiplication algebra on $L^2(\hat{G}_1,\mu^1)$ is unitarily equivalent to the multiplication algebra on $L^2(\hat{G}_1,\mu^2)$ and therefore ([6] Theorem 4.1) μ^1 is equivalent to μ^2 .

The function e, where $e(\tau) = 1$ for all $\tau \in \hat{G}_1$, belongs to $L^2(\hat{G}_1, \mu^1)$. Let $Se = c \in L^2(\hat{G}_1, \mu^2)$. We shall show that c is an essentially bounded function. If $g \in L(\hat{G}_1)$, we have

$$Sg = Sge = S\rho_1(g)e = S\rho_1(g)S^{-1}Se$$

= $\rho_2(g)Se = \rho_2(g)c$. (i)

Let

$$C(g) = \int_{\hat{G}_{1}} |c(\tau)|^{2} g(\tau) d\mu^{2}(\tau)$$

$$|C(g)| = (gc, c) = (\rho_{2}(g)c_{i} c) = (\rho_{2}(g)Se, Se)$$

$$= (S^{-1}\rho_{2}(g)Se, e) = (\rho_{2}(g)e, e)$$

$$= \int_{\hat{G}_{1}} g(\tau) d\mu^{1}(\tau).$$
(ii)

Hence

$$|C(g)| \le ||g||_1$$
 (the L^1 -norm of $g \in L^1(\hat{G}_1, \mu^1)$.

That is, C(g) is bounded on a dense linear subset $L(\hat{G}_1)$ of $L^1(\hat{G}_1, \mu^1)$, and can therefore be extended to $L^1(\hat{G}_1, \mu^1)$. Hence $C \in L^{\infty}(\hat{G}_1, \mu^1)$, and therefore c is essentially bounded with respect to μ^1 . Since μ^1 and μ^2 are equivalent it follows that c is essentially bounded with respect to μ^2 .

Since the function c is essentially bounded the equation (i) can be written in the form $Sg = M_c g$ where M_c is the operation of multiplying by c. Since M_c is a bounded operator and $L(\hat{G}_1)$ is dense in $L^2(\hat{G}_1, \mu)$, the equation $Sg = M_c g$ holds for all g in $L^2(\hat{G}_1, \mu^1)$. It follows from the equivalence of μ^1 and μ^2 and the equation (ii) that

$$\begin{split} \int_{\hat{G}_1} g(\tau) |c(\tau)|^2 d\mu^2(\tau) &= \int_{\hat{G}_1} g(\tau) d\mu^1(\tau) \\ &= \int_{\hat{G}_1} g(\tau) \frac{d\mu^1}{d\mu^2}(\tau) d\mu^2(\tau). \end{split}$$

Hence

$$|c(\tau)|^2 = \frac{d\mu^1}{d\mu^2}(\tau)$$

almost everywhere, and

$$c(\tau) = b(\tau) \sqrt{\frac{d\mu^{1}}{d\mu^{2}}}(\tau)$$
$$|b(\tau)| = 1$$

where

almost everywhere.

Now,

$$\begin{split} S\sigma_{1}(\alpha)(\tau) &= M_{c} a_{1}(\tau, \alpha) \sqrt{\frac{d(\mu^{1})_{\alpha}}{d\mu^{1}}}(\tau)g([\tau]\alpha) \\ &= b(\tau) \sqrt{\frac{d\mu^{1}}{d\mu^{2}}}(\tau)a_{1}(\tau, \alpha) \sqrt{\frac{d(\mu^{1})_{\alpha}}{d\mu^{1}}}(\tau)g([\tau]\alpha) \\ &= b(\tau)\alpha_{1}(\tau, \alpha) \sqrt{\frac{(d\mu^{1})_{\alpha}}{d\mu^{2}}}(\tau)g([\tau]\alpha). \end{split}$$

i.e.

$$\begin{split} \sigma_2(\alpha)Sg &= \sigma_2(\alpha)b(\tau)\sqrt{\frac{d\mu^1}{d\mu^2}}(\tau)g(\tau) \\ &= a_2(\tau,\alpha)\sqrt{\frac{d(\mu^2)_\alpha}{d\mu^2}}(\tau)b([\tau]\alpha)\sqrt{\frac{d\mu^1}{d\mu^2}}([\tau]\alpha)g([\tau]\alpha) \\ &= a_2(\tau,\alpha)b(\tau\alpha)\sqrt{\frac{d(\mu^2)_\alpha}{d\mu^2}}(\tau)\sqrt{\frac{d(\mu^2)_\alpha}{d(\mu^2)_\alpha}}(\tau)g(\tau\alpha) \\ &= a_2(\tau,\alpha)b([\tau]\alpha)\sqrt{\frac{d(\mu^1)_\alpha}{d\mu^2}}(\tau)g([\tau]\alpha). \end{split}$$

Hence the equation $S\sigma_1(\alpha)g = \sigma_2(\alpha)Sg$ yields

$$b(\tau)\alpha_1(\tau,\alpha) = \alpha_2(\tau,\alpha)b([\tau]\alpha), \text{ a.e.}$$
$$\alpha_2(\tau,\alpha) = b(\tau)\alpha_1(\tau,\alpha)b^{-1}([\tau]\alpha) \text{ a.e.}$$

The converse is easy to verify and we omit the details. This completes the proof.

The condition 2 of the last theorem can be reformulated in terms of a one dimensional cohomology group. To this end we observe first that G_2 as a group of automorphisms of $L^{\infty}(\hat{G}_1, \mu) : \alpha[g](\tau) = g([\tau]\alpha)$. Furthermore, the function $\alpha(\tau, \alpha)$ of Theorem 2.1 defines a mapping $\tilde{\alpha}: G_2 \to L^{\infty}(\hat{G}_1, \mu)$ where $(\tilde{\alpha}(\alpha))(\cdot) = \alpha(\cdot, \alpha)$. From ii of theorem 2.1 we see that $\tilde{\alpha}$ is a crossed homomorphism. It is evident that $(\tilde{b}(\alpha))(\cdot) = b(\cdot)$ $b^{-1}([\cdot]\alpha)$, where $b \in L^{\infty}$, is a principal crossed homomorphism. In view of these observations the condition 2 of Theorem 2.3 states α_1 and α_2 define the same element of the one dimensional cohomology group $H^1(G_2, L^{\infty})$.

REFERENCES

- J. DIXMIER
- [1] Les Algebres d'opérateurs dans l'espace Hilbertien, Paris, 1957.
- E. HEWITT AND K. A. ROSSE
- [2] Abstract Harmonic Analysis, Berlin, 1963.
- G. W. MACKEY
- [3] Induced representations of locally compact Groups I, Ann. Math., Vol. 55 (1962) pp. 101-139.
- M. A. NAIMARK
- [4] Normed Rings, Groningen, 1959.
- I. E. SEGAL
- [5] Decompositions of Operator Algebras II, Providence, R. I., 1951.
- I. E. SEGAL
- [6] Equivalence of Measure Spaces, Amer. J. Math., Vol. 73 (1951) 275-313.

(Oblatum 20-Vl-1968)

Queen Elizabeth College, University of London, Campden Hill Road, London, U.K.