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REPRESENTATIONS OF SEMI DIRECT PRODUCTS OF GROUPS
by

S. Sankaran

Introduction

Let G, be a locally compact Abelian group, G, a locally compact group
of continuous automorphisms of G,. In this paper we characterise all
pairs of unitary representations p and ¢ of G; and G, respectively in a
Hilbert space §, where p is cyclic and

a(@p(x)o(x™") = p(alx]), xe Gz, x € Gy. (*)

A set of necessary and sufficient conditions for a pair (p;, o) to be uni-
tarily equivalent to a pair (p,, 6,) is given.

It can be shown that the commutation relations (*) define a system
of imprimitivity for the representation ¢. In [[3] § 14.] Mackey investi-
gates these representations, from a different point of view from ours,
primarily as an application of his theory of induced representations.

I would like to thank the referee for his helpful comments.

1. Preliminaries

DerINITION 1.1. Let G be a locally compact group. A unitary repre-
sentation of G is a homomorphism IT : g — II(g) of G into the group of
unitary transformations of a Hilbert space $(II), such that IT is con-
tinuous in the weak topology for operators. A closed linear manifold
I is called an invariant subspace for II if IT{g) £ € M for all ge G and
all £ € M. An invariant subspace I is said to be a cyclic subspace for IT
if there is an element &, in H(IT), such that the smallest invariant sub-
space for IT containing &, is M. &, is called a relative cyclic vector for
II. If H(IT) is a cyclic subspace, then IT is said to be cyclic. The inter-
twining algebra of a representation IT is the set

R(I1,00) = {T:TH(g) = (9)T, ge G},
T being bounded, everywhere defined, linear transformations on H(IT).

DEerFINITION 1.2, Let  be a Hilbert space. 4™ * algebra % of (bounded,
215



216 S. Sankaran 2]

everywhere defined, linear) transformations of § is called a von Neumann
algebra, if 9 is closed in the weak topology for operators. A closed linear
manifold N is called an invariant subspace for U, if 4¢&e M for all
A eUand all £ e M. An invariant subspace I is said to be a cyclic sub-
space for  if there is an element &, in §, such that the smallest invariant
subspace for U containing &, is . If H is an invariant subspace for ¥,
then Y is said to be cyclic. The commutant of U is the set

W ={T:TA = AT, AU},

T being bounded, everywhere defined, linear transformations on $.

It is easy to prove that a closed linear manifold I < H(IT) (resp.
M < 9) is a cyclic subspace for IT (resp. A) if and only if there is an ele-
ment &,eH(II) (resp. o€ ) such that the closed linear manifold
generated by (II(g)¢, : g € G) (resp. (A&, : A e N)) is M.

If S is a set of elements in a Hilbert space the closed linear manifold
generated by S is denoted by [s:se S].

Let IT : g — II(g) be a representation of a locally compact group G.
We shall often use the following well-known results

LEmMma 1.1.

(i) R(11, IT) is a von Neumann algebra;
(ii) R(I1, IT) is the smallest von Neumann algebra containing the
operators (I1(g) : g € G);
(iii) M is an invariant subspace for I (resp. R(I1, I1)') if and only if P,
the projection whose range is I, belongs to R(I1, IT).
(iv) A closed linear manifold M is a cyclic subspace for I1 if and only if
M is a cyclic subspace for R(I1, IT)'.

DerniTION 1.3. Let X be a locally compact space, p a finite regular
measure defined on the o-ring of Borel subsets of X. We denote by L(X)
the set of all continuous functions with compact support; C(X) the set of
all continuous functions on X. If fe L(X) we denote by M, the operator
on L*(X, p) defined by (M h)(x) = f(x)h(x), where he L*(x, p).

LeMMA 1.2. Let G, be a locally compact Abelian group, G, the char-
acter group of Gy and u a finite regular measure defined on the o-ring of
Borel subsets of G,. The mapping M :x — M,, where (M, f)(z) =
x(2)f(z), fe L¥(Gy, n), x € G, is a cyclic representation of G, .

Proor. It is easy to verify that M : x — M_ is a weakly continuous
unitary representation of G, . We shall show that M is cyclic.

Let e be the function on Gy, e(tr) = 1. Since p is a finite measure on
G,, e belongs to L?(G,, u) and therefore x = M, ee L*(G,, p) for
all x € G, . Denote by F the set of all finite linear combination of elements
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of G,. We recall [[4] § 31, cor. 4] that every continuous function on G,
can be approximated uniformly on compact sets by members of F. If
f, h,, h, are continuous functions with compact supports and ¢ > 0, we
can find s € F such that

If(2)—s()] <

% forallrek, nk,
(A1l 1Rl

where K; is the support of /;. Hence

(1= )b, ) = | [, U= EI(o)

<&
[l 11bl

This is true for all 2, € L(G,) and k, € L(G,). Since L(G,) is dense in
L*(Gy, p), we have proved that (M, : fe L(G,)) belongs to the weakly
closed algebra generated by (M, : x € G,). From Lemma 1.1 (ii) we de-
duce that (M, :feL(G,)) < R(Il, ) and therefore from the (iv) of
Lemma 1.1. we deduce that f = M ee [M,e: x € G]. That is L(G,) =
[M,e : x € G,;]. We complete the proof by observing that L(G,) is dense
in L*(Gy, p).

IRyl llhall = e

LemMa 1.3. Let IT : x — II(x) be a cyclic representation of a locally
compact Abelian group G,. There is a regular finite measure p on G,,
and a linear isometry S : O(IT) — L*(G,, u) such that SII(x)S™! = M,,
where M : x — M, is the representation of G, defined in Lemma 1.2.

PRrROOF. Let &, be a cyclic element for the cyclic representation IT, and
let &(x) = (II(x)&o, &) There is a positive functional P on R(G,), the
group algebra of G, which corresponds to the continuous pesitive
definite function &. Since R(G,) is a commutative Banach algebra,
the positive functional P can be represented in the form

P) = [ 1nto.

The spectrum 4 of R(G,) is homeomorphic to G, U {L!(G,)} and
p({L'(G,)}) = 0. Therefore, the measure u may be considered as a mea-
sure defined on G,[[4]§ 31, sec. 3].

The Gelfand isomorphism theorem allows us to regard P as a positive
functional on C(4), where C(4) is the set of all continuous functions on
4. The positive functional P defines a representation of C(4) which is
equivalent to the representation M : f - M s on L?(4, ), where

(M g)(8) = f(8)9(5), g € (4, p).
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[[4]. ch. 4. § 17]. Since G, = C(4), we obtain a representation M : x —
M, of G, in

L*(4, ) = LGy, 1),
where

(M.g)(x) = x(1)g(z)-

Since the representations M and IT of G, define the same representation
of R(G,), namely the representation defined by the positive functional
P, the representations M and IT are equivalent. [[4] § 29, sec. 3].

2. Semi-direct products

Let G be a locally compact group, G, a locally compact group of auto-
morphisms of G such that the mapping (g, @) = a[g] of GXx G, into G
is continuous in both variables. The semi-direct product G®G, is the set
of all pairs (g,a), g € G, « € G,, whose group operation is defined by

(9, )(h, B) = (g:[h], «)-

G®G, is a locally compact group in the product topology. The mapping
g - (g, &) where ¢ is the identity of G, is an isomorphism between G and
a closed normal subgroup of G®G,. The mapping « — (e, o) where e
is the identity element of G is an isomorphism between G, and a closed
subgroup of G®G,. Finally, (g, ®) = (g, ¢)(e, ). [[2] pp. 6—7, 58-59,
[3] § 14]. The proof of the following lemma is routine.

LEMMA 2.1. Let p : g — p(g) and o : o — a(o) be representations of G
and G, respectively in a Hilbert space 9. The mapping II : (g, o) —
II(g, o), where II(g, «) = p(g)o(e) is a representation of G®G, if and
only if

o(@)p(g)o(x™*) = p(x[g]).

In the following pages let G, be a locally compact Abelian group, G,
the character group of G;, G, a locally compact group of continuous
automorphisms of G, such that the mapping (x, a) — a[x] of G, x G,
to G, is continuous in both variables. The group G, acts as a group
of automorphisms of G, if we define [t]x by the equation ([t]x)(x) =
t(a[x]), x € G,. [[2] 26.9].

DErINITION 2.1. Let p be a finite Borel measure defined on G,, and
for each a € G, let y, be the measure on G, defined by u,(B) = u([B]x).
The measure p is said to be G,-quasi invariant if p, is absolutely contin-
uous with respect to u for alla € G,.

LEMMA 2.2. Let u be a G,-quasi invariant measure on G,. The mapping
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I : (x,0) - O(x, a) = I(x, e)lI(e, x),
where
(I (%, 8)f)(z) = x(2)f (%)

and

(e, (o) = V% @ ([<Je). £ & Gy )

is a representation of G;®G, in L*(Gy, p).
As the proof consists of a routine verification of the condition given
in lemma 2.1, we omit the proof.

THEOREM 2.1. Let IT : (x, &) — II(x, o) be a representation of G;®G,
in a Hilbert space $(IT) such that the representation I1(x, ) of Gy in H(IT)
is cyclic. There is a G,-quasi invariant measure y on G, and a linear iso-
metry S from () on to L*(G,, p) such that

SH(x, £)S™'f(z) = x()f(x)

and

SI(e, @)S™ /() = a(s, ) V%‘i @S (1)

where a (t, &) is a Borel function on G, x G, with the following properties:

i la(z,a)l = 1 almost everywhere, and
ii a(z, 0y05) = a(z, ay) a ([tloy, ay), ae.

Proor. Let p(x) = II(x, €) and o(a) = II(e, o). Since p is a cyclic
representation of G, in H(IT), it follows from Lemma 1.2 that there is a
finite Borel measure z on G, and a linear isometry S from $(IT) onto
L*(G,, p) such that Sp(x)S~f(z) = x(¢)f(r). The well-known Stone-
Naimark-Ambrose-Godement theorem asserts that there is a projection
valued measure P : B — Py on the Borel subsets of G, to the projections
in the intertwining algebra R(p, p)’ such that [[4] § 31. Th. 6]

(% ) = [, (P, &) 0

for every pair of elements £ and # in H(IT). Moreover, if &, is a cyclic ele-
ment for the representation p then the measure p is equivalent to the
measure v where v(B) = ||P5é&,||*>. Now

(e(@)p(x)o(e™1)E, n) = p(alx1E, n). 2

From (1) we have
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(o(@Iple)ota™)e, 1) = (e ), oo™ )
= [, a0t e ot 0

= [ s XOe@P.o6 ) ®
Also, l
(PlolxDts 1) = [, NP5

= [ HEae.em = [, st @

It follows from (2), (3) and (4) that
O'(a)PBO’(OC—l) = P[B]a"’ . (5)

Now u(B) = 0 implies v(B) = 0 and consequently Pz&, = 0. Since
Py e R(p, p), the equation 0 = TPy¢, = PgTE,, T € R(p, p) implies
Py E = 0 where E is the projection on the closed linear manifold generated
by (T¢, : Te R(p, p)'). However, E = I because &, is a cyclic element for
p. Therefore Py = 0. Thus u(B) = 0 implies P = 0, and from (5) it
follows that Pgg,-: = 0. That is, u(B) =0 implies v([Bla™') = 0.
Since p and v are equivalent, v([B]Jx~!) = 0, implies u([BJe~') = 0.

Hence p,-: is absolutely continuous with respect to u. Since a € G,
is arbitrary, we have shown that u is G, quasi invariant.

Let

2@ (2) = V‘% (OF ), £ B(Gr )
and
o1(x) = So(x)S ta,(at)

where S is the linear isometry $(IT) — L%(G,, p) introduced in the first
paragraph of this proof. It is clear that ¢,(e) is a unitary transformation.
Now, from the relation oo(a™ )M, = M,-1y00(ax""), we have

o1(2)Sp(x)S™1(z) = So(x)S 1o o(a~ )M, f(x)
= So(2)S ™ M- 100(a™1)f(7)
= So(0)S ™ 1Sp(a" [x])S "*oo(a1)f (7)
= So(x)p(e™ [x])S " loo(a™1)f(7)
= Sp(oa™ [x])a(2)S 1o o(x™ 1) (x)
= Sp(x)a()S ~ao(x™)f(2)
= Sp(x)S~1Sa(x)S 'oo(ax1)f(x)
= Sp(x)S 1o () (7).
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This shows that ¢,(x) commutes with Sp(x)S™! = M, and consequently
o,(2) commutes with the von Neumann algebra generated by M,. It
is known [[5] cor. 1.1] that a commutative von Neumann algebra with
a cyclic vector is maximal Abelian. Therefore g, (x) belongs to the von
Neumann algebra generated by (M, : x € G,) which is the algebra of
multiplication by essentially bounded measurable functions on (Gy, p).
Hence o,(2)f(z) = a(z, a)f(tr) where a(z, a) is, for each o a measurable
essentially bounded function of modulus 1. We introduce the operator
M, in L2(Gy, u) where (M,f)(z) = a(x)f(2).

From the equation So(«)S™!so(2”!) = M, we obtain So(x)S™' =
M,oy(a): that is

So(@)S™(5) = a(z, @) V‘-f,,”; @ [<Ie).
Finally,

So(e; #2)S™ Y (z) = a(z, 2, ;) d—ﬂﬂﬂ (Of ([x]ery @2)
du

So(2;)a(22)S™f(c) = So(,)S ™" So(3) S f(x)

= So(a;)S™"a(s, 23) Vd?f; @ ([<)

- af, ) l/%"; (e[l ).

Vé:_”. ([rloe)f ([ o)
m

= a(s, ag)a(<]e » 22) V%‘r )

dte,
V—dz (@)f([elory z)

= a(, a)a([t]ay, o) Vﬂi% @f [y x2)-

Since So(xy0,)S™! = Sa(ay)o(x;)S™! we have
a(t, ago;) = a[e]ay, oy)a(t, y), a.e.
This completes the proof of the theorem.

DEFINITION 2.2. A Borel measure y on G, is said to be G,-ergodic if

1. pis G,-quasi invariant, and
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2. the G,-quasi-invariant non zero measures on G, which are abso-
lutely continuous with respect to p are equivalent to pu.

THEOREM 2. Let Gy and G, be as in the paragraph preceding Definition
2.1. Let IT : (x, &) = II(x, &) = p(x)a(«) be a representation of G,®G,.
If the measure p defined by the cyclic representation p is G, ergodic, then IT
is irreducible.

PRrOOF. Suppose a closed linear manifold I of H(IT) is invariant for
II. Then clearly M is invariant for p and ¢. Let E be the projection whose
range is M. E belongs to R(p, p). The representation p|being cyclic, the
von Neumann algebra R(p, p)’, generated by the operators p(x): xe Gy,
is a commutative von Neumann algebra with a cyclic element. Conse-
quently [[5]. cor. 1.1]. R(p, p)’ is maximal Abelian. Therefore R(p, p’) =
R(p, p). Since every projection of R(p,p) is of the form Py, where
P : B — Py is the projection valued measure defined by p, there is a
Borel set B, of G, such that E = Py,.

Let uo(B) = u(By n B). Clearly p, is absolutely continuous with re-
spect to u. We shall show that u, is G,-quasi invariant. The measure
p is equivalent to the measure v where v(B) = ||P&,||?. We may for the
purpose of this proof assume, without loss of generality, that u(B) =
[|Pg&ol|*. From equation (5) in the proof of Theorem 2.1 we have

o(®)Pg, npo(a™!) = Pigy nBla-1-
However,
6()Pp, o 50(¢”") = o(2)Pp, Ppo(a™")
= o(a)Pp, 0(a) " 'a(x)Pga(a™?).
Now suppose po(B) = 0. Then u(B, n B) = 0, and by the G,-quasi
invariance of p, it follows that u([B, n Bla~') = 0. Consequently,

0= ”P[BonB]az‘l fo”2
= IlPBon[B]az" fo”2
= W(Bo n [Ble™") = po([Blx™").
Since a in G, is arbitrary, we have shown that u, is G,-quasi invariant.
The measure p is G,-ergodic. Therefore either u, is equivalent to u or
Mo is the zero measure. That is either B, = G, or B, = ¢. Consequently,

M =9 or M = {0}.
This completes the proof.

DEeFINITION 2.3. Let IT;: (x, «) —» II(x, ) = py(x)o;(2) be represen-
tations of Gy s G, in H(IT;), i = 1, 2. II; is said to be equivalent to IT, if
there is a linear isometry S : (I1,) — H(II,) such that
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Spi(x)S™! = py(x) Soy(@)S™ = g,(x).

THEOREM 2.3. Let I1; : (x, o) — IT(x, &) be representations of G,®G,
on 9 (II;) where
IIo,€):x » My(x,8) i=12
are cyclic. A set of necessary and sufficient condition that I1, is equivalent to
to I1, is
1. u! is equivalent to u® where ' is the measure on G, defined by II,
(o,8) i=1,2; and
2. there exists a Borel function b on G, with the properties
2.1. |b(z)l = 1 almost everywhere, and
2.2. ay(1,0) = b(v)ay(z, )b~ ([c]e) where ay(z, ) is the function
associated with I (e, o) : o — II (e, a) in theorem 2.1.

Proor. It is evident from Theorem 2.1 that, IT, is equivalent to II,
if and only if the following is true: (*) there is a linear isometry S : L?
(Gy, ut) » L*(G,, u?) such that Sp;(x) = p,(x)S where

pi)f (1) = x(f (2), f € LGy, )
and So(2) = 0,(x)S, where

0(@)() = a,(z, 2) VZ—Z @f (e, i = 1,2

Assume that the conditions (*) are satisfied. We recall that L(G, ), the
set of all continuous functions with compact support, is dense in L?(G , 4t°)
where p = 1,2 and i = 1, 2. In the course of the proof of lemma 1.2 we
saw that the operators p,(g) where (p,(9)f)(z) = g9(z)f(z), g€ L(G,)
and fe L*(G,, i) belong to R(p;, p;)'. It is easily verified that Sp,(x)S ™!
p2(x) implies Sp,(g)S™! = p,(g) for all ge L(G,).

Since Sp;(x)S™! = p,(x) for all x in G,, the commutative von Neu-
mann algebra R(p,, p;) generated by (p,(x) : x € G) is unitarily equiv-
alent to the von Neumann algebra R(p,, p,) generated by (p,(x):
x € G). Since p; are cyclic representations, the commutative von Neu-
mann algebras R(p;, p;)’ are cyclic. A commutative von Neumann al-
gebra with a cyclic vector is maximal Abelian ([5] corollary 1.1) and is
unitarily equivalent to a multiplication algebra ([5] Lemma 1.2).
Consequently, the multiplication algebra on L?(G,, p') is unitarily
equivalent to the multiplication algebra on L*(G,, u*) and therefore
([6] Theorem 4.1) u! is equivalent to u?.

The function e, where e(r) = 1 for all 7 € G,, belongs to L2(G,, p').
Let Se = ce L*(G,, p?). We shall show that c is an essentially bounded
function. If g € L(G,), we have
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Sg = Sge = Sp,(g9)e = Sp,(g9)S™'Se
= p,(g)Se = py(g)c. @)

Let Cla) = [, letst0ane)
IC(9)l = (ge, ¢) = (p2(9)ec, ¢) = (p2(g)Se, Se)
= (S7'pa(9)Se, €) = (p2(g)e; €)
- [, oo (i)
Hence IC(9)! £ llgll, (the L'-norm of g e L}(G,, put).

That is, C(g) is bounded on a dense linear subset L(G,) of L'(G,, p'),
and can therefore be extended to L(G,, u'). Hence C € L*(G,, pu'), and
therefore ¢ is essentially bounded with respect to p'. Since u' and u?
are equivalent it follows that c is essentially bounded with respect to u?.

Since the function c is essentially bounded the equation (i) can be
written in the form Sg = M_g where M, is the operation of multiplying
by c. Since M, is a bounded operator and L(G, ) is dense in L*(G,, p), the
equation Sg = M_,g holds for all g in L2(G,, pu'). It follows from the
equivalence of u' and p* and the equation (ii) that

[ 900rac = [, s
- [ 90995 o)

1
Hence @ = 2 (@)
du
almost everywhere, and
ofc) = b(r)l 0
where b(z)| =

almost everywhere.
Now,

S3.(0)(8) = M. a,(z, ) V%—) (a(512)
- b V% (Dar(e. ) V‘—’%l (a1
- ooms. ) ) 92 (10,
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a,(2)Sg = 7,(2)b(7) ng; (2)g(7)

]

a,(r, %) V‘i%% (©)b([<]o) V%Z—: ([z1=)g([<]e)

oss () | L0 ) ) 22 o)

— ay(z, )([<J0) fo—;;—) )

Hence the equation So,(a)g = 0,(«)Sg yields
b(t)ay(z, @) = ay(z, a)b([t]x), a.e.
a,(t, o) = b(r)ay (7, )b~ ([t]e) ace.

The converse is easy to verify and we omit the details.
This completes the proof.

The condition 2 of the last theorem can be reformulated in terms of a
one dimensional cohomology group. To this end we observe first that
G, as a group of automorphisms of L®(G, u) : a[g](t) = g([t]x).
Furthermore, the function a(r, a) of Theorem 2.1 defines a mapping
&: G, - L*(G,, p) where (&(2))(-) = «(-, &). From ii of theorem 2.1 we
see that & is a crossed homomorphism. It is evident that (b(x))(-) = (")
b7 !([']o), where b e L®, is a principal crossed homomorphism. In view
of these observations the condition 2 of Theorem 2.3 states «; and a,
define the same element of the one dimensional cohomology group
HY(G,, L™).

i.e.
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