COMPOSITIO MATHEMATICA

FLORIS TAKENS The Lusternik-Schnirelman categories of a product space

Compositio Mathematica, tome 22, nº 2 (1970), p. 175-180

<http://www.numdam.org/item?id=CM_1970_22_2_175_0>

© Foundation Compositio Mathematica, 1970, tous droits réservés.

L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

THE LUSTERNIK-SCHNIRELMAN CATEGORIES OF A PRODUCT SPACE

by

Floris Takens *

1. Introduction

For Cartesian products of connected C.W. complexes, the following formula concerning the weak Lusternik-Schnirelman category is known (see for example [1]):

$$\operatorname{cat}(X \times Y) \leq \operatorname{cat}(X) + \operatorname{cat}(Y).$$

In § 3 we shall prove the same formula for the strong Lusternik-Schnirelman category:

$$\operatorname{Cat}(X \times Y) \leq \operatorname{Cat}(X) + \operatorname{Cat}(Y)$$

under the assumption that X and Y have the homotopy type of a connected C.W. complex. We shall refer to these formulars as the weak resp. strong product theorem. In § 4 the methods § 3 are extended in order to obtain the

MIXED PRODUCT THEOREM: If X and Y have the homotopy type of a connected C.W. complex, then

$$\operatorname{Cat}(X \times Y) \leq \max.(\operatorname{Cat}(X), 1) + \operatorname{cat}(Y).$$

This theorem has the following corollary (take Y = one point): If X has the homotopy type of a C.W. complex then

$$\operatorname{Cat}(X) \leq \operatorname{cat}(X) + 1.$$

[Note that from the definitions it follows that $\operatorname{cat}(X) \leq \operatorname{Cat}(X)$].

Discussions with T. Ganea helped me to simplify the proof and to give the theorem its present generality; after these discussions T. Ganea found an independent and shorter proof for the corollary using only homotopycategorical notions; this proof is given in § 5.

^{*} Research partially supported by the Netherlands Organisation for the Advancement of Pure Research (Z.W.O.).

Floris Takens

2. Definitions

All spaces will have the homotopy type of a C.W. complex, or equivalently, of a polyhedron. We shall use $X \stackrel{h}{\sim} Y$ for: X is homotopy equivalent with Y.

If K is a simplicial complex, then the corresponding polyhedron is also denoted by K; if we have a polyhedron K with a specific triangulation t, we use the notation (K, t).

DEFINITION 1. If X is a connected space, the weak Lusternik-Schnirelman category cat (X) is the smallest number k, such that there is a covering of X with k+1 open'sets $\{U_i\}_{i=0}^k$, each of which is contractible in X.

The strong Lusternik-Schnirelman category Cat (X) is the smallest number *n*, such that there is a C.W. complex or, equivalently, a polyhedron $Y \stackrel{h}{\sim} X$ and a covering $\{V_i\}_{i=0}^n$ with subcomplexes of Y, each of which is self-contractible.

[Sometimes, for example in [1], cat() and Cat() are defined so that they are one larger than according to our definition; our definition is used for example in [2]).

REMARK. It is a standard fact [1] that cat() is a homotopy invariant. If the space X is a C.W. complex, or even a simplicial complex, one can also require, without changing the notion of cat(), that the sets U_i in definition 1 are, with respect to some subdivision, closed subcomplexes which are contractible in X. From this it easily follows that cat() \leq Cat().

Finally we have to say something about the topology of a product space. Let K_1 and K_2 be simplicial complexes with a given ordering of the vertices. A product $K_1 \times K_2$ of the simplicial complexes K_1 and K_2 can be obtained by taking as the set of vertices of $K_1 \times K_2$ the Cartesian product of the sets of vertices and as *n*-simplices subsets $(a_0, b_0), \dots, (a_n, b_n)$ with

(i) $a_i \leq a_{i+1}, b_i \leq b_{i+1}$, but $(a_i, b_i) \neq (a_{i+1}, b_{i+1})$,

(ii) some simplex of K_1 containes a_0, \dots, a_n ; some simplex of K_2 contains b_0, \dots, b_n .

The simplicial complex $K_1 \times K_2$ depends on the ordering of the vertices of K_1 and K_2 . The corresponding polyhedron $K_1 \times K_2$ however does not depend on these orderings. This polyhedron will be called $K_1 \times_S K_2$; the product of the polyhedra K_1 and K_2 , with the Cartesian product topology will be called $K_1 \times_C K_2$. It is not difficult to see that there is a natural 1-1 continuous map $t: K_1 \times_S K_2 \to K_1 \times_C K_2$ which is in general not a homeomorphism.

According to Milnor [3] however, $K_1 \times_C K_2$ has the homotopy type of a

C.W. complex. From this and the fact that t induces isomorphisms between the homotopy groups of $K_1 \times_S K_2$ and $K_1 \times_C K_2$, it follows that t is a homotopy equivalence. In the following " \times " will always mean " \times_S "; by the above remark however, all final statements, containing only homotopy invariants, hold for the cartesian product as well.

3. The strong product theorem

LEMMA 2. If $Cat(X) \leq k$, then, for each number *n* there is a polyhedron $K \stackrel{h}{\sim} X$ and a set of n+1 coverings $\{\{U_{i,j}\}_{i=0}^k\}_{j=0}^n$ of K with the following properties:

1. There is a triangulation t of K, such that all $U_{i,j}$'s are closed subcomplexes of (K, t).

- 2. $U_{i,j}$ is contractible (over itself) for all i, j.
- 3. $\bigcup_{i=0}^{k} U_{i,j} = K$ for each j.
- 4. $U_{i,j} \cap U_{i',j'} = \emptyset$ if i+j = i'+j'.

PROOF. We shall prove the lemma by induction on k (for fixed n). For k = 0 the lemma is trivial (take $U_{0,j} = X$). For arbitrary k we use the fact [2] that if Cat (X) = k, then there is a map $\alpha : L \to M$ between polyhedra such that

- (i) Cat (M) = k 1.
- (ii) X has the homotopy type of the mapping cone of α .

If $h: M \to M'$ is some homotopy equivalence, then, for $h\alpha: L \to M'$ clearly also (i) and (ii) hold. By induction we may assume that for given M, with Cat (M) = k-1, there is a polyhedron $M' \stackrel{h}{\sim} M$ and a set of n coverings $\{\{V_{i,j}\}_{i=0}^{k-1}\}_{j=0}^{n}$ of M' satisfying the properties $1, \dots 4$. in Lemma 2. Because a homotopic change of $h\alpha$ does not change the homotopy type of the mapping cone, we may assume that $h\alpha$ is simplicial (with respect to triangulations t and t' of L and M' such that the sets $V_{i,j}$ are subcomplexes with respect to t') and consequently that the mapping cone of $h\alpha$ is a polyhedron.

Now take K = mapping cone of $h\alpha =$

$$M' \cup L \times [0, 1]/((l, 0) = h\alpha(l) \forall l \in L; (l, 1) = (l', 1) l, l' \in L)$$

For any subset W of M', W[t] is the following subset of K:

$$W[t] = W \cup \{(l, \bar{t}) | h\alpha(l) \in W \text{ and } \bar{t} \leq t\}.$$

Note that $W[t] \stackrel{h}{\sim} W$.

The coverings of K can now be defined by

Floris Takens

$$U_{i, j} = V_{i, j} \left[\frac{1}{j+2} \right] \text{ for } i = 0, \dots, k-1 \text{ and } j = 0, \dots, n.$$
$$U_{k, j} = \left\{ (l, t) | l \in L, t \in \left[\frac{1}{j+2}, 1 \right] \right\} \subset k$$

The properties $1 \cdots 4$. follow directly.

PROOF OF THE STRONG PRODUCT THEOREM.

We have to prove that $\operatorname{Cat}(X \times Y) \leq \operatorname{Cat}(X) + \operatorname{Cat}(Y)$ in case X and Y have the homotopy type of a C.W. complex. Let $\operatorname{Cat}(X) = k$ and $\operatorname{Cat}(Y) = n$. There is a polyhedron $L \stackrel{h}{\sim} Y$ and a covering $\{V_j\}_{j=0}^n$ of L with closed contractible subcomplexes. By lemma 2 there is a polyhedron $K \stackrel{h}{\sim} X$ and a set of n+1 coverings $\{\{U_{i,j}\}_{i=0}^k\}_{j=0}^n$ of K satisfying the properties $1, \dots 4$. of lemma 2.

Now we take the following covering $\{W_s\}_{s=0}^{k+n}$ of $K \times L$:

$$W_s = \bigcup_{i+j=s} U_{i,j} \times V_j$$

 $U_{i,j} \times V_j$ is contractible. Because $U_{i,j} \cap U_{i',j'} = \emptyset$ for i+j = i'+j'we have $(U_{i,j} \times V_j) \cap (U_{i',j'} \times V_{j'}) = \emptyset$ if i+j = i'+j', so W_s is the union a finite number of contractible components. In order to obtain the required covering we make each of the W_s connected, by connecting the components with arcs in $K \times L$.

4. The proof of the mixed product theorem

As observed in § 2 it suffices to prove that

$$\operatorname{Cat}(K \times L) \leq \max(\operatorname{Cat}(K), 1) + \operatorname{cat}(L)$$

for K and L connected polyhedra.

Let $k = \max(\operatorname{Cat}(K), 1)$ and $n = \operatorname{cat}(L)$. There is a covering $\{V_j\}_{j=0}^n$ of (L, t) with closed subcomplexes, each contractible in L. We may assume that (K, t') admits a set of n+1 coverings $\{\{U_{i,j}\}_{i=0}^k\}_{j=0}^n$ with closed subcomplexes satisfying properties 1, 2, 3 and 4 of lemma 2; because $k \ge 1$, we may assume that none of the $U_{i,j}$'s is the whole of K.

As in the proof of the strong product theorem we consider the covering of $K \times L$ with subcomplexes of the form $U_{i,j} \times V_j$. These subcomplexes are in general not self-contractible; they have the homotopy type of V_j . Self-contractible subsets can be obtained by attaching a cone over V_j to $U_{i,j} \times V_j$. To get space enough for this attachement we multiply $L \times K$ and each $U_{i,j} \times V_j$ with a sufficiently large contractible polyhedron. We now give the details.

By assumption V_j is contractible in L, so there are maps $\varphi'_j : C(V_j) \to L$; $C(V_j) = V_j \times [0, 1]/V_j \times 1$ and $\varphi'_j(v, 0) = v$. There is a triangulation t_j of $C(V_j)$ and a $\varphi_j \stackrel{h}{\sim} \varphi'_j$ such that φ_j is a simplicial map $(C(V_j), t_j) \to (L, t)$ and $\varphi_j(v, 0) = v$.

 Δ^J is the contractible simplicial complex whose set of vertics is J, and whose set of q-simplices is the set of all subsets of q+1 elements of J. The set J is taken so large that each $(C(V_j), t_j)$ can be embedded simplicially in Δ^J ; let $\sigma_i : C(V_j) \to \Delta^J$ be such embeddings.

The maps $\kappa_i : (C(V_j), t_j) \to [0, 1]$ are defined as follows: Each vertex of the base is mapped to 0, all the other vertices are mapped to 1; κ_i is linear on each simplex.

Finally we construct a sequence of embeddings $\alpha_{i, j}$: $[0, 1] \rightarrow K$ such that

(a) $\alpha_{i,j}[0,1] \cap U_{i,j} = \alpha_{i,j}(0),$

(b) $(U_{i,j} \cup \operatorname{Im} \alpha_{i,j}) \cap (U_{i',j'} \cup \operatorname{Im} \alpha_{i',j'}) = \emptyset$ of i+j = i'+j',

(c) there is a subdivision t'' of (K, t') such that for all (i, j), $\alpha_{i, j}$ is a linear map onto one 1-simplex.

Note that the $\alpha_{i,j}$'s can only be constructed if none of the $U_{i,j}$'s equals K.

After all these preparations we can attach a cone over V_j to $U_{i,j} \times V_j \times \Delta^J$ by taking

$$W_{i,j} = (U_{i,j} \times V_j \times \Delta^J) \cup \{(\alpha_{i,j} \kappa_j(u,t), \varphi_j(u,t), \sigma_j(u,t)) | (u,t) \in C(V_j)\}.$$

These $W_{i,j}$ have the following properties:

1. $W_{i,j}$ is a closed subcomplex of $K \times L \times \Delta^{J}$; this follows from the fact that $\alpha_{i,j}\kappa_{j}, \varphi_{j}$ and σ_{j} are simplicial with respect to the same triangulation t_{j} of $C(V_{j})$.

2. $W_{i, j}$ is self-contractible.

3. $W_{i,j} \cap W_{i',j'} = \emptyset$ if i+j = i'+j'; this can be seen in the projection onto K.

4.
$$\bigcup_{i,j} W_{i,j} = K \times L \times \Delta^J$$
.

As in the proof of the strong product theorem, this gives $\operatorname{Cat}(K \times L \times \Delta^J) \leq k+n$. Because $K \times L \stackrel{h}{\sim} K \times L \times \Delta^J$ we are done.

5. Ganea's proof of the corollary: Cat \leq cat+1

Let X be a space with cat (X) = k having the homotopy type of a C.W. complex. Then there is a polyhedron $K \stackrel{h}{\sim} X$ and a covering $\{U_i\}_{i=0}^k$ of K with closed subcomplexes, each contractible in K. Let K' be the polyhedron obtained by attaching a cone over each of the U_i 's. Clearly $Cat(K') \leq k$ (K' is the union of k+1 cones; each cone is self-contractible).

We first show that K' is homotopy equivalent with $K \vee (\Sigma U_0) \vee \cdots \vee (\Sigma U_k)$, the one-point union of K, $(\Sigma U_0), \cdots, (\Sigma U_k)$ (ΣU_i is the suspension of U_i).

Let K'_0 be the space obtained from K by attaching a cone over U_0 . K'_0 is the mapping cone of the natural inclusion map $i_0: U_0 \to K$. Changing the map i_0 within its homotopy class does not change the homotopy type of the mapping cone of i_0 . Because U_0 is contractible in $K, i_0: U_0 \to K$ is homotopic with a constant map \tilde{i}_0 (i.e. Im $(\tilde{i}_0) =$ one point). The mapping cone of \tilde{i}_0 is clearly $K \vee (\Sigma U_0)$, so $K'_0 \stackrel{h}{\sim} K \vee (\Sigma U_0)$. The same argument, applied to each of the U_i 's, gives $K' \stackrel{h}{\sim} K \vee (\Sigma U_0)$

Let us call $Z = (\Sigma U_0) \vee \cdots \vee (\Sigma U_k)$. We now have:

 $\operatorname{Cat}(K \lor Z) \leq k$ because $K \lor Z \stackrel{h}{\sim} K'$ and $\operatorname{Cat}(K') \leq k$;

 $K \stackrel{h}{\sim} (K \lor Z \text{ with a cone attached over } Z).$

From Ganea [2] it then follows that $Cat(K) \leq k+1$, and consequently $Cat(X) \leq k+1$.

REFERENCES

R. H. Fox

[1] On the Lusternik-Schnirelman category, Annals of Math. 42 (1941) 333-370. T. GANEA

- [2] Lusternik-Schnirelman category and strong category, Ill. Journal of Mathematics 11 (1967) 417-427.
- J. MILNOR
- [3] On spaces having the homotopy type of a C.W. complex. Trans. Amer. Math. Soc. 90 (1959) 272-280.

(Oblatum 13-X-69)

Institut des Hautes Etudes Scientifiques 91 Bures-Sur-Yvette, France

180