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1. Introduction

When, in certain situations, operators on functions defined on topo-
logical spaces are considered, an interesting project, formulated by
James Eells, is to investigate whether compactness of the topological
space can be replaced by compactness of the operator: that is one should
try to ’put the compactness into the operator’. Leray in his paper [9]
defines the trace of a linear operator on a possibly infinite dimensional
space E when, by factoring out the subspace K on which the operator is
nilpotent, the quotient space E/K is finite dimensional. However, as
indicated in the example below, this approach neglects the topology
because the space K may not in general be closed. The object of this paper
is, like [9] to define the trace of a large class of operators on Hilbert
space, including the nilpotent operators. This is done by considering
operators of the form C+ Q, where C is an operator of trace class on H
and Q is quasi-nilpotent. That is, ’we put the nilpotency into the operator’.

The author is much indebted to Professor Eells for suggesting that the
notion of trace be extended, and for several stimulating conversations.

2. Examples

Leray [9] considers an endomorphism T of a linear space E and puts
K = ~p=1~ {x : Tpx = 0}. Clearly K is invariant under T.

If E/K is finite dimensional Leray defines the trace of T to be the trace
of the induced operator on E/K. This definition is justified because:

a) if E’ is a subspace of E invariant under T and T" is the induced
operator on E" = E/E’, then writing T’ = TIE,

and b) if T is nilpotent on some finite dimensional space K then

However, if the dimension of E is infinite the following simple example
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shows that K may not be closed:

EXAMPLE 2.1. Consider the Hilbert space

and consider the bounded linear operator T : l2 ~ l2 defined by:

Then, for example, T" is zero on the subspace En of l2 spanned by the
first n coordinates, and K = ~p=1~{x : Tp x = 01 consists of all vectors
with only finitely many non-zero coordinates.

Clearly K is not the whole of l’ but the closure of K is, that is K is
dense in 12. Therefore K is not closed.

This example is useful for indicating some of the other difficulties that
occur, as the following discussion shows.

Consider the particular vector

and write

so that yn ~ y in 12.
It might be supposed that, although K for some operator S on 12 is

not closed, for any y E K we have Sny ~ 0 as n - oo. However, by
considering the operator S = 2T in the above situation we see that we
still have

In spite of the above difhculties it might still be hoped that some of
Leray’s theory of trace could be extended if the closure K, of the sub-
space K on which the operator T is nilpotent, is considered in place of K.
However, an important property of K is that r-1 K = K.

EXAMPLE 2.2. In general T-1K et: K.
To see this consider the space E = l’ and the operator T as described

in 2.1. Also consider a one dimensional space F ~ R.
Consider the linear operator P on E Q F which acts like T on E and

sends the unit vector f~ F onto the vector y = {1/n) e E. With the usual
norm || ||E + || ||F on E ae F, P(0,f) =y is in  for P, but (0,f) ~ K.

However, a probably more important reason why the closure K
should not be factored out is also indicated by Example 2.1.
On each subspace of 11 spanned by finitely many of the standard

coordinates the left shift operator T is nilpotent, and so has zero spectrum
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and zero trace. It is, therefore perhaps reasonable to define the trace of
T|K to be zero.
However, K is the whole of l’ and it is well known that the spectrum

of the left shift on l2 is the whole of the unit circle {03BB : JÂJ ~ 1}, see [14]
page 266.

If there is to be any relation between trace and spectrum, and if
addition formulae for trace, (such as a) at the beginning of this section),
are to be valid in any sense, it does not seem reasonable that operators
with such a large non-zero spectrum should be ignored. Ideas such as this
are behind Definition 4.3 and Definitions 8.1 and 8.2, where operators
with zero spectrum, that is quasi-nilpotent operators, are defined to
have zero trace.

As described in the introduction, instead of picking out the part of the
space E on which T is nilpotent, we pick out the nilpotent part of T.
We do this by considering Riesz operators.

3. Riesz operators

In this section we consider a bounded operator T on a complex Banach
space E whose spectrum is denoted by Q(T).

DEFINITION 3.1. 03BB E 03C3(T) is a Riesz point for T if E is the direct sum

where

i) N(03BB) is finite dimensional,
ii) F(03BB) is closed,
iii) TN(03BB) c N(03BB) and TF(03BB) c F(03BB),
iv) A-Tis nilpotent on N(03BB),

and

v) À-T is a homeomorphism of F(À).
DEFINITION 3.2. T is called a Riesz operator if every non-zero point

of its spectrum is a Riesz point.
A compact operator is therefore a Riesz operator and the spectrum of

a Riesz operator is like that of a compact operator: the non zero part
of the spectrum consists of an, at most countable, number of eigenvalues
whose only accumulation point is zero.

Riesz operators were introduced by Ruston [11] in his work on
Fredholm equations in Banach space. Ruston [12] showed that Riesz
operators were the largest class of operators to which his Fredholm
determinant theory could be applied. Ruston also showed that the Riesz
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operators coincided with the class of asymptotically quasi-compact
operators :

DEFINITION 3.3. K is quasi-compact if Kn is compact for some n.
K is asymptotically quasi-compact if

Another proof that the asymptotically quasi-compact operators are
the Riesz operators is outlined in the exercises on page 323 in Dieudonné

[2]. Certainly, therefore, quasi-compact operators are Riesz operators
and such operators occur in potential theory. (See Yosida [17)
Chapter X.)

DEFINITION 3.4. An element x in a Banach algebra is said to be quasi-
nilpotent if limn~~ ||xn||1/n = 0.

Clearly nilpotent éléments are quasi-nilpotent.
If B(E) denotes the algebra of bounded operators on our Banach

space E andJf(E) denotes the closed ideal of compact operators write ~
for the quotient map ~ : B(E) ~ B(E)/K(E). We then observe im-
mediately :

LEMMA 3.5. T ~ B(E) is a Riesz operator if and only if ~(T) is quasi-
nilpotent in B(E)/K(E).
The study of Riesz operators was taken up in the work of Caradus [1 ]

and West [15], [16].
West [16] in particular obtains useful results on the decomposition of

Riesz operators and we quote some of these now:

DEFINITION 3.6. If K is a Riesz operator on a Banach space E, K is
said to be fully decomposable if K = C + Q where C is a compact opera-
tor, Q is quasi-nilpotent and CQ = QC = 0.
Kis said to be decomposable if we just know it can be written: K= C+ Q.

We call this a ’West decomposition’ of K.
Suppose the non-zero points of the spectrum of K are arranged in a

sequence {03BBi}, so that 03BBi ~ 0 as n - oo if the spectrum is infinite. Write
Pi for the spectral projection associated with 03BBi, so that in the notation
of 3.1 the range of Pi is N(03BBi). West then shows that K is fully decom-
posable if 03A3i=1~ iKPi is convergent in the uniform topology for some
arrangement of the Ai. This is because if Cn = L7 = 1 KP and Qn = K- Cn
then Cn Qn = Qn Cn = 0 and by hypothesis Cn ~ C = 03A3i=1~ KPi, which
is therefore the limit of the finite dimensional operators en, and so is
compact. In this situation West also proves:

THEOREM 3.7. Suppose K = C + Q is a fully decomposable Riesz
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operator and suppose f(z) is any single valued function analytic on a
neighbourhood of a(K) satisfying f(O) = 0. Then f(K) is a fully decom-
posable Riesz operator and

This result is true because of the strong disjointness of C and Q.
However, the main achievement of West’s paper is to show that if K

is any Riesz operator on a Hilbert space H then K is decomposable.
West’s method uses a super-diagonalization process to represent the
Riesz operator K as

Here the ej are an orthonormal set, (y, ej~ = 0 for j - = 1,2, ... ,
and Kej = 03B1jej+fj-1, where fj-1 is in the subspace spanned by
[e1 ··· ej-1]. It is easily seen that each a j is in 03C3(K), and if 03BB is a non-
zero point of 03C3(K) the diagonal multiplicity of À is the number of times 03BB

occurs in the sequence {03B1j}. Finite dimensional arguments then show
that the diagonal multiplicity of 03BB is equal to its algebraic multiplicity as
an eigenvalue of K - that is the dimension of N(03BB).
The operator C is defined to be

C is the limit in the uniform norm of the finite dimensional operators
en = ¿j= 1 rx j (x, ej~ej and so C is compact.

If Q is defined to be

so that Qx = 03A3j~x,ej~fj-1+Ky, it can be shown that Q is quasi-
nilpotent. Thus the decomposition gives an analogue of Fitting’s Lemma:
on any space spanned by finitely many of the {ej} K is a homeomorphism,
and on the complement of the closure of the space spanned by all the
{ej} it is quasi-nilpotent.

Details of the above work can be found in West [16] and the result
can be summarized in

THEOREM 3.8. If K is a Riesz operator on a Hilbert space H then
K = C+ Q where C is a compact operator and Q is quasi-nilpotent.
Furthermore, C is normal, 0’( C) = a(K) and the non-zero eigenvalues of
C and K have the same algebraic multiplicities.
The eigenvalues of C and their diagonal multiplicity in the above

decomposition, that is the sequence {03B1j}, is therefore uniquely deter-
mined up to re-arrangement.
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4. Riesz trace class operators

We first recall the definition that an arbitrary bounded operator A
on a Hilbert space H be in the usual trace class. For any bounded oper-
ator A the operator A*A is positive definite and so has a positive square
root

DEFINITION 4.1. The operator A is said to be in the trace class of

operators on H if for any orthonormal basis {~i} of H the series

03A3i=1~ ~B~i, ~i~ is absolutely convergent, where B = (A* A)t.
It is easily checked (see [7]) that this sum is independent of the ortho-

normal basis {~i}, and if A is of trace class then the sum 03A3i=1~ ~A~i, ~i~
is absolute convergent and independent of the basis. As in the finite
dimensional situation we state:

DEFINITION 4.2. If A is of trace class then the trace of A is

A result of Lidskii [8] shows that Tr (A) = 03A3i=1~ 03BCi, where {03BCi} is a
listing of the eigenvalues of A, repeated according to multiplicity.
Furthermore, 03A3i=1~ 1 Jli is absolutely convergent.

If A has finite dimensional range and, as above, B = (A* A)t then we
define a norm 11 AI 11 = tr (B).
The trace class operators are the closure of the finite dimensional

operators in this norm. For a full discussion of operators of trace class
see [7] or [13].
The object of this paper is to define a notion of trace for a wider class of

operators, including the nilpotent ones. The trace of a finite dimensional
nilpotent operator is zero: such an operator has no non-zero eigenvalues.
More generally, the only point in the spectrum of a quasi-nilpotent
operator is zero and in Dunford and Schwartz [3 ] it is shown that if a
quasi-nilpotent operator N is of trace class then Tr (N) = 0. Thus
motivated we state:

DEFINITION 4.3. If N is a quasi-nilpotent operator on a Hilbert space H,
that is limn=~~Nn~1/n = 0, then, whether N is of trace class or not,
we define the trace of N to be Tr (N) = 0.

REMARKS 4.4. There are, however, some problems with definition 4.3.
For example even if Q, and Q2 are quasi-nilpotent we do not, in general,
know that Q1+Q2 is quasi-nilpotent. Also, if Q is quasi-nilpotent and A
is any bounded operator, then it is not necessarily true that AQ is quasi-
nilpotent. However, we do have:
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LEMMA 4.5. If r(B) = sup03BB~03C3(B)|03BB| = limn~~~Bn~1/n denotes the spec-
tral radius of a bounded operator B on H then if A and B commute

PROOF. See [3].
Therefore, if 61 and Q2 are quasi-nilpotent and Q1 Q2 = Q2 Q1

then Q1+Q2 is quasi-nilpotent so

Similarly, if Q is quasi-nilpotent and A commutes with Q

Continuing this line of thought we give

DEFINITION 4.6. Suppose K is a Riesz operator on a Hilbert space H,
so that by theorem 3.8, K = C+ Q is a West decomposition of K,
where C is compact and Q is quasi-nilpotent. If C in the above decom-
position is of trace class then we say Kis of Riesz trace class and we define

REMARKS 4.7. This definition is independent of the decomposition of
K into C + Q because

i) 03C3(C) = u(K) and the non-zero eigenvalues of C and K have the
same algebraic multiplicities and

ii) we have observed that Tr (C)=03A303BCi, this sum being absolutely
convergent, where {03BCi} is a listing of the eigenvalues of C, repeated
according to multiplicity. Thus we have

PROPOSITION 4.8. If K is an operator of Riesz trace class then

Tr (K) = 03A3i=1~ 03BCi, where {03BCi} is a listing of the eigenvalues of K,
repeated according to multiplicity.

PROPOSITION 4.9. Suppose K is a bounded operator on a Hilbert

space H such that the non-zero part of a(K) consists only of isolated
eigenvalues each of finite algebraic multiplicity, and suppose if {03BCi} is a

listing of the non-zero eigenvalues, repeated according to multiplicity, that
we have ¿f= 1|03BCi|  ~.
Then

a) K is Riesz operator,
b) in the West decomposition of K as C + Q, C is a trace class operator,
c) trace K is defined and Tr (K) = Tr (C) = 03A3 03BCi.

That is, K is of Riesz trace class.
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PROOF: a) The hypothesis implies that any non-zero eigenvalue 03BB e Q(K)
occurs in the listing {03BCi} only finitely many times. Thus the spectral
projection P(03BB; K) corresponding to Â has finite dimensional range

N(03BB; K), of dimension equal to the number of times 03BB occurs in the

{03BCi}. N(À; K) thus has a closed complement F(À; K) and À- K is nilpotent
on N(03BB; K) and a homeomorphism on F(03BB; K). Thus 03BB is a Riesz point
and K is a Riesz operator.

b) As a Riesz operator on H by Theorem 3.8. K has a West decom-
position K = C+ Q where, for any x e H,

the ej are an orthonormal set and ~y,ej~ = 0, and: Kx = Cx + Qx
where, in the present situation,

Suppose the orthonormal set {ej} is extended by the set {e’j} so that
{ej}~{e’j} is an orthonormal basis for H. Then clearly Cel = 0 for all j.
For this orthonormal basis therefore: LJ=l1ICejll = 03A3j=1~|03BCj|  oo, so

(see Theorem 8 of Chapter I, § 2 of [7])
C is of trace class.

c) Furthermore, Tr (K) = Tr (C) = 03A3i=1~ 03BCi
REMARKS 4.10. We have, therefore, defined the trace of any operator

on H, the sum of whose eigenvalues, repeated according to multiplicity
is absolutely convergent. In view of the finite dimensional situation,
where the trace of a matrix is the sum of its eigenvalues, our definition
seems quite satisfactory.

EXAMPLE 4.11. We give an example to show that we have defined the
trace of a larger class of operators and that the trace is not now related
to sums of basis elements.
H r- l’ and C and Q are defined on l’ by

so that C is compact and of trace class: Tr (C) = E l/n2. Q2 = 0 and
so Q is certainly quasi-nilpotent.
We put K = C + Q so that K is a Riesz operator and Tr (K) = Tr (C).

However, if we take the usual basis ~i = (03B4in) for 12 then the series
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03A3 (K* KCPi, CPi) diverges. Thus K* K is not of trace class, so certainly
(K* K) 1 2 is not of trace class and, therefore, (see [13 ]) Kis not of trace class.
The trace of a Riesz trace class operator K is, though, independent of

the basis of the space H, in fact:

LEMMA 4.12. If B is a bounded map on H with a bounded inverse, then

PROOF. If K = C+ Q is a decomposition of K then

and if Q is quasi-nilpotent so is

Therefore Tr (BKB-1) = Tr(BCB-1) = Tr (C), by the theorem for
trace class operators.

LEMMA 4.13. i) If K is of Riesz trace class and a is any scalar then K is
of Riesz trace class and

ii) If K is of Riesz trace class and K* is its adjoint then K* is of Riesz
trace class and

PROOF. i) Suppose K = C+ Q is a decomposition of K. Then
oeK = aC+ aQ. However, Q quasi-nilpotent implies aQ quasi-nilpotent so

ii) Similarly, K* = C* + Q* and Q quasi-nilpotent implies Q* is,
so Tr (K*) = Tr (C*) = Tr (C).
LEMMA 4.14. i) If K2, K1 are Riesz trace class operators on H and

Ki K2 - K2 Ki then K1 + K2 is a Riesz trace class operator and

ii) If K is a Riesz trace class operator and A is a bounded operator such
that KA = AK then AK and KA are of Riesz trace class and Tr (KA) =
Tr (AK).

PROOF. i) Suppose
and

Then the hypothesis ensures that
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so by Lemma 4.5, Q1 + Q2 is quasi-nilpotent. Thus (Ci + C2)+ (Q1 + Q2)
is a decomposition for Kt + K2.

ii) If K = C + Q then AK = AC+ AQ and the hypothesis ensures that
AQ is quasi-nilpotent, so

5. A topological ’fiv’ lemma

DEFINITION 5.1. If T is a bounded operator on a complex Banach
space X then the complex number is said to be in the resolvent set
of T, À e p(T), if

i) 03BB-T has a (left) inverse R (03BB; T) = (03BB-T)-1,
ii) the range of À-T, Bl(À-T), is dense in X, and
iii) R(03BB; T) is continuous.
Under these conditions R(À - T) can be extended from B(03BB-T) to a

bounded operator on the whole of X, and R(Â; T) is then a left and right
inverse for 03BB-T.

The complement of p(T) is the spectrum of T, Q(T).
Suppose now that M is a closed subspace of X invariant under T.

Write 71 M for the restriction of T to M and TM for the operator induced
by T on XIM.
We now quote some results from West [16]:

LEMMA 5.2. Suppose T has a connected resolvent set and M is a closed
subspace invariant under T, then M is invariant under R(À; T) for all
À- E 03C1(T).
West uses this result to prove the following lemmas:

LEMMA 5.3. K is a Riesz operator on the Banach space X and M is
a closed subspace invariant under K. Then:

i) p(K) ~ 03C1(K|M) and R(z; KIM) = R(z, K)IM for z e p(K).
ii) p(K) c p(KM) and R(z; K)M = R(z; KM) for z E p(K).
LEMMA 5.4. Under the same hypotheses:

i) K|M is a Riesz operator on M;
ii) KM is a Riesz operator on XIM.
Further, if for a non-zero Â e a(K) we write P(À; K) for the correspond-

ing spectral projection, N(À; K) for the range of P(Â; K) and F(Â; K)
for its null space, then we have:
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COROLLARY 5.5. i) If 03BB is a non-zero point of 03C3(K|M) then

ii) If Il is a non-zero point of 6(KM) then

What we wish to prove now are partial converses of these results.
Consider the following

HYPOTHESIS 5.6. Suppose, as above, that X is a Banach space, T is a
bounded linear operator on X and M is a closed subspace of X invariant
under T. Thus we have an endomorphism of the exact sequence

LEMMA 5.7. Suppose hypotheses 5.6 are satisfied and suppose À is a

complex number such that Â - Ti M is a monomorphism on M and À-TM
is a monomorphism on X/M. Then À-T has a left inverse on X.

PROOF. The proof, by diagram chasing, is just part of the algebraic
’five’ lemma (see [10]).
The following two results, Lemma 5.8 and Lemma 5.9, are special

cases of results concerning diagrams of topological groups to be found
in [4]. However, we include them here in their Banach space setting.

LEMMA 5.8. Suppose hypotheses 5.6 are satisfied and suppose À is a

complex number such that

and

then

PROOF. Consider any x E X and any 8 &#x3E; 0.

In X/M there is a coset b + M such that

in the X/M norm.
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That is

or

Certainly, therefore, there is an m E M such that

Because b((03BB-T)|M) is dense in M there is an a e M such that

Thus

Therefore, B(03BB-T) is dense in X.

LEMMA 5.9. Suppose the hypotheses 5.6 are satisfied and suppose that
À is a complex number such that:

a) (03BB-T)-1 exists (but is not necessarily continuous) on B(03BB-T);
b) B(03BB-T)~ M = (À-T)M is dense in M and (03BB-T)-1|B(03BB-T)~ M

is continuous, (so (03BB-T)-1 has a continuous extension to all M);
c) M is also invariant under (03BB-T)-1, and
d) the induced operator (À-T);l is continuous on B((03BB-T)M) and

&#x26;i«À-T)M) is dense in XIM.
Then (03BB-T)-1 is continuous on B(03BB-T), (which is dense in X by
Lemma 5.8).

PROOF. To check the continuity of (03BB-T)-1 it is sufficient to do so

at the origin, and because we are discussing metric spaces it is sufficient
to investigate sequences. Suppose, therefore, that {xn} c B(03BB-T) is

any sequence of points such that Xn --+ 0 in X. Write Zn for the coset
xn+M in XIM. Then certainly z. ~ 0 E XIM in the XIM norm, so as
(À-T);l is continuous

Consider now the sequence Bm = {x ~ X : ~x~  llml, m = 1,2... ,
of open balls, centre the origin in X. As the quotient map 03C0 from X
to X/M is open these Bm project onto open neighbourhoods of the origin
in X/M.

Therefore, for each m the sequence {(03BB-T)M-1 Zn} lies in n(Bm)
from some point onwards. As 71 is surjective we can therefore choose a
sequence {yn} in X such that yn ~ 0 in X and
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Now certainly (03BB-T) is continuous on X and so

But also, by commutativity,

So for each n : xn - wn ~ M. Furthermore, xn - wn ~ 0 in M, so as

(03BB-T)-1|M is continuous

That is (À-T)-lXn-(À-T)-lWn --+ 0 or (03BB-T)-1xn-yn ~ 0. How-
ever, we know Yn --+ 0 so (03BB-T)-1 xn ~ 0 as required. Therefore,
(À-T)-l is continuous on X.

REMARK. Dr. T. West has given a shorter proof of 5.9, using the
closed graph theorem. However, our proof is valid in incomplete spaces.
Assuming now that X is a Hilbert space, so that we may use Prop-

osition 4.9, relating the trace and eigenvalues, the above three lemmas give
us the following general result:

THEOREM 5.10. Suppose the hypotheses 5.6 are satisfied then

Furthermore, if T has a connected resolvent set, so that lemmas 5.3
and 5.4 apply, we have that

so in this case p(T) = 03C1(T|M)~ 03C1(TM).

Specializing to Riesz operators we have:

COROLLARY 5.11. If K is an operator on X satisfying the hypotheses 5.6,
and if KIM and KM are Riesz operators, then K is a Riesz operator on X
and, as above, a(K) = 03C3(K|M)~ 03C3(KM).

PROOF. Taking complements in the first statement of Theorem 5.10,
we have a(K) c u(KIM)u o(KM) so K has a connected resolvent set.

Therefore p(K) = p(KIM)()p(KM) or, equivalently,

Finite dimensional arguments then show that for any non-zero

03BB e 03C3(K) 03BB is an eigenvalue of K, and its multiplicity is equal to the sum
of its multiplicities as an eigenvalue of KIM and KM. (Counting its
multiplicity zero if it is not in a(KIM) or 6(KM).)
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We recall that we already know from Lemma 5.4 that if K is a Riesz
operator then K|M and KM are Riesz operators, and we now see in this
situation that

with the eigenvalues on each side counted according to their multiplicity.

THEOREM 5.12. If K is a Riesz trace class operator, then K|M and KM
are Riesz trace class.

Conversely, if KIM and KM are Riesz trace class then K is.
In the above situation we have

PROOF. Suppose {03BCi}, {03BC’i}, {03BC’’i} are listings of the non-zero eigenvalues
of K, K|M and KM respectively, with repetitions according to multiplicity.
Then {03BC’i} u {03BC’’i} = {03BCi}, and if {03BBi} is a listing of {03BC’i} u {03BC’’i} then

{03BBi} will be just a re-arrangement of {03BCi}.
However, all the sums are absolutely convergent so

That is

The following is just a re-phrasing of the above result:

COROLLARY 5.13. Suppose K is an endomorphism of the exact sequence
of Hilbert spaces

Suppose either

a) K is of Riesz trace class on E or
b) KIE’ and KE" are of Riesz trace class.
Then all three operators are of trace class and

6. Lefschetz formulae

Suppose E = (Ei, di)i~Z is a cochain complex of Hilbert spaces
(di+1 03BF di = 0 for all i). Put

and H(Ei) = Zi/Bi, the ith cohomology of the complex.
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Suppose that K = (KI) i E Z is an endomorphism of the complex,
i.e. Ki is an endomorphism of Ei and the diagram commutes:

Clearly (Kr) is an endomorphism of E too.
The following formula includes the algebraic part of the Lefschetz

theorem, using our extended notion of trace:

THEOREM 6.1. Suppose K = (Ki) is an endomorphism of the complex
E = (Ei; di) i E Z.

Assume

a) Ki is of Riesz trace class on Eh
b) Tr (KilEI) and Tr (KiIBi) are non-zero for only finitely many i E Z.

Then in the following expression both sides are defined and equal:

DEFINITION 6.2. The common value is called the Lefschetz number

PROOF. Hypothesis a) ensures that

are defined and that Ki is an endomorphism of the exact sequences:

Corollary 5.13 ensures that:

and

The formula follows by taking alternating sums.

THEOREM 6.3. Suppose

is an exact sequence of Hilbert spaces and suppose K = (.Ki) is an endo-
morphism of the sequence, for which each Ki is of Riesz trace class, so that
the traces
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are defined. Then from the sequences:

we obtain:

If suitable finiteness conditions hold, for example if Tr (Kh (XiE;),
Tr (Ki’ f3iEi) and Tr (Kh 03B3i Ei") are all non-zero for only finitely many
i E Z, then by taking alternating sums we obtain

7. Determinants

THEOREM 7.1. Suppose T is a Riesz operator on a Hilbert space H
and supposef(À) is a function which is analytic on some open set containing
O’(T). If F is a positively oriented contour containing u(T) and if f(T) is
defined, as usual, by the operational calculus

thenf(T) is a Riesz operator whenever f(0) = 0.

PROOF. See Caradus [1] or West [15].

COROLLARY 7.2. If T is of Riesz trace class then f(T) is of Riesz trace
class.

PROOF. Suppose {03BBi} is a listing of the eigenvalues of T repeated
according to multiplicity. Then

By the spectral mapping theorem:

If po is a non-zero eigenvalue of f(T) write Po for the spectral projection
associated with po. If P(03BBk; T) is the spectral projection associated with
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T and 03BBk ~ 0, then we know P(03BBk ; T) has finite dimensional range, of
dimension equal to the multiplicity of Àk in {03BBi}.

However, by the operational calculus

where

So the multiplicity of po is the sum of the multiplicities of Ak E 03C3(T)
such that f(03BBk) = go. Thus, if {03BCi} is a listing of the eigenvalues of f(T), 
repeated according to multiplicity, then this listing is the same, up to re-
arrangement, as the listing {f(03BBi)} of f acting on the eigenvalues of T.
Now f(03BB) is analytic on a neighbourhood of Q(T) and f(0) = 0, so
f(03BB) = 03BB~(03BB), where cp is analytic in the same region. Thus ~(03BB) is bounded
in a bounded neighbourhood of the origin, and certainly there is an M
such that

Therefore

So f(T) is of Riesz trace class and, in fact,

DEFINITION 7.3. If -z-1 ~ 6(T) the function f(03BB) = log (1 +z03BB) satis-
fies the above conditions.
Thus det (1 +zT) = exp. (tr. log (1 +zT)) is defined if T is of Riesz

trace class and -z-1 is in p(T). Approximation arguments using the
definition of the integral show it depends continuously on T and is an
analytic function of z for -z-1 E 03C1(T).
The motivation for the above definition of determinant is the following

observation in finite dimensions: 
If T is an endomorphism of a finite dimensional space over the complex

numbers then:

where the xj are the eigenvalues of T. Thus

and as 03BE(0) = 1, working formally we have:
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that i s :

We are indebted to Professor Eells for the following remarks: Suppose
as in Theorem 6.1. K = (Ki) is an endomorphism of a complex of
Hilbert spaces and suppose each Ki is of Riesz trace class. Then Tr Kp
is defined for all p, as is

Working completely formally, under the finiteness hypothesis of

Theorem 6.1, so that only finitely many 03BEi(z) are non-zero, we have for
each 1 E Z:

so

Therefore, for such a complex and such an endomorphism (Ki) by
Riesz trace class operators one can introduce a zeta function

which looks similar to the zeta function of A. Weil’s conjectures.
(See the Proceedings of the International Congress of Mathematics,
Amsterdam, (1954), or the paper by J. L. Kelley and E. H. Spanier,
Euler Characteristics, Pacific Jour. Math. 26 (1968), 317-339.

8. Extensions and concluding remarks

Let us return to our discussion of a Riesz trace class operator K in a
Hilbert space H. Such an operator had a West decomposition:

where

and

Here the 03B1j are the non-zero eigenvalues of K repeated according to
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multiplicity, x = Lj(x, ej~ej+y and fj-1 is in the subspace spanned by
e1 ··· ej-1. Write M for the closed subspace spanned by all the ej,
j = 1, 2... and write N for its orthogonal complement, so that

H = M E9 N, and in the above decomposition of a vector x E H,

03A3j~x, ej~ej E M and y E N.
Because by definition

we see that KM ~ M. However, even restricted to MK is not in general
of trace class, in the usual sense of Schatten. For x E M, of course,

and Q|M is certainly quasi-nilpotent.
Because M is invariant under K there is an induced operator KM

on H|M ~ N. By Lemma 5.4 KM is a Riesz operator and by Lemma 5.3
(ii) O’(KM) c 6(K). Being a Riesz operator U(KM) consists of a countable
collection of non-zero eigenvalues whose only accumulation point is zero.
However, a non-zero eigenvalue of KM would be a non-zero eigenvalue
of K and the range of the spectral projection corresponding to 03BB is

included, by construction, in M. Thus O’(KM) = {0} so KM is quasi-
nilpotent.
The West decomposition, therefore, gives us a subspace M such that

on H/M KM is quasi-nilpotent, and an orthogonal basis {ej} of M such
that, because of the super-diagonalisation procedure, KIM is very clearly
the sum of a trace class operator and a quasi-nilpotent operator.

Since for every Riesz trace class operator in a Hilbert space there is a

subspace M satisfying the above conditions, the situation of the previous
sentence could be taken as a definition of Riesz trace class operators.
However, a less general but simpler definition is:

DEFINITION 8.1. A bounded linear operator K on a Hilbert space H
is said to be of ’generalized trace class’ if there is a subspace M of H
invariant under K such that: a) K|M is of trace class in the usual sense,
(Definition 4.1), and b) the induced operator K’M on HIM is quasi-
nilpotent.
The trace of K is then defined to be the trace of K|M.
Note that such a K is certainly of Riesz trace class, and to obtain the

West decomposition one need only superdiagonalize KIM.
If an operator is of trace class or Riesz trace class then so is its adjoint,

so considering adjoints and annihilator subspaces we see Definition 8.1
is equivalent to:
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DEFINITION 8.2. A bounded linear operator K is of generalized trace
class if there is an invariant subspace N of H such that

a) K|N is quasi-nilpotent, and

b) the induced operator KN on H/N is of trace class in the usual sense.

The trace of K is then defined to be the trace of KN.
Definition 8.2 may be thought preferable to 8.1 because it is the nil-

potent part of the operator that is factored out.

REMARK 8.3. We mention here that following the above lines of
development we could study operators in Hilbert space whose non-zero
spectrum consisted of a sequence of eigenvalues belonging to lP for any p,
0  p  oo. Riesz operators in general have a spectrum belonging to co
and our Riesz trace class corresponds to the case p = 1. In particular,
for p = 2 we should have a notion of Riesz Hilbert-Schmidt operators.
The West decomposition would give us such an operator expressed as the
sum of a quasi-nilpotent operator and a compact operator with eigen-
values in IP. Definition 8.2 could be generalized in a similar manner.
These ideas will be dealt with in a future publication.

Using definition 8.2 it is possible to develop a little more detail for the
theory of the determinant det(1 +zT) (see Definition 7.3), for a generalized
trace class operator T. Because having factored out the nilpotent part,
we are considering a trace class operator on H|N ~ N~ some of the
determinant theory using exterior products can be introduced, as in the
work of Grothendieck [6].
We remark that our definition of determinant is more closely related

to the algebra, of our more specialized situation, than the definition of
Ruston [11 ], where an almost arbitrary entire function, having zeros of
the appropriate order at the eigenvalues of T, plays the role of the de-
terminant of (1 +zT).

Finally, Definition 8.2 could be given for Banach spaces, and it might
be thought that some of the preceeding theory could be developed in this
more general setting. However, this does not seem too promising because,
as is discussed by Grothendieck in [5], § 5 no. 1, page 170, unless one
knows that the Banach space under consideration satisfies the ’condition

d’approximation’ one does not know, for example, that if T is a trace class
operator such that T2 - 0 then Tr (T) = 0. We should not feel justified,
therefore, in defining the trace of a quasi-nilpotent operator to be zero,
as is implicitly done in Definition 8.2.

Also, not having in the Banach space situation the result that the
trace is the sum of the eigenvalues, difficulties occur in proving the ana-
logue of Theorem 5.12.
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