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Representations of infinite weak product groups
by
Donald Bures

In this paper we consider certain unitary representations of
groups G of the form [],.;G;. Here I is an arbitrary indexing set,
and, for each i eI, G, is a group with identity e, - [ ];.;G; denotes
the subgroup of the group [];.;G; consisting of all (g;);.; with
g; = e, for all but a finite number of ¢ € I. Suppose, for each ¢ € I,
that U, : g; — U,(g;) is a unitary representation of G; on the W*-
algebra &7;: by this we mean that g, — U,(g;) is a homomorphism
of G, into the group of unitary operators of &; and that o/, is
generated by (is the smallest W*-subalgebra of &/ containing)

{Uig:) : 8: € G}
Suppose that, for each i el, u, is a normal state of &/, with
#;(1) = 1. Define the unitary representation U = ®,(U;, u;)
of G on the W*-algebra & = &, .;(;, p;) by:

(0.1) U((g:)) = ®yer Ui(g;) for all (g;) e G.

(For the definition and properties of ® (%, ;), see §1, below).

We remark that, if the G, are topological groups, and if G is
provided with the topology induced by the product topology on
TIG;, then ®,;(U;, p,) is weakly continuous whenever each U,
is weakly continuous.

If each U, is a factor representation (i.e. if &7, is a factor), then
U is a factor representation [1, p.178]. If each U, is faithful (i.e.
is an isomorphism) then U is faithful.

We say that a unitary representation U of G on &/ is equivalent
(quasi-equivalent is the more usual term) to a unitary representa-
tion V of G on & when there exists a *-isomorphism @ of &/ onto
Z# such that:

D (U(g)) = V(g) for all gegG.

It is easy to see that if ®(U,, #;) and ® (U,, v;) are equivalent
then
lim {|p;—»;[| =0
iel
7
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(see theorem 2.8, below). A sufficient condition for the equivalence
of ® (Uy, ) and @ (U, »y) is

(0.2) 3 ({7 < co.

Here d is a metric on the set of normal states of a W*-algebra %:
d is defined essentially by

d(y, v) = inf {|lz—yl|),

the infimum being taken over all vectors 2 and y inducing 4 and
» relative to a representation of # as a von Neumann algebra (see
[2]). Using the genralized Kakutani product theorem of [2], we
easily prove that, whenever each &7, is semi-finite, (0,2) is necessary
and sufficient for the equivalence of ® (U, u;) and & (U, »;) (see
theorem 2.2, below).

We can construct other unitary representations of G = [] G,
by using the above tensor product construction twice (see § 3,
below). Whether or not two such double product representations
are equivalent can be determined, under certain conditions, by the
results of § 2 mentioned above. It is not difficult to see (theorem
8.6 and corollary 8.10) that, provided an infinite number of the
&’s are non-trivial, roughly speaking almost all of these double
product representations are non-direct-product representations: we
call a representation U of G =]] G, on & non-direct-product if
there exists no non-zero normal state o of & such that

(0.3) o(U((2))) =TT «(U(g)) forall (g)eG

(Here each G, has been identified in the natural way with a sub-
group of G). (A normal state w satisfying (0.8) is called a product
state for U. That ® y, is a product state for ® (U,. ;) is clear).

All our results hold equally well for representations which are
not necessarily unitary.

Other authors have obtzined some of these results for representa-
tions of certain product groups arising in quantum field theory:
namely, the groups associated with representations of the canonical
commutation relations (e.g. [6]) and the anticommutation rela-
tions (e.g. [5]) for an infinite number of degrees of freedom.

1. Tensor products of W*-algebras

This section is a summary of definitions and results which we
need in the sequel. With the exception of lemma 1.2, which is
rather obvious, everything here is from [1], [2], [3] or [7].
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Suppose that (&;);.; is a family of W*-algebras. We call a W*-
algebra &/, together with a family («,);.; with each a, an isomor-
phism of &, into & (and «,(1) = 1), a product for («);.; when
the following conditions hold:

(1.1) a;(o7;) commutes with «;(2/;) for all ¢, j e I
with @ # .
(1.2) & is generated by {o;(Z,): 1 eI}

We say that two products (&, («;)) and (£, (8;)) for (&) are
product isomorphic if there exists an isomorphism @ of &7 onto #
such that @ o «; = g, for all ¢ e I. By a product state of (<, («;))
we mean a normal state » of & for which there exist states »; of &7,
such that:

(1.8) v(‘]_g a(4;)) = i]__; v;(A,) for all families (4,)

with each 4; e &/; and 4, = 1 for a.a. 1 €I (a.a. ¢ €I will mean
all but a finite number of i € I). We write v = ® », if (1.3) holds.
If a normal state » of &/ satisfies (1) = 1, then » is a product state
of (&, («;)) if and only if the following condition is satisfied
(see [8]):

(1.4) »(I1 B;) = II»(B,) for all families (B,)
iel iel

with each B; e a,(%;) and B, = 1 for a.a. ¢ € I. Condition (1.4)
means precisely that the family («,(%/;)) is independent with
respect to v,

Suppose that, for each ¢ €I, u; is a normal state of &; with
#(1) = 1. We call a product (&, (x;)) for (&7;) a (u;)-tensor
product for (o£,) if the following condition holds:

(1.5) For every family (v;) with each »;, a normal state of &/,
and v, = y, for a.a. ¢ € I, the product state @ »; exists on
(#, («;)). Furthermore if 4 € &+ and (® v;)(4) = 0 for
all such families (v;), then 4 = 0.

The fact that a (u,)-tensor product (&, («,)) exists and is unique
up to product isomorphism is proved in [3]. We write

A = Q (A5 i)
iel
and, if no confusion can arise, we let

Q4= I—; “i(Ai)

iel
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for every family (4,),.; with each 4, e &7;and 4;=1 for a.a. i€ I.
Suppose that &7, is a von Neumann algebra on the Hilbert space
H,, and that 2, € H, induces p,:

ni(4;) = (4;2;|x;) forall A, e ;.

Then the von Neumann algebra & = ®,.;(%;, x;) on the
Hilbert space ®,.; (H;, @;), together with the natural injections
a; of o, into &, forms a (u,;)-tensor product for (&;),.r (see [1],
(31, [7])-

The following lemma is proved in [2]. Part (I) is almost obvious
from the definitions; part (II)is the generalized Kakutani theorem
of [2].

LeEMMA 1.1. Suppose that (£ ;);c; is a family of W*-algebras and
that, for each tel, u; and v, are normal states of /; with
#:(1) = »,(1) = 1. Let the conditions (1.6), (1.7) and (1.8) be as
follows:

(1.6) %[d(ﬂi, v;)]? < 0.

1.7) R (;, p;) is product isomorphic to @ (H;, v;).
el iel

(1.8) R v, exists on Q (L, ;).
iel el

Then: (I). (1.6) implies (1.7) and (1.7) implies (1.8).
(IT). Provided each &, is semi-finite, the three conditions
are equivalent.

ProOF. See [2].

We now proceed to find a condition on d(u;, v;) which is implied
by (1.8) whether or not the &/, are semi-finite. First we need the
following lemma.

LEMMA 1.2. Suppose that w is a normal state of A = @ ;e r(H ;5 1)
and that w(1) = 1. For each i €I, define the normal state w; of &Z; by:

w;(4;) = w(a,(A4,)) forall iel.
Then:
lim d(w;, ;) = 0
el
In other words, given & > 0, there exists a finite subset F, of I
such that:
d(w;, p;) < e foralli e I—F,.

Proor. We may assume without loss of generality that each 7
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is a von Neumann algebra on H,, that 2; € H; induces y;, and that
o = Q (H;, ;). We may also assume that every normal state of
& is a vector state: for one of the &/; may be replaced by &7; @ €y
with €y the scalar operators on an infinite dimensional Hilbert
space; then the new & is isomorphic to [Q(&;, z;)] @ €y, for
which it is evident that every normal state is a vector state.
Proceeding under these assumptions, we let w be induced by
the vector z in H = ® (H;, #;). Select an orthonormal basis
(9M)re 4o for each H, with 0 € A(¢) and ¢? = z;. Define A to be

{(A(%)) e TT A(3) : A(¢) = 0 for a.a. i el}.

tel

For each 1= (A(%)) €4, let ¢* = ®,.; ¢}®. Then [1] (¢ )ac4 is
an orthonormal basis for H. Let

g = zcl(pk.

Given & > 0, there exists a finite subset A’ of A such that
||2' —2l| < g/2 if
23 = 2 CA (ph.
Aea’
Let F be

{i eI : A(¢) # 0 for some (A(¢)) € A'}.

Then F is finite, and, if o’ is the state of &/ induced by 2’ and
is defined by

wi(4;) = o' (x;(4,)) forall 4, e s,
then, by direct calculation:
w; = ||2||2p; for all i eI—F.
Thus, for all i e I—F:

d(w;, ps) < d(w;, w3)+d(w;, p1;)
= lle—=||+(1—]I2']])
=2|z—2|| < e

CoroLLARY 1.8. Under the assumptions of lemma 1.1 (but without
the assumption that each s/, is semi-finite), condition (1.8) implies
condition (1.9):

(1.9) lim d(u;, »;) = 0.
iel

LeEMMA 1.4. Suppose that & is a von Neumann algebra on H, and
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that states p and v of & with u(1), »(1) = 1 are induced by vectors z
and y in H. Then:
Hu—|| = 2llz—yll.

Proor. By direct calculation.
CoRrOLLARY 1.5. For all normal states u and v of a W*-algebra of

with p(1), »(1) < 1,
lla—s|| < 2d(s, »).

RemARK. The inequality
[d(s, »)]* < |lu—]

under the same conditions as those of corollary 1.5 is proved in [2].
These inequalities together show that, on the set of normal states
pof of with u(1) <1, d and || || induce the same topology.

2. Tensor-product representations

Suppose that G = [[;.; G; and that U, is a unitary representa-
tion of G; on &, for each i el. If (<, («;)) is a product for (,),.s,
then we may define a unitary representation U of G on & by:

(2.1) U((g) = E ,(Ui(g:)) forall (g,) €G.

We call U the (#, («;)) product of (U,). If & = @, (H;, u;) and
a; is the natural injection of &, into &, the (&, (;)) product U
is the tensor-product representation ®,.; (U,, ;) defined by (0.1).
We obtain immediately the following general lemma.

LEmMMA 2.1. Suppose that (<, (;)) and (#, (B;)) are products for
(;)ier> and suppose that U (respectively V') is the (, («;)) (respec-
tively (%, (B.))) product of (U,). Then U is equivalentto V if and only
if the product (£, («,)) is product isomorphic to the product (2, (B;)).

Proor. If @ is an isomorphism of &7 onto # with ® o «; = f§;
for each ¢ € I, then for all g = (g,) € G:

D(U(g)) = O(IT =:(Ui(g))) =TI 8:(Ui(g:)) = V(g)

That proves the sufficiency of the condition.
Suppose, on the other hand, that U is equivalent to ¥V, so that
there exists an isomorphism @ of & onto # such that

D(U(g)) =V (g) forall geG.
In particular, then, for each 7 e I:
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(2.2) D (x;(U.(g))) = B:(Uilg,)) forall g, eG,.

Now {U,(g,) : g € G;} generates &;. Hence, by the linearity and
ultraweak continuity of @ o «, and §;, we can conclude from (2.2)
that, for each ¢ e I:

D(x;(A;)) = Bi(A,) forall 4,e o,.

That proves that @ is a product isomorphism of (&, («,)) onto
(g’ (ﬂi))'

THEOREM 2.2. Suppose that each ;s semi-finite. Then &, ;
(Uy, u;) is equivalent to @,y (U,, v;) if and only if

(2.3) EI [d(ps, v:)]? < 0.

Proor. Use lemma 2.1 and lemma 1.1. (II).

THEOREM 2.8. With no conditions on the <Z,, (2.8) is a sufficient
condition for .y (U;yu;) and Q1 (Uy,v;) to be equivalent, and
(2.4) s a necessary condition:

(2.4) lim d(u,, v,) =0
iel
Proor. Use lemmas 2.1, 1.1. (I) and 1.8.

3. Non-direct-product representations

Suppose, as in § 2, that G =[],.; G;, and that, for each i €1,
U, is a unitary representation of G; on &, and g, is a normal state
of o/, with u,(1) = 1. Let us suppose, further, that (I(k)).x is a
disjoint family of subsets of I whose union is I. For each k e K,
" let % be ®era (5 1;) with B, the natural injection of &, into
%#,. Suppose that v, is a normal state of %, with »,(1) = 1. Let
A be Qrex (Pr, v:) with y; the natural injection of &, into .
Let «; = y, 0 g, for all i e I(k) and for all k € K. Then (&, («;))
is a product for (#/;);.s. Let U be the (&, («;)) product of (U,);cs,
in the notation of § 2. Then U is a unitary representation of G on
. Because G =[], G, is naturally isomorphic to TTicx ITicr0
G;, we may identify U with the double tensor-product represen-
tation

Q[ & (Uy, ), vl

keK iel(k)
It is evident that the results of § 2 will give necessary and suffi-
cient conditions for two such representations defined by the same



14 Donald Bures [8]

partition (I(k))x.x to be equivalent. In particular, if each I(k) is
finite, and if each &, is semi-finite, a necessary and sufficient
condition for

Q( ® U v)
keK iel(k)
to be equivalent to
Q(® U, "'l'c)
keK iel(k)
is that
2 (A, %) <
keK

(theorem 2.2 and [4, I, § 6, proposition 14]). For two such double
tensor-product representations defined using different partitions
of I, a crude condition for non-equivalence can be obtained by
using lemma 1.2.

DerINITION 8.1. Suppose that U is a unitary representation of
G = J],c; G; on & and that, for each ¢ € I, U, is defined by

Ui(g:) = U(Ai(gi)) for all g, € G,,

where 4, is the natural injection of G, into G. Then by a product
state for U, we mean a non-zero normal state v of & such that

(3.1) »(U((g)) = Ev(U;(gi)) for all (g;) € G.

U will be called a direct-product (respectively non-direct-product)
representation of G = [] G, if the set of product states » is faithful
on o/ (respectively if 0 is the only normal state of & satisfying
(3.1)).

U will be called a tensor-product representation of G =[] G, if
U is equivalent to a representation of the form ®;.; (U;, ;).

ReMARK. Evidently a tensor-product representation is a direct-
product representation, but the converse fails (see the remark
following lemma 8.2).

LemMA 8.2. Under the assumptions of definition 8.1, let oZ; be the
W*-subalgebra of &/ generated by {U,(g,) : g; € G}, and let o, be the
tnclusion mapping of A, into . Then (, (x,)) is a product for
(#;) and U is the (L, (a;)) product of (U;). Furthermore, a normal
state v of o is a product state for U if and only if v is a product state
of (<, (x;)) and »(1) = 1.

Proor. The first assertian is obvious. A product state » of
(#, («;)) with »(1) =1 satisfies (1.4), and (8.1) follows immedi-
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ately. To prove the converse, suppose that » is a non-zero normal
state of & satisfying (8.1). Evidently »(1) = 1. Letting », be the
restriction of » to &7;, we can write (8.1) as follows:

(8.2) "’[E “i(Ui(gi))] = E ”i(Ui(gi)) for all (g;) e G.

Now {U,(g;) : 8: € G;} generates &,: therefore the linear span of
this group is ultraweakly dense in &/,. Since both sides of (3.2)
are linear and ultraweakly continuous in U,(g;), we obtain:

(3.8) »(TT «i(4,)) = T17:(4;) for all families (A4,)
iel tel

with each 4, ¢ &, and A, = 1 for a.a. s € I. (8.83) means that »
is a product state of («, («,)).

REMARK. Suppose that U is a factor representation. Then ([3]
and lemma 8.2), the existence of one non-zero product state
» = ® »; for U implies that U is equivalent to the tensor-product
representation ® (U,, ;). If, however, U is not a factor representa-
tion, then U may be a direct-product representation and fail to
be a tensor-product representation (see [3, example 7.8]). For
double tensor-product representations, however, this phenomenon
cannot occur (see lemma 8.7).

DEFINITION 8.3. Suppose that (4, (8;)) is a product for ().,
and that o is a normal state of # with w(1) = 1. Let Xp denote
the set of product states u of (%, (8;)) with #(1) = 1. Then define:

d(w, Zp) = inf {d(w, p) : p € Zp}

LEMMA 8.4. Assume the conditions of definition 8.8, and let
J = {1,2} Then
6[d(w, Zp)] = sup {|lo(E)o(F)—w(EF)| : E € (1),

F e By(o,) and ||E||, ||F|| =1}

Proor. For all E € 8,(#,) and F € ,(,) with || E||, ||F|| £ 1,
and for all g € 2p:
lo(EF)—o(E)o(F)| £ |o(EF)—p(EF)|+|u(E)u(F)—wo(E)o(F)|

= |lo—upl|+2llo—pl| = 8[lo—4|| = 6d(w, p).
The last inequality is by corollary 1.5.

REMARK. Clearly it would be easy to rephrase lemma 8.4 for
arbitrary indexing sets J.

LeEMMA 8.5. Let (4, (B;)) be a product for (,);.; and let » be a
normal state of #. Then d(w, Zp) = 0 implies w € Zp.
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Proor. d(w, Zp) = 0 means that o is in the norm closure of
Zp by corollary 1.5. Hence we need to show that Zp is norm closed.
For each family (4,);.x with each 4, € &7, and 4; =1 for a.a.
tekK,
v —>»(I] a(4,))— 11 ”(“i(Ai))

is evidently a complex-valued function on the set 2 of normal
states of %, continuous in the norm topology on 2. Since Zp is
that subset of X' consisting of those » on which all such functions
vanish (i.e. those » for which (1.4) holds), Zp is norm closed.

THEOREM 8.6. Let U be Qucx [Qicri (Ui s)s vi] with the
assumptions and notations of the first paragraph of § 8. Let Z;, denote
Zp for the product (By, (B;)) of (H:)iera (4-e- for @iz (45 )
with the natural injections). Then:

(I). U is a non-direct-product representation of [] G; whenever
the following condition fails:

(8.4) lim d(»,, %) = 0.
keK

(IX). Suppose that each %, is semi-finite. Then U is non-direct-
product representation whenever

(3.5) kg{ [d(ve, Z3)]* = c0.

Proor. We will show that the existence of a non-zero product
state o for U implies (8.4) and, whenever each %, is semi-finite,
contradicts (8.5).

Suppose then that  is a non-zero product state for U. Then
(lemma 8.2) w(1) = 1 and o is a product state of

(A, (@) : 0 = ®

iel
where w; = w o «;. Evidently o is a product state of (&, (%;)).
In fact, w = Qi.xw* where w* = ®, ;4 w; for the product
(B> (%)iera ), and certainly, then, w*eZ,. Now (&, (%)) is
the tensor product ®.x (%, v;) with the natural injections.
Hence, by lemma 1.3,
(8.6) lim d(v, @*) = 0.

keK

If each %, is semi-finite, lemma 1.1.(II) demonstrates the stronger
result:

(8.7) sz [d(v, 0F)]2 < 0.
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Recalling that w* e 2, we see that (8.6) implies (8.4) and that
(8.7) contradicts (8.5). That finishes the proof.

To identify the tensor-product representations U, the following
lemma is useful.

LeMMA 8.7. Suppose that o 158 Quer [Qicri (Fi> #:), v) and
the o, are as before. Suppose that a non-zero product state v = Q .y ;
exists for (o, («;)). Then (A, (x;)) is product isomorphic to
Rier (&, w;) with the natural injections.

Proor. We will need the following result [8, corollary 4.4 and
lemma 5.1]:

(*) Suppose that (&, («,)) is a (1;)-tensor product for (2,) and
that » = ®v, is a product state of (&, («;)). Then (&, (a,))
is a (»;)-tensor product for (&7,).

For each ke K, w* = y, 0 w is a product state ®;.zu) w; for
(Brs (Bi)ierw): Now & = @qerm (¥4 #;) and the f; are the
natural injections; therefore, by (*), #; may be identified with
iz (&3, w;) and the B; with the natural injections.

Similarly, since @ = Qg @* for (2, (y;)), & may be identified
with

® [ (#,; ), 0]
- keK iel
and the y, with the natural injections. By a standard associativity
argument (see [3] or [7]), the product (&, («;)) or (&, (yx0 B;))
is product isomorphic to ® ;.7 (#;, w,) with the natural injections.

THEOREM 8.8. With U as in theorem 8.6, suppose that
(3.8) 2 [d(ve, 23)]12 < 0.
keK
Then U is a tensor-product representation.

Proor. Suppose that (8.8) holds. Then (using lemma 8.5 for

uncountable K), we can find states o* € 2}, such that

2 [d(n, 0*)]* < oo,

keK
This implies (lemma 1.1. (I)) that o = ®;.x w; exists as a product
state of & = Qe (Hx, vx)- For each k € K, we have w* e X} so
that 0* = ®,crm @; ON B = Q;er (s> 1;). It is now evident,
that with respect to the product (, («;)) for (&;),.;, @ has the
form ®;.yw;. Now lemma 8.7 shows that (<, («,)) is product
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isomorphic with ®;.;(#;, w;), and lemma 2.1 shows that U is
equivalent to ®;.r (U;, w,).

LEMMA 8.9. Suppose that B = &, @ 4 and that, fori = 1 or 2.
i and v; are normal states sZ; with orthogonal supports and with
u;(1) =v1)=1. Let 0 < a =<1 and let w be the normal state

a(u; @ ps)+(1—a)(v; ® v;) of B. Then:
(3.9) d(w, Zp) = (a—a2)/6.
Proor. Let E, be the support of u,. Then »,(E;) = 0. We have:

o((21(E)) (2(1—E,)) = 0
o(0(Ey)) = o and o(xy(1—E,)) =1—a

Therefore (8.9) follows from lemma 38.4.

CoROLLARY 8.10. Suppose that o/ ; fails to reduce to the scalars for
an infinite number of i< € I. Then certain double tensor-products of
(U);er are non-direct-product representations of G = [J;c;1 G;-

Proor. Use lemma 8.9 and theorem 8.6. (I).
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