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In this paper we consider certain unitary representations of
groups G of the form i~IGi. Here I is an arbitrary indexing set,
and, for each i e7, Gi is a group with identity ei ·’ lui e , Gi denotes
the subgroup of the group IIieIGi consisting of all (gi)i~I with
gi = ei for all but a finite number of i e I. Suppose, for each i e I,
that Ui : gi ~ Ui(gi) is a unitary representation of Gi on the W*-
algebra Ai: by this we mean that gi ~ Ui(gi) is a homomorphism
of Gi into the group of unitary operators of Ai and that Ai is
generated by (is the smallest W*-subalgebra of d containing)

Suppose that, for each i ~ I, 03BCi is a normal state of di with
03BCi(1) = 1. Define the unitary representation U = ~i~I(Ui, 03BCi)
of G on the W*-algebra A = ~i~I(Ai, 03BCi) by: 

(For the definition and properties of ~ (Ai, 03BCi), see § 1, below).
We remark that, if the G, are topological groups, and if G is

provided with the topology induced by the product topology on
II Gi, then ~i~I(Ui, 03BCi) is weakly continuous whenever each Uz
is weakly continuous.

If each Ui is a factor representation (i.e. if Ai is a factor), then
U is a factor representation [1, p. 178]. If each Ui is faithful (i.e.
is an isomorphism) then U is faithful.
We say that a unitary representation U of G on dis equivalent

(quasi-equivalent is the more usual term ) to a unitary representa-
tion V of G on e when there exists a *-isomorphism P of A onto
f?l such that:

It is easy to see that if ~(Ui, !Ji) and Q9 (Ui, ’Pi) are equivalent
then
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(see theorem 2.3, below). A sufficient condition for the equivalence
of Q9 (Uz, Pi) and Q9 (Uz, vi) is

Here d is a metric on the set of normal states of a W*-algebra B:
d is defined essentially by

the infimum being taken over all vectors x and y inducing 03BC and
Y relative to a representation of B as a von Neumann algebra (see
[2]). Using the genralized Kakutani product theorem of [2], we
easily prove that, whenever each Ai is semi-finite, (0,2) is necessary
and sufficient for the equivalence of ~(Ui, I-ti) and 0 (Ui, ’Pi) (see
theorem 2.2, below).
We can construct other unitary representations of G = Gi

by using the above tensor product construction twice (see § 3,
below). Whether or not two such double product representations
are equivalent can be determined, under certain conditions, by the
results of § 2 mentioned above. It is not difficult to see (theorem
3.6 and corollary 3.10) that, provided an infinite number of the
Ai’s are non-trivial, roughly speaking almost all of these double
product representations are non-direct-product representations: we
call a representation U of G = Il G, on A non-direct-product if
there exists no non-zero normal state co of A such that

(0.3) W(U((gi)) = 1-1 ro(U(gi)) for all (g,) E G

(Here each Gi has been identified in the natural way with a sub-
group of G). (A normal state co satisfying (0.3) is called a product
state for U. That 0 jui is a product state for 0 (Ui. yi) is clear).

All our results hold equally well for representations which are
not necessarily unitary.

Other authors have obtained some of these results for representa-
tions of certain product groups arising in quantum field theory:
namely, the groups associated with representations of the canonical
commutation relations (e.g. [6]) and the anticommutation rela-
tions (e.g. [5]) for an infinite number of degrees of freedom.

1. Tensor products of W*-algebras

This section is a summary of definitions and results which we
need in the sequel. With the exception of lemma 1.2, which is
rather obvious, everything here is from [1], [2], [3] or [7].
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Suppose that (Ai)i~I is a family of W*-algebras. We call a W*-
algebra A, together with a family (03B1i)i~I with each 03B1i an isomor-

phism of Ai into A (and oci(l) = 1), a product for (Ai)i~I when
the following conditions hold:

(1.1) 03B1i(Ai) commutes with 03B1j(Aj) for all i, i ~ I

A is generated by
We say that two products (A, (OCi») and (e, (pi» for (Ai) are
product isomorphic if there exists an isomorphism P of tS/ onto &#x26;
such that 03A6 o 03B1i = 03B2i for all i E l. By a product state of (A, (03B1i))
we mean a normal state v of A for which there exist states vi of Ai
such that:

with each A e di and A t = 1 for a.a. i e I (a.a. i e I will mean
all but a finité number of i el). We write v = ~ vs if (1.3) holds.
If a normal state v of A satisfies v(1 ) = 1, then v is a product state
of (A, (03B1i)) if and only if the following condition is satisfied
(see [3]):

with each Bi e 03B1i(Ai) and Bi = 1 for a.a. i e I. Condition (1.4)
means precisely that the family (03B1i(Ai)) is independent with
respect to v.

Suppose that, for each i e I, ,ui is a normal state of Ai with
,ui(1) = 1. We call a product (A, (03B1i)) for (Ai) a (03BCi)-tensor
product for (di) if the following condition holds:

(1.5) For every family (Vi) with each vi a normal state of Ai
and vi = Pi for a.a. i e I, the product state ~ vi exists on
(A, (03B1i)). Furthermore if A E d+ and (~ vi)(A) = 0 for
all such families (vi), then A = 0.

The fact that a (03BCi)-tensor product (A, (oc,» exists and is unique
up to product isomorphism is proved in [3]. We write

and, if no confusion can arise, we let
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for every family (Ai)i~I with each A ~ Ai and A i =1 for a.a. i e I.
Suppose that Ai is a von Neumann algebra on the Hilbert space

Hi, and that xz E Hi induces ,ui:

Then the von Neumann algebra A = ~i~I (Ai, xi) on the

Hilbert space 0iel (Hi, xi), together with the natural injections
ai of di into A, forms a (,ui)-tensor product for (di)iel (see [1],
[3], [7J).
The following lemma is proved in [2]. Part (I) is almost obvious

from the definitions; part (II) is the generalized Kakutani theorem
of [2].

LEMMA 1.1. Suppose that (di)ieI is a family of W*-algebras and
that, for each i e I, ui and vi are normal states of Ai with

03BCi(1) = vi(1) = 1. Let the conditions (1.6), (1.7) and (1.8) be as
follows:

Then: (I). (1.6) implies (1.7) and (1.7) implies (1.8).
(II). Provided each W, is semi-finite, the three conditions

are equivalent.
PROOF. See [2].
We now proceed to find a condition on d(,ui, vi) which is implied

by (1.8) whether or not the Ai are semi-finite. First we need the
following lemma.

LEMMA 1.2. Suppose that ro is a normal state of A = ~i~I(Ai, 03BCi)
and that 03C9(1) = 1. For each i e I, define the normal state coi of .sa2i by:

Then:

In other words, given 8 &#x3E; 0, there exists a finite subset FE of I
such that:

PROOF. We may assume without loss of generality that each Ai
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is a von Neumann algebra on Hi, that xi E Hi induces ,ui, and that
d = Q9 (Ai, xi). We may also assume that every normal state of
A is a vector state: for one of the di may be replaced by Ai ~ H,
with WH, the scalar operators on an infinite dimensional Hilbert
space; then the new A is isomorphic to [~(Ai, xi)] Q9 H’, for
which it is evident that every normal state is a vector state.

Proceeding under these assumptions, we let m be induced by
the vector z in H = Q9 (Hi, xi). Select an orthonormal basis

(~03BBi)03BB~039B(i) for each Hi with 0 e 039B(i) and çt = xi . Define to be

For each A = (03BB(i)) ell, let ~03BB = Q9ieI p:(i). Then [1] (~03BB)03BB~039B is
an orthonormal basis for H. Let

Given 8 &#x3E; 0, there exists a finite subset 039Bl’ of 039B such that

1 lz’ -z~  8/2 if

Let F be

Then F is finite, and, if cv’ is the state of A induced by z’ and (Oï
is defined by

then, by direct calculation:

Thus, for all 1 ~ I - F :

COROLLARY 1.3. Under the assumptions o f lemma 1.1 (but without
the assumption that each di is semi-finite), condition (1.8) implies
condition (1.9):

LEMMA 1.4. Suppose that d is a von Neumann algebra on H, and
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that states p, and v o f A with 03BC(1), 03BD(1) ~ 1 are induced by vectors x
and y in H. Then:

PROOF. By direct calculation.

COROLLARY 1.5. For all normal states 1À and v of a W*-algebra A
with 03BC(1), v(l) 5 1,

REMARK. The inequality

under the same conditions as those of corollary 1.5 is proved in [2].
These inequalities together show that, on the set of normal states
03BC of A with 03BC(1) ~ 1, d and ~ ~ induce the same topology.

2. Tensor-product representations

Suppose that G = i~I Gi and that Ui is a unitary representa-
tion of Gi on di for each i e7. If (A, (03B1i)) is a product for (di)ieI’
then we may define a unitary representation U of G on d by:

We call U the (A, (03B1i)) product of (Ui). If 91 = ~i~I (Ai, Ili) and
03B1i is the natural injection of Ai into A, the (A, (03B1i)) product U
is the tensor-product representation ~i~I (Ui,03BCi) defined by (0.1).
We obtain immediately the following general lemma.
LEMMA 2.1. Suppose that (d, (03B1i)) and (B, (03B2i)) are products for

(Ai)i~I, and suppose that U (respectively V) is the (A, (03B1i)) (respec-
tively (ff6, (pi») product o f (Ui). Then U is equivalent to V i f and only
if the product (A, (03B1i)) is product isomorphic to the product (ff6, (Pi»).

PROOF. If 0 is an isomorphism of Jà’ onto e with 0 o ai = Pi
for each i e I, then for all g = (gi) e G:

That proves the sufficiency of the condition.
Suppose, on the other hand, that U is equivalent to V, so that

there exists an isomorphism 03A6 of A onto &#x26; such that

In particular, then, for each i El:
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Now {Ui(gi) : 9, ~ GJ generates Ai. Hence, by the linearity and
ultraweak continuity of P o a, and 03B2i, we can conclude from (2.2)
that, for each i ~ I:

That proves that 0 is a product isomorphism of (A, (mi» onto
(-q, (pi». 
THEOREM 2.2. Suppose that each di is semi-finite. Then Q9iel

( Ui , pi) is equivalent to 0iel (Ui, 03BDi) i f and only if

PROOF. Use lemma 2.1 and lemma 1.1. (II).

THEOREM 2.3. With no conditions on the di, (2.3) is a sufficient
condition for ~i~I (Ui, Ui) and Q9iel (Ui, Vi) to be equivalent, and
(2.4) is a necessary condition:

PROOF. Use lemmas 2.1, 1.1. (I) and 1.3.

3. Non-direct-product representations

Suppose, as in § 2, that G = lliel Gi, and that, for each i e I,
Ui is a unitary representation of G, on Ai and Pi is a normal state
of di with 03BCi(1) = 1. Let us suppose, further, that (I(k))k~K is a
disjoint family of subsets of I whose union is I. For each k e K,
let -9k be ~i~I(k) (Ai, Pi) with Pi the natural injection of Ai into
!!Ik. Suppose that vk is a normal state of ek with 03BDk(1) = 1. Let
A be ~k~K (Bk, Vk) with Yk the natural injection of ek i nto A.
Let OC, = yk o 03B2i for all i ~ I(k) and for all k e K. Then (A, (,xi»
is a product for (Ai)i~I. Let U be the (A, (03B1i)) product of (Ui)i~I,
in the notation of § 2. Then U is a unitary representation of G on
A. Because G = lliel Gi is naturally isomorphic to Ilk,,K i~I(k)
Gi , we may identify U with the double tensor-product represen-
tation

It is evident that the results of § 2 will give necessary and suffi-
cient conditions for two such representations defined by the same
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partition (I(k))k~K to be equivalent. In particular, if each I(k) is
finite, and if each Ai is semi-finite, a necessary and sufficient
condition for

to be equivalent to

is that

(theorem 2.2 and [4, 1, § 6, proposition 14]). For two such double
tensor-product representations defined using di f f erent partitions
of I, a crude condition for non-equivalence can be obtained by
using lemma 1.2.

DEFINITION 3.1. Suppose that U is a unitary representation of
G = IIieI Gi on d and that, for each i e I, Ui is defined by

where À; is the natural injection of Gi into G. Then by a product
state for U, we mean a non-zero normal state v of d such that

U will be called a direct-product (respectively non-direct-product)
representation of G = Il Gi if the set of product states v is faithful
on J3/ (respectively if 0 is the only normal state of A satisfying
(3.1 ) ).
U will be called a tensor-product representation of G = JJ[ Gi if

U is equivalent to a representation of the form 0ieI (Ui,,ui).

REMARK. Evidently a tensor-product representation is a direct-
product representation, but the converse fails (see the remark
following lemma 3.2).

LEMMA 3.2. Under the assumptions of definition 3.1, let di be the
W*-subalgebra of d generated by {Ui(gi) : gi e G}, and let oci be the
inclusion mapping of Ai into A. Then (A, (03B1i)) is a product for
(Ai) and U is the (A, (03B1i)) product o f (Ui). Furthermore, a normal
state v of A is a product state for U i f and only i f v is a product state
of (A, (03B1i)) and v(l) = 1.
PROOF. The first assertian is obvious. A product state v of

(A, (03B1i)) with, v(1) = 1 satisfies (1.4), and (3.1) follows immedi-
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ately. To prove the converse, suppose that v is a non-zero normal
state of A satisfying (3.1). Evidently v(1) = 1. Letting vi be the
restriction of v to Ai, we can write (3.1) as follows:

(3.2) 03BD 03B1i(Ui(gi))] = Il Vi(Ui(gi») for all (gi) E G.

Now {Ui(gi) : gi e Gi} generates Ai: therefore the linear span of
this group is ultraweakly dense in Ai. Since both sides of (3.2)
are linear and ultraweakly continuous in Ui(gi), we obtain:

(3.3) 03BD(03A0 03B1i(Ai)) = 03A0 03BDi(Ai) for all families (Ai)
iel iel

with each Ai e .sa2i and A = 1 for a.a. i e I. (3.3) means that v
is a product state of (A, (03B1i)).
REMARK. Suppose that U is a factor representation. Then ( [3]

and lemma 3.2), the existence of one non-zero product state
v = 0 vi for U implies that U is equivalent to the tensor-product
representation (D (Ui, vÈ). If, however, U is not a factor representa-
tion, then U may be a direct-product representation and fail to
be a tensor-product representation (see [3, example 7.3]). For
double tensor-product représentations, however, this phenomenon
cannot occur (see lemma 3.7).
DEFINITION 3.3. Suppose that (B, (03B2i)) is a product for (A)i~J

and that co is a normal state of fJ6 with 03C9(1) = 1. Let Zp denote
the set of product states ,u of (fJ6, (03B2i)) with 03BC(1) = 1. Then define:

LEMMA 3.4. Assume the conditions o f definition 3.3, and let

j = {1, 2}. Then

PROOF. For all

The last inequality is by corollary 1.5.

REMARK. Clearly it would be easy to rephrase lemma 3.4 for
arbitrary indexing sets J.
LEMMA 3.5. Let (B, (pi» be a product for (Ai)i~J and let w be a

normal state o f /11.- Then d(ro, Ep) = 0 implies (J) E Ep.



16

PRO oF. d(03C9, Ep) = 0 means that ce is in the norm closure of
Zp by corollary 1.5. Hence we need to show that Ep is norm closed.

For each family (Ai)i~K with each A i ~ Ai and Ai = 1 for a.a.
i ~ K,

is evidently a complex-valued function on the set X of normal
states of B, continuous in the norm topology on E. Since Ep is
that subset of X consisting of those v on which all such functions
vanish (i.e. those v for which (1.4) holds), Epis norm closed.
THEOREM 3.6. Let U be ~k~K [~i~I(k) (Ui, Pi)’ Vkl with the

assumptions and notations of the first paragraph of § 3. Let Ek denote
Ep for the product (f1lk, (03B2i)) Of (di)iel(k) (i.e. for 0iel(k) (di, 03BCi)
with the natural injections). Then:

(I). U is a non-direct-product representation of  Gi whenever
the following condition fails :

(II). Suppose that each ek is semi-finite. Then U is non-direct-
product representation whenever

PROOF. We will show that the existence of a non-zero product
state co for U implies (3.4) and, whenever each 2, is semi-finite,
contradicts (3.5).

Suppose then that co is a non-zero product state for U. Then
(lemma 3.2) 03C9(1) = 1 and co is a product state of

where 03C9i = (0 o OCi. Evidently cv is a product state of (A, (Bk)).
In fact, «) = 0keK (Ok where rok = 0iel(k) roi for the product
(Bk, (03B1i)i~I(k)), and certainly, then, 03C9k ~ 03A3k. Now (A, (Bk)) is
the tensor product 0keK (fJ6k, Vk) with the natural injections.
Hence, by lemma 1.3,

If each fflk is semi-finite, lemma 1.1. (II ) demonstrates the stronger
result :
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Recalling that 03C9k c- Zk, we see that (3.6) implies (3.4) and that
(3.7) contradicts (3.5). That finishes the proof.
To identify the tensor-product representations U, the following

lemma is useful.

LEMMA 3.7. Suppose that A is ~k~K [Q9ieI(k) jui), vk] and
the ai are as be f ore. Suppose that a non-zero product state ro = 0 ic, roi
exists f or (A, (03B1i)). Then ( d, (03B1i)) is product isomorphic to

~i~I (Ai, 03C9i) with the natural injections.

PROOF. We will need the following result [3, corollary 4.4 and
lemma 5.1]:

(*) Suppose that (A, (03B1i)) is a (03BCi)-tensor product for (di) and
that v = Q9Vi is a product state of (A, ((03B1i)), Then (A (03B1i))
is a (vi )-tensor product for (di).

For each k ~ K, Cok = yx 0 ro is a product state ~i~I(k) cvz for

(Bk, (03B2i)i~I(k)). Now -9k = ~i~I(k)(Ai, 03BCi) and the 03B2i are the
natural injections; therefore, by (*), (fIk may be identified with
~i~I(k) (di, roi) and the 03B2i with the natural injections.

Similarly, since 03C9 = ~k~K03C9k for (A, (03B3k)), W may be identified
with

and the yx with the natural injections. By a standard associativity
argument (see [3] or [7]), the product (A, (03B1i)) or (a, (03B3k  03B2i))
is product isomorphic to 0iel (Ai, cvi) with the natural injections.

THEOREM 3.8. With U as in theorem 3.6, suppose that

Then U is a tensor-product representation.

PROOF. Suppose that (3.8) holds. Then (using lemma 3.5 for
uncountable K), we can find states rok e Ek such that

This implies ( lemma 1.1. (I)) that ro = ~k~K03C9k exists as a product
state of J3/ == Q5)keK (Bk, 03BDk). For each k ~ K, we have 03C9k ~ 03A3k so
that rok = ~i~I(k) lOi on f!Ãk = ~i~I(k)(Ai, 03BCi). It is now evident,
that with respect to the product (d, (03B1i)) for (Ai)i~I, 03C9 has the
form ~i~I03C9i. Now lemma 3.7 shows that (d, (03B1i)) is product
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isomorphic with ~i~I(Ai, roi)’ and lemma 2.1 shows that U is
equivalent to ~i~I (Ui, roi).

LEMMA 3.9. Suppose that t6 = dl Q9 d 2 and that, for i = 1 or 2.
Pi and vi are normal states di with orthogonal supports and with
03BCi(1) = 03BDi(1) = 1. Let 0 ~ oc ~ 1 and let ro be the normal state

03B1(03BC1 Q9 03BC2)+(1-03B1)(03BD1 (D V2) of t6. Then:

PROOF. Let Ei be the support of 03BCi. Then 03BDi(Ei) = 0. We have :

Therefore (3.9) follows from lemma 3.4.

COROLLARY 3.10. Suppose that Ai fails to reduce to the scalars for
an in f inite number of i El. Then certain double tensor-products o f
(U)iel are non-direct-product representations of G = llie! Gi.

PROOF. Use lemma 3.9 and theorem 3.6. (1).
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