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Introduction

In a paper published not long ago Gilmer [2] determined com-
pletely the structure of every finite commutative ring with an
identity element whose multiplicative group of units is cyclic; and
showed that there exists at least one noncommutative ring with
this property by giving the example of the ring Ro (say) of all
2 X 2 upper triangular matrices over the field GF(2). By way of
generalisation, Eldridge and Fischer [1] proved certain results of
which only the following are of immediate concern to us here. If
R is any ring with a cyclic group of units whose left ideals satisfy
the descending chain condition., they showed that R will be
necessarily finite; if, in addition, R is not commutative, they show-
ed that R will be the direct sum of a commutative ring with the
ring Ro described above.

For convenience, we shall use throughout this paper the term
Gilmer ring to denote any finite (associative, but not necessarily com-
mutative) ring with an identity element, whose multiplicative group
of units is cyclici
The method of procedure of Eldridge and Fischer may now be

described as follows. They prove a series of lemmas which lead to
the conclusion that a Gilmer ring will be commutative except in a
certain situation; and then they determine the structure of the
ring in this particular case. At one stage of this process they make
use of the classification given in Gilmer [2].

In this paper we redetermine the structures of all Gilmer rings
ab initio, and in a manner almost independent of that of Gilmer.
Our discussion is based on a lemma (Lemma 1) and some simple
remarks (given in § (1.2)). The discussion depends on [2] only to
the extent of using an argument of Gilmer which, however, forms
an essential part of the proof of Lemma 1 of this paper.

The author wishes to thank Professor V. Ganapathy Iyer for his
encouragement and guidance during the preparation of this paper.
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Thanks are due to N. Ganesan for having shown the author a
preprint of the paper [1] sent to him by Eldridge prior to its
publication.

Section 1

(1.1) We begin by describing the notations used throughout this
paper. The symbol R will be used to denote any finite (associative)
ring with an identity element 1 ~ 0. The symbol j will be used to
denote the Jacobson radical of the ring under consideration. We
use the notation GR for the multiplicative group of units of the
ring R. The symbol S will be used to denote the subring of R
generated by its identity element. The symbol X is used to denote
an indeterminate. As is usual, Z denotes the ring of all integers
and p denotes any positive prime integer. For any set A with a
finite number of elements, we use lA 1 to denote the number of
elements in that set.
We now describe a notation which plays an important role in

this paper. For any particular prime p, we use the symbol N(p)
to denote the set of all the nilpotent elements x (of the ring under
consideration) which satisfy the condition px = 0.

(1.2) In this subsection we mention some simple results which
will be useful to us later.

(i) If R is a ring of order p"l p"k where the p, are distinct
primes and the ni are positive integers, it is well known that R is
expressible, in a unique manner, as the direct sum of rings Rz ,
where |Ri| = pnii, i = 1, ..., k.

(ii) (Gilmer [2, Th. 1].) Let the ring R be the direct sum of
nontrivial rings R1, ···, Rk. Then it is obvious that each ring Ri
has an identity element, and that the group GR is the direct

product of the groups GRs , i = 1, ···, k. So the group GR will be
cyclic if, and only if, both the following conditions are satisfied : (1)
each GRi is a cyclic group, and (2) the integers 1 GRi | are prime to
each other in pairs. 

(iii) In view of the above remark we see that, in considering
Gilmer rings, we may restrict our attention to indecomposable
ones - whose orders are necessarily prime-powers.

(iv) If a ring R is the direct sum of two nontrivial rings, it can
be easily verified that the additive group generated by the zero
divisors of R will be the whole of R.

(v ) Let K be a nil ideal in the ring R. Il the quotient ring RIK is
a field, then K will consist o f all the nonunits of R; also R will be an
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indecomposable ring. For, it can be easily verified that an element
x will be a unit in R if, and only if, the element x+K is a unit in
the quotient ring R/K. So if R/K is a field, then all the nonunits of
R will belong to K (and exhaust K), and the remark (iv) above
shows that R will be indecomposable (because K is a proper subset
of R).

(vi) Il R is a Gilmer ring with radical J, then the quotient ring
R/J will also be a Gilmer ring. For, as J is a nil ideal, the argument
in (v) above shows that the canonical mapping will map the
group GR onto the group of units of the ring R/J.

(vii) Let A be the ring of all n X n matrices over a division ring.
If n &#x3E; 2 we know that the group GA will be nonabelian. So A
will be a Gilmer ring if, and only if A is a (finite) field.

(viii) If R is a Gilmer ring with radical J, then the quotient ring
R/J will be a direct sum of fields. For, by Wedderburn-Artin struc-
ture theorem, R/J will be the direct sum of a finite number of
ideals A1, ···, Ak where each Ai, regarded by itself, is a total
matrix ring over some division ring. The desired result now follows
by using, in succession, the remarks (vi), (ii) and (vii) above.

(Note: A celebrated theorem of Wedderburn asserts that every
finite division ring is necessarily commutative. However, we do
not need this result here.)

(ix) (Koh [4]) If a ring A has exactly n left zero divisors and
n &#x3E; 1, then 1 AI | ~ n2. For, let z be a nonzero left zero divisor and
let K be the kernel of the homomorphism a - az (a E A) of the
additive group of A onto that of Az. As every element of both the
sets K and Ax is a left zero divisor in A, we have |K| ~ n and
|Az| ~ n. Then the fact lA 1 = IK 1 · |Az| gives the desired result.

(1.3) The object of this paper is to prove the following compre-
hensive result.

THEOREM 1. (Gilmer [2], Eldridge and Fischer [1].)
Each one o f the following rings is an indecomposable Gilmer ring.

(a) GF(pm), where p is any prime and m &#x3E; 1.
(b) Z/(pm), where p is an odd prime and m &#x3E; 2.
(c) F[X]/(X2), where F is any prime field o f finite order.
(d) Z/(4).
(e) F[XJ/(X3), where F = GF(2).
(f) Z[X]1(4, 2X, X2-2).
(g) The ring of all 2 x 2 upper triangular matrices over the field

GF(2).
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Conversely, every indecomposable Gilmer ring is isomorphic to one,
and only one, o f the rings described above. Also, i f a Gilmer ring is the
direct sum of k (~ 2 ) indecomposable rings, then at least k-1 o f
these component rings are fields with characteristic 2.

PROOF. First we prove the direct part of the theorem. If the
ring R is of type (a) or type (b) or type (d) it is well known that
the group GR is cyclic. Suppose now that R is of type (c) and that u
is the coset X + (X2) in F[X]. It is easily seen that the nonunits
of R constitute the ideal Ru of order p, so that J = Ru and
R/J ~ GF(p). The group GR of order p(p-1) is the direct product
of the group 1 + J (of order p, a prime) and the group GF (of order
p-1). As the groups 1 +j and Gp are cyclic, it follows that the
group GR is cyclic. Next we will dispose of the types (e) and (f)
together. Suppose that R is of type (e) or of type (f) and that u
denotes the coset X+ A in the appropriate polynomial ring, where
A = (X) if R is of type (e) and A = (4, 2X, X2-2) if R is of
type (f). If K = {0, u, zc2, U2+Ul@ we have R = K ~ {1+K} and
as 2u = u3 = 0, we can easily verify that K is a nil ideal in R;
and also that GR = 1+K is cyclic, with 1+u as a generator. If
R is of any one of the types (a) to (f) we note that R/J is a field;
so all these rings are indecomposable (by § (1.2) (v)).

Suppose finally that R is of type (g). Here the group GR (of
order 2) is cyclic. Let, if possible, R be expressed as the direct
sum of two nontrivial rings Rl, R2. As ( R | = 8, we may suppose
that |R1| = 4 and |R2| = 2; as Rl, R2 would have identity ele-
ments, both of them must be commutative. As this contradicts
the fact that R is noncommutative, we see that the ring (g) is

indecomposable.
This completes the proof of the direct part of the theorem. The

first statement in the converse part will be proved later. Assuming
this result for the moment, we see that the second statement
follows from the remark (ii) of § (1.2) and the observation that
|GR| is odd for an indecomposable Gilmer ring R only if R is a
finite field with characteristic 2.

(1.4) With the ultimate objective of proving the first statement
in the converse part of Theorem 1 we prove five lemmas, the first
of which is to be found below. The decisive trick used in its proof
is due to Gilmer (refer [2, Th. 3]).
LEMMA 1. Let R be any Gilmer ring and let, f or a prime p, the set

N(p) (defined in § (1.1») contain a nonzero element u. Then the

following results hold.
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PROOF. We shall first prove (ii). Let x be any fixed element of
N(p) with x2 ~ 0, and let k (~ 3) be the least positive integer
such that e = 0. It can be easily verified that the set

A = {1+(a+bx)xk-2 : a, b = 0, 1, - - -, p-1}
consists of p2 distinct elements. If p(k-2) were greater than or
equal to k, then every element y of the set A will satisfy the equa-
tion yp = 1, since px = 0 and p is a prime. This is in contradiction
to the fact that, for any positive integer n, the number of solutions
of the equation yn = 1 in any Gilmer ring is at the most equal to n.
So if k &#x3E; 2 we must have k &#x3E; p(k-2) &#x3E; 2(k-2), and we get
k = 3 and p = 2. As this implies that x3 = 0 and so (1+x)4 = 1
for all x in the set N(2), we get |N(2)| ~ 4. Since 0, u, u2 and u2-f-u
are distinct elements of the set N(2), we see that the proof of (ii)
is complete. The proof of (i) will now be obvious.

Section 2

(2.1) The following lemma describes the structures of all
Gilmer rings whose orders are powers of odd primes.

LEMMA 2. Let R be a Gilmer ring whose order is a power o f an odd
prime p. Then R will be isomorphic to a ring of one, and only one,
ol the types (a), (b), (c) mentioned in Theorem 1.

PROOF. In the course of this proof we use many of the results
stated in § (1.2). Suppose first that R is semisimple, so that
R = Ri ~ ··· ~ Rk where each Ri is a field. (Refer § (1.2) (viii).)
As p-1 (~ 2) will be a factor of each |GRi|, it follows (from § (1.2)
(ii)) that we can have only k = 1, so that R = Ri is a field. Thus
R will be of type (a) in case R is semisimple.
We suppose hereafter that R has radical J ~ (0). The quotient

ring Rll is a semisimple Gilmer ring (refer § (1.2) (vi)) and is
therefore a field. All the nonunits of R belong to the nil ideal J
(refer § (1.2) (v)). Now we have to distinguish between two cases.
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CASE (1). Here we suppose that R has characteristic p. Then
j C N(p) and ars 1 =1= (0), we have III | = IN(p)1 = p and J2 = (0)
(from Lemma 1, since the prime p is odd). As R has only p left
zero divisors and as 1 RI is a power of p, (using § (1.2) (ix)) we can
conclude that 1 R I = p2. If u is any nonzero element of J one can
easily verify that R = {a · 1+bu : a, b = 0, 1, ···, p-1 ; p - 1 =
u2 = 0}, by showing that the set on the right side of this equation
has p2 distinct elements. Thus R = F[X]I(X2) with F = GF(p)
and so R is of type (c) in this case.

CASE (2). Here we suppose that R has characteristic pm with
m &#x3E; 1. The subring S (refer § (1.1») is isomorphic to ZJ(pm) so
that N(p ) C S. We now assert that S = R. Suppose the contrary
that R contains an element x which does not belong to S. A s
p- - x = 0 e S, there exists an integer a with 0  oc ~ m-1 such
that p03B1 · x ~ S while p03B1+1 · x e S. As S - ZJ(pm) there is an ele-
ment y in S such that p03B1+1 · x = p03B1+1 · y. If we write z = p03B1(x-y),
we have z 0 S and pz = 0. As every unit in R has additive order
pm (m &#x3E; 1), and as every nonunit of R belongs to J, we find that
z e J. As j is a nil ideal and pz = 0, we have z e N(p). But this
is in contradiction to the facts: z 0 S, N(p) C S. This contradiction
proves our assertion that S = R and hence shows that R is of

type (b) in this case.
As the very method of proof shows that the above three rings

are mutually nonisomorphic the proof of the lemma is complete.

Section 3

(3.1) In this section we determine completely the structures of
all indecomposable Gilmer rings whose orders are powers of 2,
and thus complete the proof of Theorem 1. For this purpose we
require some preliminary results which are given in the following
lemma.

LEMMA 3. (Eldridge and Fischer [1, Lemmas 5 and 6])
Let R be any Gilmer ring whose order is a power of 2 and let J be

its Jacobson radical. Then the following results hold.

(i) The characteristic of R is either 2 or 4.

(ii) Every nilpotent element of R belongs to J.
(iii) Il the characteristic of R is 2, then

either
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(iv) If the characteristic of R is 4, then
either j = {0, 2},

PROOF. The characteristic of R is 2k for some positive integer k,
and so the subring S (defined in § (1.1)) ~ Z/(2k). As Gs = S n GR
and therefore GS is cyclic, we get k = 1 or 2 from a well known
result. This proves (i). The result (ii) follows from § (1.2) (viii).
We will now show that J = N(2). That N(2) Ç J follows from

(ii); for proving the reverse inclusion we need consider only the
case where the characteristic of R is 4. If x is any element of J,
2(1+x) =A 0, because (1+x) is a unit; then (1+2x)2 = 1 and
1+2x ~ -1 imply that 1-f-2x = 1. This proves the desired result
that J Ç N(2), and the result (iii) follows from Lemma 1.
Again suppose that the characteristic of R is 4. As the element

2.1 is nilpotent, we have J ~ (0) and if III = 2 then J = {0, 2}.
If J = {0, u, u2, u2+u} we can only have 2 = u2 since

22 = 0 ~ (u)2 = (U2+U)2. This completes the proof of the lemma.

(3.2) REMARKS. (i) From the proof of the direct part of Th. 1 we
see that all the cases mentioned in the results (iii) and (iv) of the
above lemma are possible.

(ii) For proving the results (iii) and (iv) of the above lemma
Eldridge and Fischer depend upon the classification of all commu-
tative Gilmer rings given in [2].

(3.3) The following two lemmas give the structures of all inde-
composable Gilmer rings whose orders are powers of 2.

LEMMA 4. Let R be a Gilmer ring whose order is a power of 2 and
let J be its Jacobson radical. Il the quotient ring RIJ is a field, then
R will be isomorphic to a ring of one, and only one, of the types (a),
(c), (d), (e), (f) mentioned in Theorem 1.

PROOF. If j = (0) then R - R/J is a field (by our hypothesis)
so that R will be of type (a) in this case. Hereafter we suppose that
J ~ (0). From the results (iii), (iv) of the previous lemma we
see that we have to discuss four cases. We now assert that
R = J ~ {1 + J} in all these cases. Granting this assertion for the
moment and using the results (iii) and (iv) of the previous lemma
we get the following results: when Ij | = 2, R = J u {1+J} will
be of type (c) or of type (d) according as the characteristic of R
is 2 or 4, and when Ij | = 4, R will be of type (e) or of type (f)
according as the characteristic of R is 2 or 4.
So the proof of the lemma will be complete if we show that
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R == y u {1+J} in case J ~ (0). Suppose first that /J/ = 4 so
that J = {0, u, u2, u2+u : 2u = u3 = 0}. (Note: This is valid even
when the characteristic of R is 4.) Let g be a generator of the
cyclic group of units of R and let gu2 = v. As v e J, v ~ 0 and
vu = 0, we see that (gu2 =) v = u2, so that (g-1 ) is a zero divisor
in R. As all the nonunits of R belong to J (for R/J is a field) we
have g = 1+w for some w in J, and hence g4 = (l+w)4 = 1.
This shows that 1 Gn | ~ 4. But as {1+J} is a subgroup of order 4
in GR we get GR = 1+J. So we have R = J ~ GR = J ~ {1+y},
in the case III = 4. As the proof for the case IJI = 2 is quite
similar, the proof of the lemma is complete.
LEMMA 5. Let R be an indecomposable Gilmer ring whose order is

a power of 2 and let J be its Jacobson radical. Il the ring RIJ is not
a field, R will be isomorphic to the ring (g) of Theorem 1.

PROOF. By § (1.2) (viii), the ring R/J is the direct sum of

k (~ 1) fields; our conditions on R imply that k ~ 2, and hence
that J ~ (0). By Lemma 3, there exists a unique nonzero element
v (say) in the entire ring R such that V2 = 0. Lifting idempotent
elements from the quotient ring R/J, we can get k mutually ortho-
gonal nonzero idempotents e1, ···, ek in the ring R such that
ei+ ’ ’ ’ +ek = 1 and such that (Rei-y-J)/J = (eiR+J)/J is a field
for each i; and then we consider the Peirce decompositions
R = Re1~ ··· ~ Rek and R = e1R ~ ··· ~ ekR. (Refer Jacobson
[3, Ch. III, Sections 7 and 8].) If eiRei = (0) for all i, j with
i ~ j, it will follow that R is decomposable into the direct sum
of k (~ 2) nonzero ideals Rej = eiRei = eiR, a contradiction to
our hypothesis. If eiRei =1= (0) for a pair i, j, with i =1= j, then
e,Re, = {0, v}, since (erse,)2 = (0). If (0) ~ eiRei = ea,Rep, it

follows easily that a = i and fl = j. So we may suppose that
elRe2 = {0, vl and that eiRei = (0) for all other pairs i, j with
i ~ j. Now if k &#x3E; 3, R will be the direct sum of the nonzero ideals

R(e1+e2) = (e1+e2)R, and eiRei for i ~ 3, a contradiction. So we
must have k = 2.
We have J = e1Je1+e1Je2+e2Je2. If eJel =1= (0) we can find

a nonzero element z in elje, such that z2 = 0. But this will imply
elzel = z = v e e,Re2, a contradiction since v ~ 0. So eiJei = (0)
for i = 1, 2 and we find that J = elJe2 = elRe2 = {0, v}. The
supposition that the characteristic of R is 4 will lead to v = 2, a
contradiction because v = elve2 does not commute with el. So we
have proved that the characteristic of R is 2 and that |J| = 2.
(Refer Lemma 3.)
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Now J = elRe2 C Re2. If J2 is the Jacobson radical of Re2l
then J2 = J. (For, as J is a nil ideal in Re2, J C J2 and the reverse
inclusion follows from Lemma 3 (ii)). As Re2/J2 = Re2/J is a field,
we get IRe21 = 4, and similarly that le,Rl = 4 (by using § (1.2)
(ix)). As Rel = e,Re, is a proper subset of eiR, we find that
IRI = 8.

If F = {0, 1}, then F is a subfield of R, and as every element
of R is uniquely expressible in the form ael + be2+cv with a, b, c
in F, and as the mapping 

is easily verified to be an isomorphism, we see that R is isomorphic
to the ring of all 2 X 2 upper triangular matrices over the field
GF(2). This completes the proof of the lemma.

(3.4) The result (v) of § (1.2) shows that the rings considered
in Lemmas 2 and 4 are all indecomposable. So the Lemmas 2, 4
and 5 together prove the first statement in the converse part of
Theorem 1.
The proof of Theorem 1 is now complete.
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