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Introduction

In this paper we shall treat the Laplace transform of a function
99(t), LI[~, x] defined by

where 99(t) e Li(0, R) for all R &#x3E; 0.

We shall show that the Jump Operator defined by

(see also [2, p. 91] and [1, p. 369]) is O(k-Y/2)k ~ oo, 0  y  1

whenever ~(t) satisfies at t

which is a generalization of Lipschitz condition of order ce (see
[4, p. 42]).
We shall prove that f(x) = LI[~, x] and the asymptotic be-

havior J[f, k; t] = 0(k-1 2) uniformly in some interval of t, implies
that 99(t) (or an equivalent in Lebesgue sense) satisfies the Lip-
schitz condition there.

Similar results can be achieved for the Laplace Stieltjes trans-
form LSI[03B1, x] which is defined by

where 03B1(t) e B - V [0, R] (is of bounded variation in [0, R] ) for all
R ~ 0.
In the case of the Laplace-Stieltjes transform one should define

l[f, k; t] by
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and results analogous to those for the Laplace transform will be
achieved in section 4.

2. The behavior of the Jump operator

In this section we shall state and prove properties of J[j, k; t]
as a result of a Lipschitz condition on ~(t).
THEOREM 2.1. Suppose

implies

implies

The effect of the Lipschitz condition in an interval on J[f, k; t]
is described by the following theorem.

THEOREM 2.2. Suppose f(x) ~ LI[~, x] and that for some real
a, b satisfying 0  a  b  oo there exist k &#x3E; 0, 03B41 &#x3E; 0 and y,
0  y  1, such that for each t, and t2, a  t,  t2  b, satisfying

Then there exist M so that for k &#x3E; ko

uni f ormly for t e [c, dj a  c  d  b and in case a = 0 (2.4) will
be valid for t e (0 d]. M depends on c and d.

REMARK 2.3. If we replace in assumption (2.3) of Theorem 2.2.
K by e the result will be for k &#x3E; ko |J[f, k; tj ) |  e - Mlk-r/2 for
0 ~ 03B3  1. The result is not interesting here for y &#x3E; 1 neither is
Theorem 2.2 for y &#x3E; 1 since in these cases ~(t) would be a constant
in (a, b).

REMARK 2.4. Assumption (1.3) uniformly in an interval implies
(2.3) uniformly in that interval. Therefore the employment of
(2.3) in Theorem 2.2 is not a restriction but a simplification of the
notation. The implication in the opposite direction is trivial.
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We shall prove Theorems 2.1 and 2.2 together since the skeleton
of the proof is the same.

PROOF OF THEOREMS 2.1 AND 2.2.

One can first establish the following equality by the integral
definition of the r-functions

Using (2.5), (1.2) and the known formula

one may write

(in case 03B4 ~ tl, which will occur in the choice a = c = 0, obvi-
ously Il = 0).

Since the Laplace transform converges at some real C and ~(t)
is bounded in [c, d] or in (0, d] in case a = 0 (q(t) is just a number
for proving Theorem 2.1) we have IOCi(U, t, 03B4)| ~ M i = 1, 2 where

and

Using the above we estimate I| in case t-03B4 &#x3E; 0.

For k &#x3E; kl(C) and for fixed C, d/du { } is of fixed sign and there-
fore
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This implies for fixed C, 03B4  1/2c and k ~ k2 &#x3E; kl(C) that |I1| ~ qk
for some q  1 (when under the assumptions of Theorem 2.4,
uniformly in [c, d] ).

Similar considerations yield for fixed C and k &#x3E; k3 the result
|I3| ~ qk, q  1 (when under the assumptions of Theorem 2.2,
uniformly in [c, d] or if in addition a = 0, uniformly in (0d]).
We have to estimate 12 and we do it first for Theorem 2.1, for

which we define oc (u) = f f [~(v)-~(t)]dv, and have therefore

03B1(u)du+0(qk) k ~ oo q  1 fixed for any fixed choice of 03B4 &#x3E; 0.

We choose 03B4 so that for |u-t|  03B4 in case (a) |03B1(u)| ~ K|u-t|1+03B3
and in case (b) loc(u)1  03B5|u-t|1+03B3. A simple calculation shows
that

has changes of sign at

denoted by ul(k) and u2(k) (u1(k)  u2(k)). Therefore in case (a)
(case (b) is similar) we have

We shall estimate I24 (the rest are similar or easier)
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Since ze-z+1  1 and therefore ek(e-u2(k)/t(u2(k)/t))k ~ 1; also

u2(k)-t  2t k-t and

so we have

By a method already employed here J2 ~ qk where q  1.
Let us estimate Jl now

where ~(k) = 0(1) k ~ oo.
Since z e-(z-1) ~ e-(z-1)2/4 in 0 ~ z ~ 2 which is derived from

the fact that in 0 ~ z ~ 2 the only relative maximum of
z exp (-(z-1)+(z-1)2/4) is,at z = 1) we have
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Where L = ~0e-v2/4v1+03B3 dv which concludes the proof of Theorem
2.1.

Estimating la for Theorem 2.2 we choose as Ô

ô = min(03B41, c-a, d-b)
or in the case when a = 0 ô = min(03B41, d-b) where ô, is defined
in Theorem 2.2.

Following similar calculations to those used in estimating J3 we
conclude the proof. Q.E.D.

3. The behaviour of the determining function
and a representation theorem

For the Laplace transform f(x) = LI[~, x]~ is called the deter-
mining function and f(x) the generating function of the transform.
(See also [3]).
The following is the main result of the section.

THEOREM 3.1. Suppose f(x) = LI[~, x] and let
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then there exists a function y(t) which is equal to q;(t) in Ll[a, b]
norm such that for every ô &#x3E; 0 there exists a K that satisfies

We shall need for the proof of Theorem 3.1 the following rep-
resentation theorem for the Laplace transform ( which I have not
been able to find in this form) which is a corollary of some well
known results.
For the result one has to define the operator Lk,t[f] as follows:

THEOREM 8.2. Necessary and sufficient conditions for f(x) to be a
Laplace transform of ~(t) with 99(t) e Ll(o, R) for all R &#x3E; 0 which

converges for x &#x3E; C are:

For each e &#x3E; 0 there exists an Me such that

PROOF. This Theorem is a corollary of various Theorems proved
by D. V. Widder. By a slight modification of Theorem 18.b
of [3, pp. 322-324] conditions (1) and (3) are necessary and
sufficient for f(x) to be a Laplace Stieltjes transform of a(t) of
bounded variation in every finite interval.
To prove sufficiency we observe that by Theorem 10 of [3, pp.

299-301] formula (1) is equivalent now to

By formula (2) we obtain that Lk,t[f] is a Cauchy sequence in
L,(O, R) and therefore there exists a function 99(t) which is their
limit and q(t) e L,(O, R), (for all R &#x3E; 0).
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By substitution we have

and therefore oc(t) = limk~~ t0Lk,v[f]dv = t0~(v)dv.
For all finite N, x &#x3E; s &#x3E; 0 one has by the proof of Theorem 8.b

of [3. p. 322]

which concludes the proof of sufficiency.
To prove necessity one has to show only that (2) is necessary.

We estimate ~Lk,t[f]-~(t)~L1(0,R) as follows

While the second term is obviously tending to zero (as qk q  1)
the first term tends also to zero as can be proved by repeating
almost verbatim the proof of Theorem 17 (a) of [3, p. 318].

Q.E.D.

PROOF oF THEOREM 3.1. By Theorem 3.2 Lk,t[f] converges to
~(t) in L,(O, R) (for every R &#x3E; 0) and therefore in Ll(a, b) and
therefore in measure on (a, b). This implies that there exists a
subsequence of Lk,t[f], say Lk(i),t[f], that converges to ~(t) almost
everywhere in (a, b). We shall prove that the sequence Lk(i),t[f]
converges pointwise in (a, b) to y(t) which obviously is equal to
q(t) in Ll(a, b). Suppose at t0Lk(i),t[f] does not converge, then
since Lk(i),t[f] converges to ~(t) a.e. in (a, b) there exists a sequence
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tj03B5(a, b), tj ~ to where limj~~ tj = to and the limits Iimi~~Lk(i),[/]
exist. We shall prove limj~~ limi~~Lk(i),tj[f] exists and is equal to
limi~~Lk(i),t0[f] (which also exists). To show that limi~~Lk(i),tj[f]
is Cauchy sequence in i we use the mean value theorem as follows

where 03B6 is between tj(1) and tj(2).
Formula (3.3) is valid for every k and therefore using (3.1) we

obtain

and therefore

Inequality (3.5) implies that limi~~Lk(i)tj[f] is a Cauchy sequence
in j.

Define limj~~ limi~~Lk(i),tj[f] = A. Since on e can replace tj(1) by
t; and tj(2) by to in (3.4) it is easy to see that limi~~Lk(i),t0[f] = A.
Now every point in (a, b ) can replace tiCi) and ti(2) in (3.4) and (3.5)
and therefore (3.2). Q.E.D.

REMARK 3.3. A combination of Theorems 2.2, 3.1 and 3.2 form
a kind of representation theorem for functions satisfying Lip-
schitz conditions.

4. The Laplace Stieltj es transform

Analoguos to the theorems of sections 2 and 3 for the Laplace
Stieltjes transform can also be obtained.

THEOREM 4.1.

Then there exists an M so that for k &#x3E; ko
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uni f ormly for
THEOREM 4.2. Suppose j 

then P(t) satisfies f or some

The proof of Theorem 4.1 is similar to that of Theorem 2.2 but
a little simpler. The proof of Theorem 4.2 is similar to part of the
proof of Theorem 3.1 using here Theorem 8.b of [3, p. 322] instead
of Theorem 3.2 there.
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