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Let A denote a conservative matrix summability method and
let c denote the set of convergent sequences. (For the notation
and terminology used in this note see, for example, [8].) The
summability field of A is denoted by cA. If c is dense in cA then
A is called perfect, while if the zero sequence is the only member
of l (the set of absolutely convergent séries) which acts as a left
annihilator of A then A is said to be of type M. If A is reversible
(i.e., one-to-one and onto c) then the type M property is necessary
but not sufficient in order that A be perfect. On the other hand,
the two properties are equivalent for coregular reversible matrices
[1, 3, 4, 5]. In an attempt to establish an analogous result for
conull reversible matrices, Jürimaë [2] introduced the concept of
a type P matrix (defined below). However, he incorrectly assumed
that for reversible matrices type P is equivalent to perfectness.
(The identity matrix serves as a suitable counterexample.) In this
note we first point out that there is a kind of perfectness that
agrees with the type P property for reversible matrices; namely,
that the null sequences be dense in cA. It then follows that for
conull reversible matrices, type P is equivalent to perfectness.
We then consider the class of multiplicative matrices. (A con-
servative matrix is multiplicative if and only if each of its columns
is a null sequence.) It is known that a member A of this class is
of type M if and only if the closure of the null sequences is a
maximal linear subspace of cA [6; p. 342]. We show that if a

reversible member of this class is of type P then the image of the
null sequences is dense in the image of the null summability field
(defined below), and the adjoint and transpose matrix have the
same kernels (in the sense given below).

Let c3 represent the dual space of cA. If f E c’A then there exist
sequences t and f3 in 1 and a constant a such that for each x e CA, 2
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2 Unless otherwise specified the indices of summation run from 0 to oo. Moreover,

all quantities with negative indices are taken to be equal to zero.
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where limA x = lim (Ax)n. If A is reversible then P. = 0 for each
n. (See, for example, [7; p. 230]. ) A representation of c’A that is
more suitable for our purposes can be obtained by applying Abel’s
summation by parts formula. This is done in [2] and we summarize
it in the following Proposition. V denotes the set of absolutely
convergent sequences, that is, w e V if and only if

PROPOSITION 1. I f f ~ c’A, then there exist sequences 03B2 ~ l and
w e V such that for all x e cA,

where yn = 03A3ankxk. I f A is reversible then 03B2n = 0 for each n.
The matrix A is then said to be of type P if the conditions

w e V and 03A3wn(ank-an-1,k) = 0 for each k imply that w. = 0 for
each n. A straightforward computation shows that the identity
matrix is not of type P. The following example shows that
matrices which are of type P need not be perfect. Define A = (ank)
by setting ano = an,n+1 = -an+1,n+1 = 1 for n = 0, 1, 2, ..., and
ank = 0 otherwise. Letting w e V and considering the equations
03A3wn(ank-an-1,k) = 0 for k = 0, 1, 2, ···, we see that wo = 0 and
w, = nw1 for n = 1, 2, 3, ···. Since w E V it follows that Wn = 0
for every n and so A is of type P. However, A is not perfect
because

is a non-trivial continuous linear functional on cA which is zero
on c. Hence, c is not dense in cA .

PROPOSITION 2. Matrices having the type P property are always
o f type M.

PROOF. Let A be of type P and let t E l with tA = 0. Setting
wR = 03A3~i=n ti and Sn = 03A3ni=0 ti we see that zv E V and

Taking the limit (as m ~ oo ) we obtain the equations
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for each k and so Wn = 0 for every n. This means that tn = 0 for
every n and so A is of type M.

If E is a subset of cA then by E we shall mean the closure
of E in the cA-topology. Let co denote the set of null sequences
and let ek denote the sequence having a 1 in the kth coordinate
and zeros elsewhere.

THEOREM 3. if A is reversible, then A is o f type P i f and only if
c0 = CA .

PROOF. By using the representation (1) with 03B2n = 0 for every n
it is easily seen that when A is of type P then the only member
of c’A which vanishes on Co is the zero functional.

Conversely, suppose éo = cA and let w E V with

Then the functional

defines a member of c’A which vanishes on co (because f(ek) = 0
for each k) and so it must vanish identically on cA . Since A is
onto c we may choose xx in cA so that Axk = ek for k = 0, 1, 2, ···.
Then f(xk) = 0 and so wk = wk+1 for k = 0, 1, 2, ..-, that is,
w = (y) a constant sequence. But then for each x in cA we have

Since A is reversible this means that y = 0; hence, A is of type P.

COROLLARY 4. If A is a conull reversible matrix, then A is perfect
z f and onl y i f A is of type P.

PROOF. This follows from Theorem 3 since for conull matrices,
éo D c.
We have already noted that the identity matrix is not of type

P and so a multiplicative type M matrix need not be of type P.
However, a multiplicative type M matrix is almost of type P
in the following sense.

PROPOSITION 5. Il A is multiplicative and o f type M then the
conditions zv e V and 1 wn(ank - an-1,k) ---- 0 f or each k imply that
w is a constant sequence.
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PROOF. Let A and w satisfy the hypothesis and set tn = wn-wn+1
and sn = 03A3ni=1 ti. Then t ~ l and for each k = 0, 1, 2, ···, we have

Since A is multiplicative, limma,nk = 0 for each k ; hence, taking
the limit (as m ~ oo ) we see that tA = 0. Since A is of type M
it follows that t = 0. Thus, w must be a constant sequence.

In contrast with this, we remark here that if A is not multi-

plicative then the only constant sequence w in V such that

z wn(ank-an-1,k) = 0 for every k is the zero sequence. (Indeed,
if w = (y), then 1 03B3(ank-an-1,k) = 03B3 · lim,, ank for each k.)
For most of what follows we shall require only that A preserve

null sequences, that is, A : co ~ co. (The class of all such matrices
contains, among others, the multiplicative conservative matrices.)
Given such a matrix, its null summability field is defined to be
the set co = {x : Ax ~ c0}. Then A : c’ - co is a linear continuous
operator and so its adjoint A’ : c’ - ci is given by the equation
A’t, x&#x3E; = t, Ax&#x3E; for each t in 1 and each x in c0A (where we have
identified, as usual, Co with 1). Let A t represent the transpose
matrix of A and, for an operator T, let ker T denote its kernel.

LEMMA 6. 1 f A : eu - co, then ker A ’ c 1 n ker A t.

PROOF. If t ~ ker A’, then (t, Ax&#x3E; = (A’t, x&#x3E; = 0 for each

x E Co. In particular, this is true for each ek. Thus,

and so t E l n ker A t.

THEOREM 7. I f A : Co ~ Co, then ker A’ = l n ker A t i f and
only i f A (co) is dense in A(c0A), where the closure is taken in the
norm topology o f co.

PROOF. To prove the necessity let f e c’0 with f = 0 on A(c0).
Then [7; p. 91J, f(y) = 03A3tnyn for some t in l and all y in Co.
Since ek e co we see that 0 = f(Aek) for k = 0, 1, 2, ... and so
t ~ l n ker At = ker A’. It follows that A’t, x&#x3E; = 0 for each x
in c0A and hence that 0 = t, Ax) = f(Ax) for each x in c0A,
which shows that A(c0) is dense i n A(c0A).
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Conversely, let t ~ l n ker A t. Then t, y) defines a continuous
linear functional on co which vanishes on A(c0). (Indeed, if

x E Co then

where the interchange of the order of summation is justified by
the absolute convergence of the series.) Hence t, y) vanishes
on A (cÀ) which implies that A’t, x&#x3E; = 0 for each x in cÂ. Thus,
t e ker A’. This, combined with Lemma 6, proves the Theorem.

THEOREM 8. Let A : co ~ Co. If A is reversible then A(c0) is
dense in A(c0A) i f and only i f co is dense in c0A.

PROOF. The sufficiency is obvious (without the assumption
that A be réversible) since A is continuous.

Conversely, let f E ct. Since A is reversible, a development
similar to that found in [7; p. 230] shows that we may write
f(x) = 03A3n tn 03A3k ankxk for some t in l and all x in c0A. Now suppose
that f vanishes on co and let x be any member of c0A which is not
in co. (If c0A = co then we are done.) By hypothesis, to each
e &#x3E; 0 there corresponds a sequence u in co such that

Since f(u) = 0 we may write f(x) = f(x-u) and so

Therefore, f = 0 on c0A.

THEOREM 9. Let A be a reversible multiplicative matrix. Then
the following statements are equivalent:

I f , in addition, A is of type P then A satisfies each of these con-
ditions.

PROOF. The equivalence of the three statements follows from
Theorems 7 and 8. The last sentence is a consequence of Theorem 3.
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