Compositio Mathematica

D. W. Curtis
 Property Z for function-graphs and finitedimensional sets in I^{∞} and s

Compositio Mathematica, tome 22, $\mathrm{n}^{\circ} 1$ (1970), p. 19-22
http://www.numdam.org/item?id=CM_1970__22_1_19_0
© Foundation Compositio Mathematica, 1970, tous droits réservés.
L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numbam

Property Z for function-graphs and finite-dimensional sets in I^{∞} and s

by

D. W. Curtis

For each $i>0$, let $I_{i}=[-1 / i, 1 / i],{ }^{0} I_{i}=(-1 / i, 1 / i)$. The Hilbert cube I^{∞} is the product $\prod_{i>0} I_{i}$, with pseudo-interior $s=\prod_{i>0}{ }^{0} I_{i}$ (also denoted by ${ }^{0} I^{\infty}$). Let $I^{\alpha}=\left\{x \in I^{\infty}: x_{i}=0\right.$ if $i \notin \alpha\}$, similarly for ${ }^{0} I^{\alpha}$, and let π_{i}, τ^{α} denote the projections onto I_{i}, I^{α}, respectively. For $\alpha=\{1, \cdots, n\}$ we write $I^{\alpha}=I^{n}, \tau^{\alpha}=\tau^{n}$. We use the metric $d(x, y)=\max _{i>0}\left|x_{i}-y_{i}\right|$ in I^{∞}, and the corresponding supremum metric d^{*} for maps into I^{∞}.

Definition (Anderson [1]). A closed subset K of X has Property Z in X if for every nonempty, homotopically trivial open set U in $X, U \backslash K$ is nonempty and homotopically trivial.

We show that the graph $G(f)$ of a continuous function $f: I^{\infty} \rightarrow I^{\infty}$ has Property Z in $I^{\infty} \times I^{\infty}$, and that a closed subset $K \subset s$ with dimension k and finite deficiency $2 k+1$ has Property Z in s.

Lemma 1. Let K be a closed subset of s. Suppose that for every $n \geqq 0$, every $\operatorname{map} f: I^{n} \rightarrow s$, and every $\varepsilon>0$, there exists a map $g: I^{n} \rightarrow s$ such that $d^{*}(f, g)<\varepsilon$ and $g\left(I^{n}\right) \cap K=\emptyset$. Then K has Property Z.

Proof. We show that for every map $f: I^{n} \rightarrow s$ with $f\left(B d I^{n}\right) \cap K=\emptyset$, and every $\varepsilon>0$, there exists a map $g: I^{n} \rightarrow s$ such that $f / B d I^{n}=g / B d I^{n}, d^{*}(f, g)<\varepsilon$, and $g\left(I^{n}\right) \cap K=\emptyset$. Clearly, this implies Property Z. Choose an n-cube J^{n} in ${ }^{0} I^{n}$ such that $d\left(f\left(I^{n} \backslash J^{n}\right), K\right)>0$. Let $0<\eta<\min \left\{d\left(f\left(I^{n} \backslash J^{n}\right), K\right), \varepsilon\right\}$, and let $g_{0}: J^{n} \rightarrow s$ be a map such that $d^{*}\left(f / J^{n}, g_{0}\right)<\eta$ and $g_{0}\left(J^{n}\right) \cap K=\emptyset$. Extend the map $f \mid B d I^{n} \cup g_{0}$ to a map $g: I^{n} \rightarrow s$ such that $d^{*}(f, g)<\eta$. Then $g\left(I^{n}\right) \cap K=\emptyset$.

The condition of the lemma is actually equivalent to Property Z. Moreover, since a closed subset K of I^{∞} has Property Z in I^{∞} if (and only if) $K \cap s$ has Property Z in s (Anderson [1]), and since there exist arbitrarily small maps of I^{∞} into s, the lemma remains true when s is everywhere replaced by I^{∞}.

Lemma 2. Let maps $f, g: I^{n} \rightarrow I^{3^{n}}$, and $\varepsilon>0$ be given. Then there exists a map $h: I^{n} \rightarrow I^{3^{n}}$ such that $d^{*}(g, h)<\varepsilon$ and $f(x) \neq h(x)$ for every x.

Proof. Assume $\varepsilon<1$. Choose $\delta>0$ such that $d(x, y)<\delta$ implies $d(f(x), f(y)), d(g(x), g(y))<\varepsilon / 3^{n+1}$. On each interval I_{i}, $i=1, \cdots, n$, take a regular subdivision with mesh less than δ / n, and consider the resulting product subdivision $\left\{J_{1}^{n}, \cdots, J_{r}^{n}\right\}$ of I^{n} into n-cubes. Each cube has diameter less than δ, and no cube meets more than $3^{n}-1$ other cubes. Thus to each cube J_{j}^{n} we may assign an integer $i_{j}, 1 \leqq i_{j} \leqq 3^{n}$, such that $i_{k}=i_{m}$ only if $J_{k}^{n} \cap J_{m}^{n}=\emptyset$. For each cube J_{j}^{n}, select a point p_{j} in the corresponding interval $I_{i j}$, such that $p_{j} \notin \pi_{i_{j}} f\left(J_{j}^{n}\right)$ and

$$
d\left(p_{j}, \pi_{i_{j}} g\left(J_{j}^{n}\right)\right)<\varepsilon / 3^{n+1}
$$

Let V be the collection of vertices of the cubes $\left\{J_{j}^{n}\right\}$, and define a function $h_{0}: V \rightarrow I^{3^{n}}$ as follows: $\pi_{i_{j}} h_{0}(v)=p_{j}$ if $v \in J_{j}^{n}$, otherwise $\pi_{i} h_{0}(v)=\pi_{i} g(v)$. Extend h_{0} piecewise-linearly to $h: I^{n} \rightarrow I^{3^{n}}$.

The lemma holds true with $I^{3^{n}}$ replaced by I^{n+1}, but for our purposes the sharper result is unnecessary.

Theorem 1. Let $f: I^{\infty} \rightarrow I^{\infty}$ be a map. Then $G(f)$ has Property Z in $I^{\infty} \times I^{\infty}$.

Proof. Let $\tau_{1}^{\infty}, \tau_{2}^{\infty}, \tau_{2}^{n}$ be the projections of $I^{\infty} \times I^{\infty}$ onto $I^{\infty} \times 0$, $0 \times I^{\infty}, 0 \times I^{n}$, respectively. Suppose a map $g: I^{n} \rightarrow I^{\infty} \times I^{\infty}$ and $\varepsilon>0$ are given. Consider the maps $\tau_{2}^{3^{n}} \circ f \circ \tau_{1}^{\infty} \circ g, \tau_{2}^{3^{n}} \circ g: I^{n} \rightarrow I^{3^{n}}$. By Lemma 2 there exists a map $h: I^{n} \rightarrow I^{3^{n}}$ such that $d^{*}\left(\tau_{2}^{3^{n}} \circ g, h\right)<\varepsilon$ and $h(x) \neq\left(\tau_{2}^{3^{n}} \circ f \circ \tau_{1}^{\infty} \circ g\right)(x)$ for every x. Consider the map $\bar{g}: I^{n} \rightarrow I^{\infty} \times I^{\infty}$, defined by $\tau_{1}^{\infty} \circ \bar{g}=\tau_{1}^{\infty} \circ g$, $\tau_{2}^{3^{n}} \circ \bar{g}=h$, and $\pi_{i} \circ \tau_{2}^{\infty} \circ \bar{g}=\pi_{i} \circ \tau_{2}^{\infty} \circ g$ for $i>3^{n}$. We have $d^{*}(g, \bar{g})<\varepsilon$ and $\bar{g}\left(I^{n}\right) \cap G(f)=\emptyset$. By the remark following Lemma 1, $G(f)$ has Property Z.

In I^{∞} (and in s), homeomorphisms between closed subsets with Property Z can be extended to space homeomorphisms (Anderson [1]). Since $I^{\infty} \times 0$ has Property Z in $I^{\infty} \times I^{\infty}$, the above result guarantees the existence of a homeomorphism H of $I^{\infty} \times I^{\infty}$ onto itself, such that $H / G(f)=\tau_{1}^{\infty} / G(f)$. In general, we cannot require that $\tau_{1}^{\infty} \circ H=\tau_{1}^{\infty}$. (With such an H for $f=i d$, the map $h: I^{\infty} \rightarrow I^{\infty}$ defined by $h(x)=\tau_{2}^{\infty} \circ H^{-1}(x, p)$, where $0 \neq p \in I^{\infty}$, would have no fixed point).

A closed subset K of I^{∞} or s has finite deficiency k if $\tau^{k}(K)=0$.

Corollary 1. If $K \subset I^{\infty}$ has finite deficiency k and can be imbedded in I^{k}, then it has Property Z.

Proof. Let $h: K \rightarrow I^{k}$ be an imbedding, and let H be a homeomorphism of I^{∞} onto itself, such that $\pi_{i} \circ H=\pi_{i}$ for $i>k$ and $\tau^{k} \circ H \mid K=h$. Partition the set of positive integers into two infinite classes α, β, with $\{1, \cdots, k\} \subset \alpha$, and consider $I^{\infty}=I^{\alpha} \times I^{\beta}$. Clearly, $H(K) \subset G(f)$ for an appropriate map $f: I^{\alpha} \rightarrow I^{\beta}$, and since Property Z is hereditary (Lemma 1), $H(K)$, and therefore K, has Property Z.

Corollary 2. A closed subset K in I^{∞} with dimension k and finite deficiency $2 k+1$ has Property Z.

This result for the case $k=0$ relates to the question, raised by Anderson, of whether a closed set with Property Z in I^{∞} (or s) intersects a hyperplane of deficiency one in a set with Property Z in the hyperplane. Pelczynski suggested as a possible counterexample a wild Cantor set in the hyperplane $\{0\} \times \prod_{i>1} I_{i}$, and Anderson verified that such a set does have Property Z in I^{∞}.

Since, with K as above, $K \cap s$ has dimension less than or equal to k and finite deficiency $2 k+1$, the following theorem may be regarded as a generalization of Corollary 2.

Theorem 2. A closed subset K in s with dimension k and finite deficiency $2 k+1$ has Property Z.

Proof. Let a map $f: I^{n} \rightarrow s$ and $\varepsilon>0$ be given. Let $\gamma=\{2 k+2, \cdots, 2 k+n+2\}, \gamma^{\prime}=\{1, \cdots, 2 k+1\} \cup\{2 k+n+3, \cdots\}$. Choose $0<\delta<\min \{1 / 2(2 k+n+2), \varepsilon / 12\}$. Since (s, d) is totally bounded there exists a finite open cover of K with mesh less than δ and ord $\leqq k$. Let L be a realization in

$$
U=\left\{x \in \mathcal{I}^{2 k+1}: d(x, 0)<\varepsilon / 4\right\}
$$

of the abstract nerve of the cover. Let $\bar{m}: \prod_{i>2 k+1}{ }^{0} I_{i} \rightarrow U$ be an extension of the barycentric map $m: K \rightarrow L$. Then \bar{m} defines a homeomorphism h of s onto itself, such that $d^{*}(h, i d) \leqq \varepsilon / 4$, $\pi_{i} \circ h=\pi_{i}$ for $i>2 k+1$, and $\tau^{2 k+1} \circ h \mid K=m$. Let $g: I^{n} \rightarrow s$ be a piecewise-linear map with $d^{*}(g, h \circ f)<\varepsilon / 4$. We construct a map $r: g\left(I^{n}\right) \rightarrow s$ such that $d^{*}(r, i d)<\varepsilon / 4$ and $r\left(g\left(I^{n}\right)\right) \cap h(K)=\emptyset$; r will change coordinates only in the directions given by γ, and will be independent of the coordinates in the directions given by $\{2 k+n+3, \cdots\}$. Let $\left\{\sigma_{i}\right\}_{1}^{d}$ be an ordering of the simplices of L, with $\operatorname{dim} \sigma_{i} \leqq \operatorname{dim} \sigma_{j}$ if $i \leqq j$. Choose a closed cover $\left\{B_{i}\right\}_{1}^{q}$ of
L, such that $B_{i} \subset{ }^{0} s t \sigma_{i}$, and $B_{i} \cap B_{j} \neq \emptyset$ only if $\sigma_{i} \subset \sigma_{j}$ or $\sigma_{j} \subset \sigma_{i}$. Let $\eta>0$ be such that $d\left(B_{i}, B_{j}\right)>2 \eta$ if $B_{i} \cap B_{j}=\emptyset$. For any subset D of ${ }^{0} I^{\gamma}$ with $\operatorname{diam} D<\delta$, let $[D]=\prod_{i \in \gamma} J_{i}$, where $J_{i}=\left[\inf \pi_{i}(D)-\delta, \sup \pi_{i}(D)+\delta\right] \cap I_{i}$. Let

$$
\alpha(D)=\left\{i \in \gamma: \inf J_{i}=-1 / i\right\}
$$

and

$$
\beta(D)=\left\{i \in \gamma: \sup J_{i}=1 / i\right\}
$$

then $\alpha \cap \beta=\emptyset$. If $\alpha \cup \beta=\emptyset$, and $y \in{ }^{0}[D]=\prod_{i \in \gamma}{ }^{\circ} J_{i}$, let $p(y):[D] \backslash y \rightarrow B d[D]$ be the projection from y. Otherwise, for each $0<\xi<\delta$, define

$$
[D]_{\xi}=\prod_{i \in \alpha}\left[-1 / i+\xi, \sup J_{i}\right] \times \prod_{i \in \beta}\left[\inf J_{i}, 1 / i-\xi\right] \times \prod_{i \notin \alpha \cup \beta} J_{i},
$$

and let $p(\xi):[D]_{\xi} \rightarrow B d[D]_{\xi} \cap B d[D]$ be the projection from a point in ${ }^{0}[D] \backslash[D]_{\xi}$. In either case, there exists a homotopy $\left\{p_{t}\right\}_{t \geqq 0}$ of $[D] \backslash y$ into $[D] \backslash y$, of $[D]_{\xi}$ into $[D]_{\xi}$, with $p_{0}=p(y)$, $p(\xi)$, respectively, and $p_{t}=i d$ for $t \geqq 1$. Extend each p_{t} by the identity on ${ }^{0} I^{\gamma} \backslash[D]$. For each $\sigma_{i} \subset L$, let $D_{i}=\tau^{\gamma}\left(m^{-1}\left({ }^{0} s t \sigma_{i}\right)\right)$. We successively define maps

$$
r_{1}: g\left(I^{n}\right) \rightarrow s, \cdots, r_{a}:\left(r_{a-1} \circ \cdots \circ r_{1} \circ g\right)\left(I^{n}\right) \rightarrow s
$$

as follows. If $\alpha\left(D_{i}\right) \cup \beta\left(D_{i}\right)=\emptyset$, choose

$$
y \in{ }^{0}\left[D_{i}\right] \backslash \tau^{\gamma}\left(r_{i-1} \circ \cdots \circ r_{1} \circ g\right)\left(I^{n}\right)
$$

Otherwise, choose $0<\xi<\delta$ such that

$$
\tau^{\gamma}\left(r_{i-1} \circ \cdots \circ r_{1} \circ g\right)\left(I^{n}\right) \cap\left[D_{i}\right] \subset\left[D_{i}\right]_{\xi}
$$

In either case, let $\left\{p_{t}\right\}_{t \geq 0}$ be the homotopy noted above, and define $r_{i}:\left(r_{i-1} \circ \cdots \circ r_{1} \circ g\right)\left(I^{n}\right) \rightarrow s$ by $\tau^{\gamma^{\prime}}\left(r_{i}(x)\right)=\tau^{\gamma^{\prime}}(x)$, and $\tau^{\gamma}\left(r_{i}(x)\right)=p_{t}\left(\tau^{\gamma}(x)\right)$, where

$$
t=d\left(\tau^{2 k+1}(x), B_{i}\right) / \eta
$$

Let $r=r_{q} \circ \cdots \circ r_{1}$. Then $\left(h^{-1} \circ r \circ g\right)\left(I^{n}\right) \cap K=\emptyset$ and

$$
d^{*}\left(h^{-1} \circ r \circ g, f\right)<\varepsilon .
$$

REFERENCE

R. D. Anderson

[1] On topological infinite deficiency, Michigan Math. J. 14 (1967), 365-383.

