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Summary

Let X1, g 2’ ... be strictly d-dimensional independent random vectors with
common distribution function F, with finite second moments and nonzero first
moment vector fi. Let U(A ) = 03A3~1 Fm(A), where Fm denotes the m-fold convolution
of F. The paper studies the asymptotic behaviour as Ixl - oo of U(A +x) for
bounded A. The results of Doney (Proc. London Math. Soc. 26 (1966), 669-684)
are derived under more general conditions by a new technique, viz. by first studying
the more easily manageable generalized renewal measure WF = 03A3~1 m03C1 Fm, where
p = 1 2(d-1). This is done by comparing WF and WG for F and G having the same
first and second moments, using local central limit theorems.

1. Introduction

Throughout this paper F, G and H will denote distribution
functions of strictly d-dimensional probability measures - also
denoted by F, G, H - with characteristic functions ~, y, X,

respectively. A measure on the Borelsets of Rd is called strictly
d-dimensional if its support is not contained in a hyperplane of
dimension lower than d.

Convolutions will be written as products or powers. Vectors,
random or not, will be distinguished from scalars by a bar. The
inner product of the vectors x and y will be written (x, ), and
1-il = (x, x)1 2.
The second moments of F, G, H will be finite and the first

moment vector

of F will be nonzero.

We consider the sequence Xk ~ (Xk1, ···, Xkd), k = 1, 2, ’ ’ ’, of
independent random vectors with common distribution function
F, and the random walk Sn = X1± ··· +x n - 1, 2, ···. .
Let N(A ) be the number of n with Sn e A and
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The corresponding quantities for G and H will be denoted by UG
and UH. A similar convention will apply to WF defined below
in (1.8).

It was shown by Doney [2] that for |c| = 1 and bounded A with
boundary having volume zero,

where

if Iimsup|03BC|~~ |~03BC)|  1 and sufficiently many moments of F
exist. He also gave a version of (1.3) for integer valued

XII, ..., Xl,. The constant P depends on the first and second
moments of F.

That the number of moments required increases with d, follows
from (1.2) since its first term F(A + tc) may spoil (1.3) if it does
not tend to zero fast enough. Now consider the case d = 3,
,ul &#x3E; 0, ,u2 = P3 = 0. By symmetry

with

so that

From (1.3) and (1.6) it follows then that

a relation that cannot be disturbed by misbehaviour of the first
term. We are led to consider the asymptotics of
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and from these to derive Doney’s results by extensions of (1.6).
For d = 1 expressions of the form (1.8) were studied by Smith
[6], [9] and Kalma [4]. That WF(A)  co, will be shown in

lemma 2.4.

In order to describe the different possibilities of lattice

behaviour of F, we introduce the following terminology
DEFINITION 1.1. If {u : ~(u) = 1} = {0}, we will call F non-

arithmetic, if {u : 1q;(ü)I = 1} = {0}, it will be called nonlattice. If

G and H are called equilattice.
REMARK. Let X have distribution function F. Then there is a

nonsingular homogeneous linear coordinate transformation X ~ Y,
such that the characteristic function 03B6 of Y has the following
properties: |03B6(u)|  1 except if ul, us are integer multiples of
2n and us+1 = ··· = ud = 0. Then Y ci+ Z with ci deterministic
and the first s components of Z a.s. integer valued. If a1, ···, as
are irrational, F is nonarithmetic but not nonlattice. We refer
to Spitzer [7], Ch. II. 7.

If two distribution functions are equilattice, the same s and â
apply.
Our main results are the following: If G and H have the same

(nonzero) first and second moments and are nonarithmetic or
equilattice, WG and WH have the same asymptotic behaviour
(section 3). This result avoids the tedious classification of lattice
behaviour and opens a way to more refined estimates, to be
derived in a subsequent paper. From these theorems we then
obtain limt~~WF(A+tc) for two special cases: F nonarithmetic
(theorem 4.2) and F "totally arithmetic" (theorem 4.3) and then
limt~~t03C1UF(A+tc) under the extra assumption E 1 (ê, X1)|03C1  oo,
which in a certain sense is best possible (section 6). It is noted that,
in the same way as for d = 1, the relation (1.3) is connected with
F being nonarithmetic, not nonlattice. The second part of (1.3)
is independent of lattice properties.

Techniques of proof were inspired by the proof of theorem
Pl, § 26, in Spitzer [7], using local central limit theorems.

2. Preliminary lemmas

LEMMA 2.1. Let G and H have the same first and second moments
and let |03C8(u)|  1, Ix(ü)1 |  1 on D-{0}, where D = {u : 1 ù | ~ a}.
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If ~(u) has continuous second derivatives on D and

then

uniformly in ài and

uniformly in x. Hereù = J xdG.
REMARK. The lemma also holds if D is replaced by any suffi-

ciently regular bounded domain.

PROOF. We refer to the proofs of theorem P 9 (remark) and
P 10 in Spitzer [7], Ch. II. 7. In (b) we have to write

It is noted that the boundary terms arising by the application of
Green’s theorem tend to zero exponentially as m - oo, uniformly
in x.

LEMMA 2.2. I f F is gaussian, the density wp(.i) of WF is bounded
and

uni f ormly in every closed sector not containing il. Furthermore

uni f ormly with respect to 03BE in bounded sets. Here B is the covariance
matrix of Y2, ..., Yd determined as follows: Let the random vector
X have distribution F. Then Y1, · · ·, Yd are the components o f X
in a Cartesian coordinate system with y1-axis in the direction of il.
PROOF OF (a) and boundedness. It is no restriction to assume

that a nonsingular homogeneous linear coordinate transformation
has been carried out so that X1, · · ·, Xd are independent with unit
va.riances and 03BC1 = f-l &#x3E; 0, 112 = ... · = Ild = 0. Then

where q2 = X2+ ... +x2d, so that wF(x) is majorized by the one-
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dimensional renewal density of N(03BC, 1). In the sector {|~| ~ 2 03B8x1}
with 0  03B8 ~ 1 we have

so that wF(x) is majorized by the one-dimensional renewal density
at 03B8x1-|~| of N(03B803BC, 2), where 03B8x1 - |~| ~ - ~ as |x| ~ ~, 
uniformly in the sector.

PROOF oF (b). It is no restriction to assume that pi = 03BC &#x3E; 0,
fl2 = ... = 03BCd = o. Let C be the covariance matrix of X1, ···, X d
and A = C-1. Then

with

where 03B1(x) and 03B2(x) are bounded if |x| - co in the way stated
in the conditions. It is noted that ali &#x3E; 0 since F is strictly
d-dimensional. If f3(x) were zero, the one-dimensional renewal
theorem would give

from which the theorem follows with the relation

But exp {-(1/2m)03B2(x)} = 1+m-103B6(x) with ’(x) bounded and
the contribution of the terms with m-103B6(x) tends to zero for
t - co, again by the one-dimensional renewal theorem, as is seen
by writing

DEFINITION 2.3. A continuous function g E LIon Rd belongs to
class Kd if its Fourier transform vanishes outside a bounded set
B(g) and has continuous second derivatives.

REMARK. We make use of Kd since weak convergence of
measures on Rd is implied by convergence of their integrals of
elements of Kd . See Breiman [1], Ch. 10.2.
An example of a nonnegative element of Kd is a product of

sufficiently high even powers of xk 1 sin akxk, k = 1, ..., d.
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LEMMA 2.4. Under the assumptions of section 1 we have

WF(A)  oo for bounded A, in fact WF(A+x) is bounded with
respect to x.

PROOF. Let G have the same first moments and covariance
matrix as F. The proof compares WF and WG. It is lengthy but
large parts of it will serve again in proving deeper results below.

Let g ~ 0, g EKà, such that |~(u)|  1, 1 y (u) |  1 on B(g)-{0}.
We consider

where y is the Fourier transform of g. By lemma 2.1:

Putting

with

It is easily seen that the Vi(|x|) are finite. By taking for G a
gaussian distribution, it follows then from lemma 2.2 that
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and therefore WF(A )  oo for bounded A.
It will be shown that the Vi are bounded and

The boundedness of WF(A+x) with respect to x then follows
from lemma 2.2.

That V1(|x|) ~ 0, follows from a theorem of Toeplitz (Loève
[5], § 16, Hardy [3], Ch. III), since (2.10) holds,

for fixed y and

is bounded in |x|.
That Vi(|x|) - 0, i = 2, 3, may be derived from (2.6), (2.10)

and the boundedness in |x| of

3. Comparison theorems

THEOREM 3.1. Il G and H have the same nonzero first moment
vector and the same covariance matrix, there is a nonnegative g E Kd ,
positive on a neighbourhood of 0, such that

uni f ormly in the direction of x.

PROOF. This is implicit in the proof of lemma 2.4 (See (2.11)).
We may take g as in the example following definition 2.3 with
the ak sufficiently small.

THEOREM 3.2. Il G and H are nonarithmetic and have the same
nonzero first moment vector and the same covariance matrix, then
(3.1) holds, uniformly in the direction of x, for any g E Kà.

PROOF. First assume that d is odd, so that p is an integer. Let
y be the Fourier transform of g. Then
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where D = fû : |u| ~ 03BE} is such that |03C8(u)|  1 and /x(ü)1  1

on D-{0}. In the same way as in the proof of lemma 2.4 we
majorize A(x) by V1(|x|)+V2(|x|)+V3(|x|), so that by (2.11)

uniformly in the direction of x. By lemma 2.4 both terms on the
left in (3.2) are finite. As seen above, the series (3.3) converges.
So the same is true for the series (3.4) and with Abel’s theorem

with

Now 039B(z) is a finite sum of powers of (1 -z)-l. Since G and H are
nonarithmetic, 1p(ü) and ~(u) are bounded away from 1 on DCB(g)
and the limit in (3.6) may be taken under the integral sign. By
the same argument the Riemann-Lebesgue lemma then applies to
the limiting integral, so that

uniformly in the direction of i, and (3.1) follows from (3.2),
(3.5) and (3.7).
Now assume that d is even. We write down (3.1) for d+1 with

xd+1 = 0 and G, H replaced by the product measures of G, H on
Rd and the gaussian probability measure N(o, 1 ) on Rl. For
g ~ Kd+1 we take gd(x1, ···, xd)g1(xd+1) with gd ~ Kd, gl E K1. This
gives 
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with

Taking t2g1(t) eLi we have 03B6(m) = 03B6(03C3)+0(m-1), and the proof
is finished by noting that

uniformly in the direction of i, and similarly for H. The relation
(3.8) may be derived from lemma 2.4 by writing

with M large, and noting that for fixed m

uniformly in the direction of x.

THEOREM 3.3. Il G and H are equilattice and have the same
nonzero first moment vector and the same covariance matrix, (3.1)
holds for any g E Kd , uniformly in the direction of x.

PROOF. We assume that the coordinate transformation described
in the remark to definition 1.1 has been carried out, so that

|03C8(u)|  1, |~(u)|  1, except if ul, ..’, Us are integer multiples
of 203C0 and 03BCs+1 = ’ ’ ’ ua = o. Furthermore

(3.9) 03C8(u) = 03C81(u) exp {i(u, a)}, x(u) = xi(u) exp (1(dl, a)},
where 1p1 and X, are periodic in u1, ···, Us with period 203C0. Let y
be the Fourier transform of g. Then

The bounded domain of integration (since g E Kd) is divided into
subdomains {-03C0+ki203C0 ~ uj  03C0+kj203C0, j - 1, ···, s} and by a
change of variable each of them is translated to the corresponding
domain centered at 0. By (3.9) and the periodicity of 1p1 we then
find
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where the finite number of terms in the sum depends only on g.
For H a similar relation holds and in the same way as in lemma
2.4 it is shown that

THEOREM 3.4. Let G be arithmetic with lp(ü) = 1 i f u1, ..., ud
are integer multiples of 203C0 and |03C8(u)|  1 elsewhere. Let H with
characteristic function X E L, have the same nonzero first moment
vector and the same covariance matrix as G. Then, as k ~ oo

through d-dimensional integers,

uni f ormly in the direction of k. Here WH is the density of WH.

The first term tends to zero by the Riemann-Lebesgue lemma since
X E LI and Ix(u)1  0  1 on DI. The second term is treated in
the same way as in the proof of lemma 2.4.

4. Limits of WF(A+X)

THEOREM 4.1. For bounded A, uni f ormly in every closed sector
not containing il,

PROOF. From lemma 2.2a and theorem 3.1.

THEOREM 4.2. Il F is nonarithmetic and A is bounded and the
boundary of A has volume zero,

where B is defined as in lemma 2.2b.

PROOF. From lemma 2.2b and theorem 3.2. See the remark
to definition 2.3. The theorem may be stated as weak convergence
of the measure Zt with Zt(A) = WF(A+tu).
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THEOREM 4.3. Let F be arithmetic with cp(ü) = 1 i f u1, ···, Ud
are integer multiples of 203C0 and 1q;(ü)1 (  1 elsewhere. Then, as

x ~ oo through d-dimensional integers within bounded distance of
the hal f line y = ta, t &#x3E; 0,

with B defined as in lemma 2.2b.

PROOF. From lemma 2.2b and theorem 3.4.

5. Limit theorems for U(A+X)

THEOREM 5.1. Let A be a bounded set.

(b ) Il f 121 P F(dx)  oo, then uni f ormly in every closed sector not
containing fi,

NOTE. The proof below does not apply to d = 2, but for
d = 2, 3, 4 stronger results hold, due to the existence of second
moments (theorem 5.2).

PROOF OF (a). By Minkowski’s inequality and the symmetry
in X1, ···, X m 

Here the first term tends to zero since R is a finite measure and
the second term tends to zero since in
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the integrand converges to zero for t ~ oo by theorem 4.1 and
is bounded by lemma 2.4.
The theorem now follows from (5.10) and the boundedness of A.

PROOF OF (b). In the same way as above

The right-hand side of (5.13) has limit zero for Ixl ~ oo, (uni-
formly) in any closed sector not containing p. This follows from
theorem 4.1 by a relation analogous to (5.11). Since K is a finite
measure, we may write K = K0+K1, with Ko restricted to a
bounded set and K1(Rd)  03B5, and make use of the boundedness
of WF(A +z) stated in lemma 2.4.

THEOREM 5.2. For bounded A we have, uni f ormly in any closed
sector not containing il,

PROOF. The theorem is a consequence of the assumed existence
of second moments.

It is no restriction to assume that 03BC1 = 1, 03BC2 = ··· = f-ld = 0.

Take g E Kd as in the proof of lemma 2.4, and let G be gaussian
with the same first and second moments as F. By (2.1) and
lemma 2 .1 b.
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By elementary integration we find that

is bounded in any closed sector not containing p. (Put ~2 ~ «2xi
and y = xlz). It follows then with (5.15), (5.16) and the Toeplitz
theorem (Loève [5], § 16, Hardy [3], Ch. III) that

The theorem follows from (5.15) since it is easily seen that, with
the uniformity stated,

This may be shown by the method used in the proof of lemma
2.2a. It is noted that for’ xl - - 00 the renewal density corre-
sponding to N(03BC, 1) decreases exponentially if f-l &#x3E; 0. See Stone

[8].

THEOREM 5.3. Let F be nonarithmetic, and A a bounded set
whose boundary has volume zero. Then, if é = fillfil and

~ |(c, x)|03C1 F(dx)  00,

where B is defined as in lemma 2.2b.

PROOF. For convenience of notation we assume pi = ,u &#x3E; 0,
f-l2 = ... = fld = o. Let k  m, k  max (2, p). By symmetry
(cf. (1.5)) we have

where the Ri are finite signed measures, in particular

So
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Here the first term tends to zero since E{|X11|k}  00. In the

second term the principal contribution is for i = k. It may be
written

where 8(m) = 0(mP-1) for m ~ oo. Since limt~~ WF(B+t) exists
(theorem 4.2) we have by (5.17), using an argument similar to
the one applied to (5.11)

The second term in (5.19) and the contributions with i ~ k-1 in
(5.18) tend to zero for t ~ oo. We refer to (3.8). So (5.18), (5.19),
(5.20) give 

We have now to distinguish:
1° d is odd. The theorem follows from theorem 4.2 and (5.21)

with k = p.
2° d even, d &#x3E; 6. From theorem 4.2 and (5.21) with k = 1, 2:

where y is the limit occurring in (4.1). Put

and consider a family of integer valued random variables

{Mt, t &#x3E; 0}, with

(5.26) P{Mt = m} = t203BC-203B3-1m03C1-2Fm(A+t)/03BB(t), m = 1, 2, ...

Expectations with respect to the probability distribution (5.26)
will be denoted by El.
From (5.22)-(5.24)
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in quadratic mean and in probability. Then

and if in (5.28) limit and El may be interchanged, we obtain
with (5.26)

and the proof is finished. It is sufficient to show that to every e
there is C 8 with

or, equivalently,

By (5.8) and the boundedness of A it is sufficient for (5.29) that

with R given by (5.9). Since R is a finite measure, the first term
in (5.30) tends to zero for t ~ oo. We have

so with (5.27) and (5.26)

The sum from m = 2 on in (5.30) is majorized by

where the integrand for fixed y tends to zero as t ~ oo, since
(5.31) also holds with A replaced by A - y. Moreover the integrand
is bounded (lemma 2.4), so that (5.32) has limit zero for t - oo.
So (5.30) holds.

3 ° d = 2, d = 4. The proof of 2° applies up to and including
(5.28) and now E1 and limit are interchanged since 0  2 -p  2

and t-1 Mt ~ p-1 in quadratic mean.
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THEOREM 5.4. Under the conditions o f theorem 4.3, if
~ 1(u, x)|03C1 F(dx)  ao,

PROOF. The theorem is derived from theorem 4.3 by the same
methods as theorem 5.3 from theorem 4.2

REMARK. No theorems for densities are given here, but on
inspection of the proofs involved it is easily seen that the condi-
tion g E Kd may be weakened if ~ E Ll. The theorems for densities
then follow by taking y = cp.

6. Are the conditions essential?

The condition E|(c, X1)|03C1  oo of section 5 in a sense is best

possible as is seen by the following example : Let X1 be arithmetic,
X11 and (X12, ···, X1d) independent, 03BC1 &#x3E; 0, fl2 = ··· = 03BCd = o,
and

Then E|X11|03B8 is finite for 03B8 ~ 03C1 - 03B5 and infinite for 0 &#x3E; 03C1 - 03B5,
and the first term in (1.2) causes theorem 5.4 to fail. Leaving
out a finite number of leading terms in (1.2) does not help, for
we may replace the distribution (6.1) by

where the ak are positive and have sum 1. Along the same
lines examples may be constructed where E|X11|03C1 = oo and
E{|X11|03C103B6(X11)}  ~ with 03B6(x) ~ 0 sufficiently slowly.
The assumption that all second moments are finite may not

be best possible for our results on WF, in fact it is conjectured
that E(Y2k)  ao, k = 2, ..., d, with Y,, Y, as in lemma 2.2,
is sufficient for (4.1). We also conjecture that theorem 5.2 can be
improved to give 03B8(x) = x2.

Note added in proof. Lemma 2.lb is not correct. The boundary
term arising by the application of Green’s theorem is bounded by
|x-m03BC|03B8m, where 0  0  1. In the proof of lemma 2.4 extra
terms should be added to (2.7) and (2.9). These are easy to
handle and (2.11) continues to hold. Similar remarks apply to
the proofs of theorems 3.2, 3.3 and 3.4.
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The boundary term may vanish by periodicity or if q e Rd and
D = B(~). See definition 2.3.
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