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J: some group of non-negative matrices
I: the neutral element of 9
N = ker I

S = im 1
P : the cone of non-negative vectors in R"
P0 = IP
A1, ···, Ak: the edges of Po
a, E Aj (j = 1, ···, k), a, ~ 0
B - {e1, ···, en}, the set of unit vectors in Rn
M ==NnP

Mj = {x ~ P | Ix ~ Aj}
Bo = N ~ E
Ej = (Mi n E)BE0 (j = 1, ···, k)
K,: the linear hull of Ej
ai = bj+cj, bj ~ Ki, c, c- M.

There has been some interest, in recent years, in groups of non-
negative matrices. Brown [1] discovered the striking fact that any
such group is finite if it is compact, and Schwarz ([6], § 4) gave
a detailed description of groups of stochastic matrices. In these
papers, groups of non-negative matrices were studied in the
context of semigroup theory. Both authors restricted their atten-
tion to compact groups.

In the present paper a fairly complete description of all groups
of non-negative matrices will be given, without the restriction of
compactness. This includes a proof of Brown’s theorem as well as
an extension of some results of Schwarz. Our method is quite
elementary, contrasting with Brown’s proof which uses Lie theory.
Indeed it was the desire to prove Brown’s theorem in an elementary
manner which led to the results presented here.
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Let P C Rn be the cone of vectors with non-negative compo-
nents, and denote by J any group of non-negative n X n matrices.
Non-negativity means 9P C P. Denote by I the unit element of
J. 1 is an idempotent matrix. So Rn = N (D S where N = ker I
= (x ~ Rn| Ix = 0} and S = im I = {IxBx E Rn}. The relations

G = GI = IG, I = GG-1= G-1G imply N = ker G, S = im G for
every G E 9. Thus dim S is the rank of every element of J (the
rank of J, as we shall say for shortness). On S, e acts as a trans-
formation group in the usual sense; in particular, Ir = x for every
x ~ S.

Let Po = P n S, G E J. We have GP C P and also GP C S, that
is, GP C Po. Furthermore, Po = I Po = GG-1 P0 C GPo C GP. So
GP = GPo = Po, for every G E 9.

Like P, Po is a convex pyramid. We shall have to study certain
extreme subsets of Po. A subset Q of a convex cone C is called
extreme if Q is a convex cone and a E e, b E C, a + b ~ Q imply
a E Q, b E Q. A convex cone C is spanned by a set D C C if C
is the set of all linear combinations of elements of D with non-

negative coefficients. Alternatively, D spans C if C is the smallest
convex cone containing D. The following lemma is obvious.

LEMMA 1. Il D spans C and Q is extreme in C, D n Q spans Q.
Define M = N ~ P, E0 = N ~ E where E = {e1, e2’ ..., en} is

the set of unit vectors in Ryl. M is extreme in P, and so is spanned
by E0, by Lemma 1. Further let A1, ···, Ak be the edges of Po,
define Mj = (r E P|Ix ~ Aj}, and let Ej be the complement of Eo in
Mi n E, for i = 1, 2, ···, k. Every M, is extreme in P since the Aj
are extreme in Po. So by Lemma 1 again, Mj is spanned by
E0 ~ Ej. For y ~ l, we have Mj ~ Ml = M, Ej n El == 0.
Now select a non-zero vector aj on every Aj. For every there

is a unique decomposition aj = bj + cj where bj is in the linear
hull of E; , and ci E M. lai = aj ~ 0 ; so aj ~ M, bj ~ 0. Since the
Bi are mutually disjoint, the b, are linearly independent. Further-
more, ci E M which is spanned by E0; this is disjoint from every
Bi (1 = 1, - - -, k). So any linear relation involving the a, would
entail the same relation for the bj. We have proved
LEMMA 2: al, ... ak are linearly independent.
Po = P n S is a pointed closed convex pyramid, that is, the

solution set of a system of weak homogeneous linear inequalities,
of maximal rank. It is well known that a closed pointed convex
pyramid is spanned by its edges. (See [4], pp. 40-43, or [3],
Corollary 1B. ) So P, is spanned by al, ···, ak. On the other hand,
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Po = IP contains Ie1, ···, Ien; so its linear hull contains S, and
therefore is equal to S. This shows that S is the linear hull of
{a1, ···, ak}; by Lemma 2, {a1, ···, ak} is a basis of S, and dim S = k.
Now it is easy to describe the way in which J operates on S.

Since GPo = Po for every G E J, G permutes the edges of Po:

where 03BBj(G) &#x3E; 0, and 03C0G is some permutation of the set

{1, 2, ’ ’ ’, k}. Clearly, 03BBj(I) = 1 for all j, and n, is the identity.
Once I is given, and N, a1, ’ ’ ’, ak have been defined as above,

equation (1) completely describes all possible G. Indeed let

03BB1, ···, 03BBk be any positive numbers, and 03C0 any permutation of
{1, ···, k}. Define G(03BB1, ···, 03BBk; 03C0) to be that matrix G which
satisfies

Since the a, are a basis of S, and Rn = N E9 S, a matrix
G(03BB1, ···, Â,; 03C0) is uniquely defined by (2). 1 claim that G is non-
negative, i.e. that GP C P. Now GP0 = Po is obvious from (2) and
the fact that the 03BBj are positive. Furthermore, we have IN = {0},
Iai = ai (j = 1, ···, k); so G = GI, GP = GIP = GP0 = P0.
A simple calculation shows that the different G(03BB1, ···, 03BBk; 03C0)

multiply according to the rule

In an abstract setting, where the 03BBj are elements of an arbitrary
group B, the group defined by (1) (or (3)) was introduced by
Ore [5] who called it the complete monomial group of degree k over
B. So we have proved

THEOREM 1. Every maximal group of non-negative matrices of
rank k is isomorphic to the complete monomial group of degree k over
the reals.

(Of course, by an elementary theorem of semigroup theory,
every subgroup of a semigroup is contained in a unique maximal
subgroup. )

In fact, our proof shows somewhat more than just the isomor-
phism stated in Theorem 1 : for any two maximal groups of non-
negative n X n matrices whose ranks are identical, one is the image
of the other under some inner automorphism of the semigroup of
all n  n matrices. This is not so, however, within the semigroup
Hn of all non-negative n  n matrices. Indeed consider the idem-

potents
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both of rank two. The equation Ii X = 0 has non-trivial solutions
in :Y?3 for i = 2 but not for i = 1. So there is no automorphism
of H3, inner or not, which maps (the maximal subgroup contain-
ing) h onto (the maximal subgroup containing) I2 .
The considerations preceding Theorem 1 give a complete

description of all maximal groups of non-negative matrices pro-
vided we know all possible systems (N, a1, ···, ak). Some informa-
tion about these systems is implicit in our next theorem which
describes the non-negative idempotent matrices, generalizing
Doob’s description of stochastic idempotents ([2], Theorem 2).

THEOREM 2. Let I be a non-negative idempotent matrix of rank k.
There exists a permutation matrix P such that

where the J, are non-negative idempotent matrices of rank one, that
is, matrices (03B1s03B2t), as &#x3E; 0, 03B2s ~ 0, 03A303B1s03B2s = 1. Conversely, every
matrix (4) where J is given by (5) while A and B are arbitrary non-
negative matrices of appropriate sizes, is idempotent and of rank k.
Remember that the change from I to P-’IP means that a

certain permutation is simultaneously performed on the rows and
columns of I. This operation is an isomorphism for matrix multi-
plication and thus does not interfere with idempotence.
We begin by proving a particular case of Theorem 2. Assume

that no column of I is zero. This means that Eo is empty. Assume
further that no row of I is zero either. It follows that every ei occurs
in the canonical decomposition of some x E S, and so of some aj;
in other words, u Ej = E. Now let Ki be the linear hull of Ej.
Then Rn = K, ~ ··· QQ Kk . Furthermore, IKi is the line through
a,, for every j. So I is reduced by the Ki, and each restriction of
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I to some Kj has rank one. By rearranging the coordinates in such
a way that the unit vectors belonging to each Ki are grouped
together, we find a matrix

where the Jj are idempotents of rank one. So we have proved
Theorem 2 for the particular case indicated above.

In the general case, we begin by grouping the indices
i = 1, 2, ···, n in four sets according to whether the i-th row and
column of I are both zero, or the i-th row is zero but the i-th
column is not, and so on. By simultaneously rearranging rows and
columns, we find a matrix

where Pi is a permutation matrix, and K, L, M are such that K
and L have no zero row in common, and K and M have no zero
column in common. I1 is idempotent: K2 = K, KL = L, MK = M,
ML = N. Since K and L = KL have no zero row in common, K
cannot have a zero row. Similarly, no column of K is zero. By the
first part of the proof, a further permutation performed simultane-
ously on the rows and columns of K produces a matrix of the form
(5). This completes the proof of Theorem 2 in one direction. The
converse is trivial.

Equation (3) shows that the mapping x : G - 03C0G is a homo-

morphism of 9 into the symmetric group In the case in which
J is bounded, more can be said.

LEMMA 3. If J is bounded, 03C0 is an isomorphism.
This is an immediate consequence of

LEMMA 4. If J is bounded, and i f for some index j and for some
G e 9, 03C0G(j) == j, then Âi (G) == 1.
Under the assumptions made in Lemma 4, Gaj = 03BBj(G)aj and

G-laj == (03BBj(G))-1aj; so by iteration,
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Since 9 is bounded, so is the set {Ctaj|t = 0, ±1, ±2, ···}. Since
Âj (G) &#x3E; 0, this implies 03BBj(G) = 1.
To derive Lemma 3, assume that G E ker 03C0, i.e. 7&#x26;G is the identity.

So by Lemma 4, Gaj = ai for every Since S is the linear hull of
the a; , it follows that Gx = x for every x E S, i.e. G = I.

c:9 thus is isomorphic to a group of permutations on k elements.
Actually, J itself acts as a group of permutations on a set of
suitably chosen multiples 03BC1a1, ···, Pkak. For suppose the indices
i and i are in the same class of transitivity with respect to 03C0(J).
If G and H are elements of J satisfying 03C0G(i) = 03C0H(i) = i,
Lemma 4 shows that Gai = Hai (= some multiple of aj). So it is
possible to choose 03BC1, ···, 1 Yk in such a way that

for all j. (This choice is unique, up to a common factor, if and only
if 03C0(J) is transitive.) We also see that 9 is contained in (at least)
one maximal bounded group of non-negative matrices: once multi-
ples di = !liai have been fixed, consider the set of all linear

transformations vanishing on N and permuting the dj. We have
proved
THEOREM 3. Every bounded group of non-negative matrices is

contained in at least one maximal bounded group of non-negative
matrices. Every maximal bounded group o f non-negative matrices is
isomorphic to the symmetric group Jk where k is the rank o f the
matrices in the group.

In particular, every bounded group of non-negative matrices is
finite. This is Brown’s theorem.

In the special case of stochastic matrices, our Theorem 3 is

related to Theorem 8 of [6] which says that every maximal group
of stochastic matrices of rank k is isomorphic to //k. To deduce
this fact from our Theorem 3, we have to show that if J consists
of stochastic matrices, then among the maximal bounded groups of
non-negative matrices containing J there is one, at least, which
consists entirely of stochastic matrices. (Since the stochastic n X n
matrices form a semigroup, the theorem on semigroups mentioned
at an earlier occasion implies that there is at most one. )
Now a non-negative matrix G is stochastic if and only if Ge = e

where e = e1+e2+ ··· +en. Let e = x+03A3kj=103BCjaj, x E N. Since I
is stochastic, e = Ie = 0+03A303BCjaj. So x = 0. Thus

If Ci E E=, say, 03BClbl is the only term on the right whose i-th



382

coordinate may be different from zero. Since the i-th coordinate
of e is one, we have Ili =1= 0, for all j. Now for every G e J,

So

This shows that 9 acts as a group of permutations on the set
{03BCjaj|J - 1, 2, ···, kl, and may be extended to the group of all
linear transformations vanishing on N and permuting the !liai.
In the proof of Theorem 1 it was shown that transformations of
this kind are necessarily non-negative. Since they leave invariant
e = 03A303BCjaj, they are stochastic. This proves Schwarz’s theorem.

In concluding, 1 am glad to acknowledge a suggestion from the
referee which resulted in simplifying the proofs of Lemma 2,
Theorem 2, and Schwarz’s theorem.
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