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1. Introduction

In the following we will verify several properties of the fine topology
on the set of functions which map from a topological space to a
metric space (definitions in § 2). This topology was first introduced
by Whitney [9] and still sometimes carries his name. It later appears
(for example) in Morlet [6], Peixoto [8], Eells-McAlpin [3], and
Elworthy [4]. These authors were faced with the problem of showing
that an arbitrary function could be approximated in a spécial sense
by a certain set of nice functions, i.e., that a particular set of functions
was dense in the fine topology. Here, however, we are interested in the
topological structure of the fine topology itself. The main result

(Corollary 5.2) is that a function space with the fine topology is
totally disconnected when the domain space is an infinite dimensional
manifold - a fact which appears to discourage further interest in its
structure. We also answer questions concerning metrizability, com-
pleteness, and (Baire) category. The terminology of [2] is followed;
all maps are taken to be continuous.

2. The fine topology

The fine topology on the set of maps from the space X to the
metric space Y is generated by the "tubes"

where e is any map X - reals &#x3E; 0 and p is a fixed metric on Y. These
tubes actually form a basis. We call the resulting space C°ne (X, Y).
If X is paracompact, the topology of this space turns out to be inde-
pendent of the choice of metric on Y by the following.

1 The results of this work form a chapter of the author’s doctoral dissertation
directed by J. Eells at Cornell University and supported in part by NSF Grants
GP5882 and GP8413.
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PROPOSITION 1. Let X be paracompact, then the fine topology is
generated by the collection of sets

where (Ca) is a locally finite closed cover of X, (Va) is an open cover of
Y, and ~ is a map of index sets (oc) ~ (03B2). (It turns out that the col-
lection (A) also forms a basis).

PROOF. By way of notation let B(y, r) be the p-ball of radius r at y
in Y.

Suppose f E d ( ( Ca), (V03B2), cp) and x e X; then x is contained in

exactly C1, ···, CN, and so f(x) is contained in V~1, ···, V~N and
possibly more. We define the function

and show that it is lower semi-continuous. Suppose xv - x and
03B4(xv)  a. Since (C03B1) is a locally finite closed cover, we can find a
neighborhood V of x which meets C1, ···, CN and no other C03B1.
Assume (xv) C V; then each xv is contained in some subcollection of
C1, ···, CN and no other Ca, and therefore

And since 03C1((x),(xv)) ~ 0, we get 03B4(x) ~ a. Finally since ô is a
positive lower semi-continuous function on a paracompact space X,
there is a map e : X - reals such that 0  e(x)  03B4(x) for all x E X.
Then clearly we have T(f, a) ~ A((C03B1), (Vp), ~).
Now suppose we are given T(, e). Let Vf(x) = B((x), 03B5(x)/4) and

let Vx = -1(Vf(x)) ~ fx : 8(X) &#x3E; 03B5(x)/2}. Then (Vx) is an open cover
of X which can be refined to a locally finite closed subcover (Cx).
Now suppose g Ed ((Cx)’ (Vf(x»)’ ). For any i there is some Cx which
contains it. Since (Cx) ~ Vf(x) and g(Cx) C Vf(x), we clearly have
03C1((x), g(.i»  03B5(x)/2  8(X). Therefore we get

REMARKS. We can define a topology, as above, on the set of maps
between two spaces X and Y which reduces to the fine topology when
X is paracompact and Y is a metric space.
We should further remark that the metrics

(which allow the value infinity) also generate the fine topology, and
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therefore fi (X, Y) is a completely regular Hausdorff space with
a uniform structure given by the collection (03C103B5).

3. Metrizability

It is clear that, if X is compact, the fine topology reduces to the
topology of uniform convergence and therefore has a metric induced
from that of Y. If, however, X is not compact, the fine topology is
not in general metrizable.

PROPOSITION 2. Il X is paracompact and noncompact and Y contains
an arc, then C0fine (X, Y) is not metrizable.

PROOF. We will show that C0fine (X, Y) is not even first countable.
First consider the special case of C0fine (X, I) where I is the closed

unit interval. Suppose that there is a countable base T(z, 8n) at the
"zero" map z(X) = 0 ~ I. The assumptions on X imply that it is not
countably compact and therefore not sequentially compact (see
Kelley [5], p. 162E, p. 171V), so there is a countable sequence

(xn) C X having no cluster points. Define the map e : (xn) ~ (0, 1)
by 03B5(xn) = 1 403B5n(xn) (we can assume that all En  1). Since (xn) is a
closed subset of normal space X, we can apply Tietze’s theorem to get
an extension e : X - (0, 1) (see Dugundji [1 ], p. 149). Then clearly
we have 1 203B5n ~ T(z, 8n) and 1 203B5n ~ T(z, 8) for all n. Therefore we cannot
have T(z, 8n) C T(z, 03B5) for any n; a contradiction.
Now since Y contains an arc, there is an embedding ~ : I ~ Y. We

show that induces another embedding 03A6: C0fine(X, I ) ~ C0fine(X, Y)
where 03A6() = q o f, and therefore C0fine (X, I ) cannot be first countable
since it contains a subspace which is not first countable. It is easy to
see that 0 maps one-one onto C0fine (X, ~(I)). To show 0 is continuous,
let e be given and let Un = (x : 03B5(x) &#x3E; (1/n)}. Since I is compact,
for each n there is a 03B4n &#x3E; 0 such that |(x)-g(x)|  03B4n implies
03C1(~(x), ~g(x))  (1/n)  03B5(x) for all x E Un . We can assume all the
03B4n are bounded, and therefore we can define the function

It is easily seen that 3 is lower semicontinuous, so as before there is
a map c5 : X - reals such that 0  03B4(x)  03B4(x) for all x EX. Hence
we have 0393(T(, ô» C T(03A6(), 03B5). The continuity of

follows similarly.
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REMARK. Note that the argument above shows that if 99 : Y - Z
is uniformly continuous, then 0 : C0fine(X, Y) - CZne(X, Z) is con-

tinuous.

4. Completeness and category

PROPOSITION 3. If Y is complete, then C0fine(X, Y) is complete in its
uniform structure.

PROOF. It is clear that for our purposes (ga) is a Cauchy net if for
every e : X ~ reals &#x3E; 0 there is an A g such that ga E Y(gl , s) for
03B1 &#x3E; A03B5 and that (ga ) ~ g if for any s there is an Ag such that
ga E T(g, s) for oc &#x3E; AB. We show that any Cauchy net (ga) converges
to some g E C?ïne(X, Y). Fixing x e X we have that

for oc &#x3E; Ag. Since e and therefore e(x) is arbitrary, this says that
(g03B1(x)) is a Cauchy net in Y and hence converges to some y E Y;
define g by g(x) = y. Clearly g03B1(x) E B(g(x), 3e(x» and therefore
g03B1 E T(g, 303B5) for oc &#x3E; Ag, so we have (g03B1) - g. We need only show
that g is continuous, but this follows easily since the convergence
(g03B1) ~ g is stronger than uniform convergence.
PROPOSITION 4. Il X is a k-space and Y is complete, then C0fine(X, Y)

is a Baire space (See Peixoto [8], p. 225). X is a k-space if U is open
in X iff U n C is open in C for all compact C in X. First count-
able spaces are k-spaces, see Kelley [5], p. 230.)
PROOF. Let (On) be a countable collection of open sets dense in

C0fine(X, Y). We show that n 0. meets any given T(, s) and is there-
fore dense. Since 01 is dense, there is an fi E T(, s) and an el such
that T( f1, 03B51) C T(, s) n 03B81 and 0  El(x)  e(x)12 for all x e X.
Since 02 is dense, there is an 2 E T(1, 03B51) and an E2 such that
T(f2’ £2) C T(1, £l) and 0  E2(x)  el(x)12 for all x e X. Continuing
this process we get maps (fn) and (£n) where

and 0  03B5n(x)  03B5(x)/2 for all x e X. Since

03C1(fn(x),fp(x))  03B5n(x)  03B5(x)/2n for p &#x3E; n,

we have that (fn(x)) is a Cauchy sequence and therefore (fn(x)) ~ y;
define g by g(x) = y. Then since p(fn(x), g(x)) ç 03B5n(x) for all n and
x ~ X, we have g ~ T(fn, 03B5n) ~ ··· ~ T(f,03B5) ~ 03B81 ~···~ 03B8n for all n,
and therefore T(f, e) and n 03B8n meet at g.
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We need only show that g is continuous. Take a compact C in X
and let 9 = supx~C s(x), then we get p(1.(x), g(x))  9/2- for all x E C.
So on any fixed compact subset of X the convergence (fn) ~ g is
uniform and hence g is continuous there. And finally, since X is a
k-space, g is therefore continuous everywhere.

5. Connectedness

LEMMA. If X is a metric space and the closure of fx : f(x) ~ g(x)l
is noncompact, then f and g lie in different components of C0fine(X, Y).
(See Kelley [5] p. 107 V for a special case.)

PROOF. By hypothesis there is a sequence (xn) C X, with no cluster
points, on which f(xn) ~ g(xn) for all n. Define

03B5(xn) = (l/n) 03C1(f(xn). g(xn)) &#x3E; 0;

then a : (xn) - (0, ~) is continuous. Since (xn) is closed we can apply
Tietze’s theorem to get an extension e : X - (0, oo ).

Define Z = {h : 3 a constant Ch where p(h(x), f(x))  Ch e (x) for
all x E X; then clearly f e Z. Furthermore g ~ Z since otherwise

p(f(xh), g(xh))  (1/n) Cg p(f(xn), g(xn)); a contradiction for large n.
We now show that Z separates f and g.

First we show Z is open. Let h e Z so that we have

for all x E X, and let

Then if k e T(h, 03B4) we have p(k(x), h(x))  03B4(x). By an easy calcula-
tion 03C1(k(x), f(x))  Ch03B5(x) so k E Z and therefore T(h, 03B4) C Z.
And finally Z is closed. Let p E Z, then there is a q E Z such that

03C1(p(x), q(x))  03B5(x) for all x ~ X. But

Therefore we have p E Z.

COROLLARY 1. C0fine ( R, R ) is not locally connected at any point.
PROOF. For any f and s-tube around it, the map f+03B5/2 is in this

tube and is never equal to f.
REMARK. Notice that even though any two maps f and g : R - R

are homotopic, there may not be a path between them in C0fine(R, R).
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COROLLARY 2. Il X is a metric space which is not locally compact at
any point (for example, X could be an infinite dimensional mani-
fold), then C?ïne(X, Y) is totally disconnected.

PROOF. Suppose f and g are not identical; then they differ on some
open set and therefore on some noncompact set of X.
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