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Asymptotic expansions in renewal theory
by

B. B. van der Genugten

1. Introduction and statement of the results

Let 4 be a probability measure defined on the Borel sets of
(— o0, ) with [|z|u{dz} < © and u, = [zu{dz} > 0. Then the
renewal measure » belonging to u, defined by » = Y 3°u"™*, assigns
finite measure to bounded Borel sets.

In this paper our aim is to get approximations of »{z+ E},
E some Borel set, for ¢ - — o0 if u{(— o0, #)} decreases exponen-
tially, and for # — oo if u{(z, )} has this property. Woik on
this has been done in Stone [1] and [2]. Results are obtained for
u lattice and for the case that some y™* is non-singular (we call
w lattice with span d if u is concentrated on {nd : —0 < n < o0}
but not on {nd’: —c0 <m <o} for any d' > d, and we call
4™* non-singular if it contains an absolutely continuous com-
ponent).

Let g(s) be the moment generating function of u, defined by
g(s) = [e**u{dx}, the domain being all complex numbers for which
the integral exists absolutely. As far as defined let A(s,) denote
the residue of 1/(1—g(s)) at s = s,.

THEOREM 1. Let u be lattice with span 1.

a) If g(s) exists for some s with Re s = —R < 0, then for any
r € (0, R] with g(s) # 1 on Re s = —r, the set

S={s9:8(s0) =1, —r < Re sy <0, —n < Im sy <z}

is finite, A(s,) exists for sy € S and for integer k — — c©

(1.1) v{k} = ES A (sg)e%*1-o0(e™)
(1.2) v{(—o0, k]} = ES (L—e%) 1 A(sq)e "0 *+o0(e™).

b) If g(s) exists for some s with Res = R > 0, then for any
r e (0, R] with g(s) # 1 on Re s = r, the set
S ={sg:8(50) =1,0 < Resy <r, —n < Ims, <z}
331
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is finite, A(s,) exists for sy € S’ and for integer k — oo

(1.8) v{k} = pyt— 3 A(sg)e=%%+0(e"").
Moreover, if u, = [a?u{da} < oo then
(1.4) ’V{(-—-w, k)}

= kfur+ 3ua/p)*+ ZS (L—em0)71 A(so)e~"-0(e™™).

Under mild conditions S is not empty and contains even one
real point which provides the leading term. This does not hold
for the set S'.

THEOREM 2. Let u be lattice with span 1, u{(— oo, 0)} > 0 and
let I be the interior of the interval I of real points s < O for which
g(s) exists. Suppose I is not empty.

a) If I=1 or if there exists some s with g(s) =1 and Rese I,
or even Resel and Im s = 2nk, k = 0, -1, - - -, then there exists
exactly one real sy eI with g(sy) = 1. Moreover, g'(sq) < 0 and
for some r > —s,

(1.5) v} = —e~0¥g! (s0)+o(e™), k— —oo
(1.6) »{(—o0, k]} = —e%k/{g'(s9)(1—e®)+o0(e™), k — —oo.
b) If I 1 and there does not exist such an s, € I then for any
—rel
v{k} = o(e™), k— —o0
v{(— o0, k]} = o(e™), k — —o0.

Moreover, if even there does not exist such an s, € I then these order
relations hold for r = R, where — R is the (finite) left boundary of I.

The corresponding theorems for x4 non-lattice are:

THEOREM 8. Let u™* be non-singular.
a) If g(s) exists for some s with Res = —R < 0, then for any
r € (0, R] with g(s) #« 1 on Re s = —r, for which the singular part
£ of u™* satisfies
0 oo
(1.7) f e ¢ {da)+ f (14a)c{day <1,
—00 0

the set
= {85 : 8(s0) =1, —r < Re 5, < 0}

is finite, A(s,) exists for sy € S and for & -~ — ©
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(1.8) v{g+E} = zs A(so)e—”omee"‘“‘dt—}—o(e"“)

for every Borel set E bounded from above. In particular, for x — — oo
(L9) (@)= — 3 s Also)e o o(e”)
8¢
b) If g(s) exists for some s with Res = R > 0, then for any
r € (0, R] with g(s) =1 on Res =r, for which the singular part
¢ of u™* satisfies

(1.10) f Y (1—a) t{da}+ f "o r(day < 1,

—0o0

the set
S" = {sy:8(s0) =1,0 < Re sy < r}

is finite, A(s,) exists for s, € S’ and for  — oo
(1.11) »{z+E} = |E|/p,— ES’A(so)e“"o“fEe“’otdt—i—o(e‘””),

for every Borel set E bounded from below of finite length |E|. More-
over, if u, = [a*u{dx} < oo then
(112) »{(—o0, @)} = @/ + Fualma )2+ 3 857 A(se)e+-o0(e™™).

8,8’

THEOREM 4. Let u™* be non-singular, u{(— oo, 0)} > 0, let the
singular part of u™* be restricted to (— o0, 0], let I be the interior
of the interval I of real points s < O for which g(s) exists and let E
be a Borel set bounded from above. Suppose I is not empty.

a) If I =1 or if there exists some s with g(s) =1 and Resel,
or even Resel and Im s # 0, then there exists exactly one real
so €I with g(sg) = 1. Moreover, g'(s,) < O and for some r > —s,

(1.18) »{z+E} = —e—so”‘f e%otdt|g'(sg)+o(e™), @ — —o0.
E

In particular

(L14)  »{(—o0, @)} = e~%/eog'(so)+0(e™), @ —> —c0

b) If I #£1 and there does mot exist such an s, € I then for any
—rel
v{e+E} = o(e™), & > —©
»{(— 0, 2)} = o(e™), & —> —c0.

Moreover, if even there does not exist such an s, € I then these order
relations hold for r = R, where — R is the (finite) left boundary of 1.
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2. Proof of the theorems

Proor oF THEOREM la). g(s) is analytic for Re s € (—R, 0),
continuous for Rese[—R, 0], g(i0) %1 for |0| € (0, 27) and

(2.1)  g(s) = 1+pu,8+o0(]s]), for |s] -0 and Res < 0.

Therefore, for any r e (0, R] with g(s) #1 on Res = —r and
& > 0 sufficiently small the function 1/(1—g(s)) is continuous
on I', and analytic within I" with the exception of a finite number
of poles. Here I is the contour in the complex s-plane shown in
fig. 1. If for one or more s, with Re s, € (—r, 0) it occurs that

A Im
I
/o ——
Y A
C
e
r
- \ Re
A
/;\ >
[ F2
Figure 1
g(so) =1 with Im s, = = and also g(5,) =1 with Im §, = —=

then the parts I} and I, of I” are slightly deformed as indicated.
Setting
w(s) = {1—g(s)} *+{m(1—e)}

we get with the Cauchy residue theorem

1
2.2 — | e *P(s)ds = A(sy)e %k,
(22) ], s = 3 AGs)
According to Stone [3], (20), for k£ << 0 we have
(2.8)
1 . , .1
vk} = — f Re {e~*W(i6)}d0 = lim — e~ (s)ds.
2n)_, £-0 4T J e<|Im s|<nr

Re 8=0
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With the Riemann-Lebesgue lemma,

1 —rin 1 m
(2.4) — f e Y(s)ds = — e J e~ ORP(i0—r)d0 = o(e™),
271 2%

—r—i7T -

k — —oo.

Since g(s-+2ni) = g(s), the contributions of I} and I'y to the
integral in (2.2) cancel out. With (2.1) we see that the contribution
of C to the integral in (2.2) tends to zero for ¢ = 0. So (1.1)
follows from (2.2)—(2.4) and (1.2) follows from (1.1).

b) The proof of (1.3) is similar to that of (1.1). Use Stone [1],
(20), for £ = 0. With (1.3)
N—k
+ 3 (=) Alsg)e~ ol ) F-o(e ),

1 8,8

v{k, N) =

k— o0, N - o©

and, as is well-known,

N
lim [v{(——oo, N)}— E:l = pa/th)?

N-oo
we get (1.4).

LeEMMA A. Let I and I be defined as in theorem 2. Suppose I is
not empty and u{(— 0, 0)} > 0. If I =1I or if g(s,) = 1 for some
s, with Res, el then there exists exactly one real syel with
g(so) = 1. We have g'(sy) < 0.

Proor. Let

g(s) :f (e*—1)u{—da}, —sel
(2.5) 10,

ga(s) = f(o ) (1—e=)u{dx}, —sel.

Since g,(0) = g,(0) = 0, 0 < g;(0*) < g,(0+) and g, is convex
and g, concave, there is at most one s, with

0 = g1(—50)—8a(—30) = g(s0)—1,

and then g'(sy) < 0. If g(s;) = 1 with Re s; € I then g(Re s;) = 1.
But g'(0~) > 0 and so there exists s, € I with g(s,) = 1. Finally,
if I =1 i.e. I is open to the left, then g;(—s) - oo if s tends to
the left boundary of I. This also assures that there is s, € I with

g(s) = L.
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PROOF OF THEOREM 2.

a) According to lemma A the set S in theorem 1 contains
exactly one real s, el with g'(sy) < 0 and s, = Res; for any
s, €S. But g has span 1 and so s, > Res; and s, el. With
A(sy) = —1/g'(ss) and theorem 1 we see that (1.5) holds for
some r > —8,. (1.6) follows from (1.5).

b) This part follows immediately from theorem 1.
In the following for any signed measure p let |p| denote its
variation. We call y finite if the measure |y| is finite.

LEmma B. Let u™* be non-singular, { the singular part of u™*,
and let K(z) and L (x), seT with T an arbitrary index-set, be
non-negative Borel functions in  so that

(2.6)  for every fized finite interval 1

K(y—a)u{dy} is bounded in @, —o0 < & << ©
{o+1}

lim |K(y+e) —K(y)l(um*—0){dy} =0, —0>a> 0
E-0 {a:+1}

(2.7) fK(zv),u{dm} < ©
(2.8) Lyz) < K(x), —wo<e<w, seT
(29) Lyety) = L)L), —o <ay<w,seT
(2.10) suprs(w)C{dw} <1

seT

Then for any ¢ > O there exist an integer ny = 1, a measure ¢ with
infinitely often differentiable density with compact support, and
a signed measure ¢' such that

(2.11) ph* = p+g¢',

(2.12) lo"[{(—o0, 0)} <é,

(2.18) 1—e < @p{(—0, 0)} =1,

(2.14) suprs(m)zp{dw} < o0,
seT

(2.15) suprs(w)|<p'|{dw} < e
seT

Moreover, for ¢ < 1 the renewal measure

y=3 ub*
0
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can be written as
(2.16) y =9 "’
with
[+ ¢)
Vo= (u%* - - - e fptmD) g Y gk
0
o0
Vo=@ xy x Y k¥,
0
Here v"' is a finite signed measure with

(2.17) suprs(m)|v"|{dw} < 0.

seT

Proor. With {{(— o0, ©0)} < 1, (2.9) and (2.10) it follows that
for n sufficiently large

(2.18) {r#{(— o0, )} < 2,
(2.19) sup f L (@)+{de} < =

Setting & = pu™* — and n, = nm we get
(2.20) urek = [k Y ("‘) . Bk g Fn—)k
i1 \k

The second term on the right hand side of (2.20) is absolutely
continuous. Let k() be its density. With (2.7), (2.8) and (2.9)
for4 >0

up [ Layrerda} = | [K@utan) | Kahugaa)

seT Jz|=4 x| =A[ng

and so with (2.7) and (2.20) for A4 sufficiently large

(2.21) f h(z)de <
2] =4 4
(2.22) supJ‘ L (z)h(z)dz < ‘.
seT J|z|=z4 4
Set
1 1.—2,2 y
0,(2) = s exp {—dotat), o>

hole) = [ g (a— 1)t
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and let, for 4 > 0, O(x) be some infinitely often differentiable
function with

O(z) =1, 2] = 4—0
0=0(x) =1, A—d= || =4
b(z) = o0, lz] = 4.
With (2.6),
(2.38) K(z)um*{dz} < co.
lo| <4

So with (2.20)

K(z)h(z)dze <
le]<4

and therefore for d sufficiently small, again with (2.6)

4 &
(2.24) f—A |h(2)—h (2)|dx < n

4
(2.25) f K(2)|h(z)—h,(@)|dz < %.
-4
Finally, for é sufficiently small

&
(2.26) fA—&s[MgA (1—0(@))h,(@)dw < —

(2.27) fA_8§lm|§AK(w)(1—G(w))h,(w)dw <=

Let ¢ be the measure with density

po(a) = B(@)h,(2), |o| =4
=0 lx] > A

and ¢’ the sum of the measure {** and the signed measure with
density h(z)—p,(x). Then (2.11) holds, ¢ and ¢’ are finite with
@{(—o0, 0)} =1, and p, is infinitely often differentiable with
compact support [—A4, A].

With (2.18), (2.21), (2.24), (2.26)

l¢"l{(— 00, )} = {"™*{(— o0, c0)}+ 1 IZAh(w)dw

—}-f_: |h(2)—h (2)|dx—+ (1—0(2))h (2)dz < &,

A-s<|z|<A

which proves (2.12). With (2.11) this gives (2.13). From (2.8),
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(2.20) and (2.28) we get (2.14). With (2.19), (2.8), (2.22), (2.25),
(2.27)

sup [Z,(¢'|{d} < sup [L@r+(dat sup [ L @hie)te

seT seT Jijx|=4
+ f 4 K(z)|h(z)—h,(z)|do+ K (z)(1—0(z))h,(z)de < &
-4 A-d<|zl=4

which proves (2.15).
Moreover, if ¢ << 1 then from (2.12) it follows that »"’ is a finite
signed measure. So v—v"’ is defined, and with (2.11),

(o]

'V—’V” J— (‘uo*_l_ oo _|_‘u(”0“1)*) * 2 (Mk”°*—tplk*)
k=1
© k-1
— (‘ulo*_*_ . —I—‘u(”"_”*) % z z w*uj‘no* % (p’(k—l—j)*
k=1 j=0

= (uO* 4 - - - fpino-Dk) 4 § % @ % pino¥ 5 gpf 1)k

§=0 k=j+1
o0
— 17 kng %
= @ x93 prnok,
0

which proves (2.16). Note that the summations with respect to
j and k may be interchanged since »’ is finite.
Finally, (2.17) follows with (2.7), (2.9) and (2.15).

PROOF OF THEOREM 3.
a) Let re (0, R] with g(s) #1 on Res = —r. We apply
Lemma B for T = [—r7, 0],

L (z) = e*=, z <0
= 1+a, =0
K(z) = L_.(x), —0 <2<

and keep the same notations. Denoting the moment generating
function of any finite measure or finite signed measure y different
from u by vy, we get that [|z|}»"|{dz}, ,(—7) and |p"'|;(—7) are
finite.

In (1.8) and (1.9) we may replace » by »’ since

e |{(—o0, 2)} < ey'|{dy} >0 if x > —o0.
(—o0, @)
Note that g(s) and g"(s) are analytic for Re s € (—R, 0), con-
tinuous for Re s e [— R, 0], that g"(i6) # 1 for 0 # 0 and that

(2.28) g"(s) = 1-+myu 8+o(|s]), for |s] >0 and Res < 0.
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Since @, (s) tends to zero if |Im s| — 00, uniformly in Re se[— R, 0]
and |¢'|;(—r) can be made arbitrary small

(2.29) |g™(s)] = C <1, Rese[—R, 0], for |Im s| sufficiently large.

Therefore, for N sufficiently large and & sufficiently small the
function 1/(1—g"(s)) is continuous on I" and analytic within I"
with the exception of a finite number of poles. Here I'is the con-
tour in the proof of theorem with = replaced by N.

If y=mny'-@=+9"’, then y is a finite signed measure with
12{(—o0, 0)} =1, and y,(s) is continuous on I' and analytic
within I'. Setting

(s) = ra(s)[{1—g"(s)} "+ (nopa8) 7]
we get with the Cauchy residue theorem
1
(2.30) = f e W(s)ds = 3 Blso)palse)e ",
vJr 8,€Z

Here B(s,) is the residue of 1/(1—g"(s)) at s =5, and Z is
defined by

Z = {sy:g™(s) =1, —r < Re sy < 0}.
But y,(s0) =1 if g(so) = 1 and y4(sy) = 0 if g™(s,) =1 and
g(so) # 1. If 55 S C Z then B(sy) = ng-A(s,). So we get

(2.31) > B(sg)xa(so)e " = ng* > A(sy)e "

8y€Z ENCR

Let p(x) be the density of »’. In the same way as in the proof
of Stone [2], Theorem, it follows that

f[x(i6+s)|d6 < 0, se[—R,0].

and
)—urt y{(— oo,

(2.82) p(e)—ur - 2{( z)}
’”OJ‘ _ . .My _
— | Re {e=*¥(:0)}d0 = lim — e~ (s)ds.
27 ¢ (303} €50 4N |1mejz e ©)

Re 8=0
It follows easily that
(2.83) x{(— o0, )} = o(e™), x> —o0.

With (2.29) and the Riemann-Lebesgue lemma
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n, —r+4+iN
lim 2_"; e~ (s)ds
N- TV ey
(2.38) 7 i

=T e'””fe“‘“&”(i@——r)d@ = o(e™), x— —o0.
2n

The contributions of Iy and I', to the integral of (2.80) tend to
zero for N — co. This follows with (2.29) and the fact that yx,(s)
tends to zero for |Im s| — oo, uniformly in Re s € [—R, 0]. With
(2.28) we see that the contribution of C to the integral in (2.30)
tends to zero for ¢ — 0. Therefore, from (2.80)—(2.84)

(2.85) p(@) = > A(so)e ®*+o(e™), @& —> —©

EN)
and (1.8), (1.9) follow from (2.85).
b) Compare the corresponding part of the proof of theorem 1.

Proor oF THEOREM 4. Compare the proof of theorem 2. Use
Lemma A and theorem 8. Since g(s) < 1 for real s € (s, 0) and
g(s) = 1 the condition (1.7) is fulfilled for some » > —s,.

3. Final remarks

ReEMARK 1. Let u be lattice or some u™* be non-singular.
Suppose u{(—c0, 0)} > 0 and let g(s) exist for some s < 0. Then
there exists always a finite real number r << 0 such that [e*®»{dz}
converges for s € (r, 0) and diverges for s € (— o0, 7).

This follows from theorem 2 and »{k} bounded, and from
theorem 4, (2.85) and p(x) bounded.

REMARK 2.
a) Suppose g(s) exists for Res < 0. If

(3.1) liminf erkof" lg(60—r)—1|-1d6 = 0
700 0

then the sum in (1.1) converges for r — c0 and equals »{k},
k < ky < 0. This follows from the fact that the left side of (2.4)
tends to zero for r — oo, uniformly in k& < k,. Note that the
sum remains a finite one and (8.1) holds if the number of lattice-
points of u in (— o0, 0) is finite.

b) Suppose g(s) exists for Re s = 0. Similarly, if

(3.2) liminf e~ f " g(i04r)—1]-1d0 = 0
0

- 00
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then the sum in (1.3) converges for r — oo and equals »{k}—pu7?,
k = ky = 0. Note that the sum remains a finite one and (38.2)
holds if the number of lattice-points of x in (0, c0) is finite.

Postscript. Further investigations have led to the stronger
result that theorem 8 continues to hold if (1.7) and (1.10) are
replaced by {,(—7) <1 and ,(r) < 1. The condition in theorem
4 that £{(0, )} =0 can be dropped. We refer to van der Ge-
nugten [4].
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