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1. Introduction and statement of the results

Let 03BC be a probability measure defined on the Borel sets of
( - oo, oo ) with f |x|03BC{dx}  oo and 03BC1 = f x03BC{dx} &#x3E; 0. Then the

renewal measure v belonging to 03BC, defined by v = 03A3~0 fln*, assigns
finite measure to bounded Borel sets.

In this paper our aim is to get approximations of v{x+E},
E some Borel set, for x ~ - oo if 03BC{( - oo, x)} decreases exponen-
tially, and for x ~ oo if 03BC{(x, ~)} has this property. Woik on
this has been done in Stone [1] and [2]. Results are obtained for
fliattice and for the case that some 03BCm* is non-singular (we call
IÀ lattice with span d if y is concentrated on {nd : - oo  n  ~}
but not on {nd’ : - oo  n ~} for any d’ &#x3E; d, and we call

/il M* non-singular if it contains an absolutely continuous com-
ponent ).

Let g(s) be the moment generating function of li, defined by
g(s) = f esx03BC{dx}, the domain being all complex numbers for which
the integral exists absolutely. As far as defined let A (so) denote
the residue of 1/(1-g(s)) at s = so.
THEOREM 1. Let ,u be lattice with span 1.

a) Il g (s ) exists for some s with Re s = - R  0, then for any
r E (0, R] with g(s) ~ 1 on Re s = -r, the set

is finite, A (s0) exists for so E S and for integer k - - oo

b) Il g(s) exists f or some s with Re s = R &#x3E; 0, then f or any
r e (0, R] with g(s) ~ 1 on Re s = r, the set
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is finite, A (s0) exists for so E S’ and for integer k - oo

Moreover, ’t P2 = ~ x203BC{dx}  oo then

Under mild conditions S is not empty and contains even one
real point which provides the leading terme This does not hold
for the set S’.

THEOREM 2. Let Il be lattice with span 1, 03BC{(- oo, 0)} &#x3E; 0 and
let I be the interior of the interval I of real points s  0 for which
g(s) exists. Suppose I is not empty.

a) Il I = I or i f there exists some s with g(s) = 1 and Re s ~ I,
or even Re s ~ I and Im s ~ 2nk, k = 0, ± 1, ···, then there exists
exactly one real so E I with g(so) = 1. Moreover, g’(so)  0 and

for some r &#x3E; -so

b ) Il I ~ I and there does not exist such an s0 E I then for any
2013r ~ I

Moreover, if even there does not exist such an so e I then these order
relations hold for r = R, where - R is the (finite) left boundary of I.

The corresponding theorems for Il non-lattice are:

THEOREM 3. Let Ilm* be non-singular.

a) 1 f g(s) exists for some s with Re s = -R  0, then for any
r E (0, R] with g(s) ~ 1 on Re s = -r, for which the singular part
03B6 of 03BCm* satisfies

the set

is finite, A (so) exists for so E S and for x ~ - oo
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f or every Borel set E bounded from above. In particular, for x ~ - oo

b) Il g(s) exists for some s with Re s = R &#x3E; 0, then for any
r e (0, R] with g(s) ~ 1 on Re s = r, for which the singular part
03B6 of 03BCm* satisfies

the set

is finite, A (s0) exists for so E S’ and for x ~ oo

for every Borel set E bounded from below of finite length JE I. More-
over, if Jl2 = ~ x203BC{dx}  00 then

THEOREM 4. Let 03BCm* be non-singular, 03BC{(- ~, 0)} &#x3E; 0, let the

singular part of 03BCm* be restricted to ( - oo, 0] , let I be the interior

of the interval I of real points s  0 for which g(s) exists and let E
be a Borel set bounded from above. Suppose I is not empty.

a) Il I = I or i f there exists some s with g(s) = 1 and Re s e I,
or even Re s ~ I and lm s ~ 0, then there exists exactly one real
so EI with g(so) = 1. Moreover, g’(so)  0 and for some r &#x3E; -so

In particular

b ) If I ~ I and there does not exist such an so e I then for any
-rel

Moreover, i f even there does not exist such an So c- I then these order
relations hold for r = R, where - R is the ( f inite) left boundary of I.
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2. Proof of the theorems

PROOF OF THEOREM la). g(s) is analytic for Re s e (-R, 0),
continuous for Re s E [-R, 0], g(i03B8) ~ 1 for |03B8| e (0, 2n) and

(2.1) g(s) = 1+,uls+o(isl), for isl ~ 0 and Re s ~ 0.

Therefore, for any r e (0, R] with g(s) ~ 1 on Re s = -r and
e &#x3E; 0 sufficiently small the function 1/(1-g(s)) is continuous
on 0393, and analytic within r with the exception of a finite number
of poles. Here F is the contour in the complex s-plane shown in
fig. 1. If for one or more so with Re so E (-r, 0) it occurs that

Figure 1

g(so) = 1 with Im so = 03C0 and also g(g.) - 1 with Im so = -03C0
then the parts F, and r2 of r are slightly deformed as indicated.

Setting

we get with the Cauchy residue theorem

According to Stone [3], (20), for k  0 we have
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With the Riemann-Lebesgue lemma

Since g(s+203C0i) = g(s), the contributions of 03931 and F2 to the
integral in (2.2) cancel out. With (2.1) we see that the contribution
of C to the integral in (2.2) tends to zero for e ~ 0. So (1.1)
follows from (2.2)-(2.4) and (1.2) follows from (1.1).

b) The proof of (1.3) is similar to that of (1.1). Use Stone [1],
(20), for k &#x3E; 0. With (1.3)

and, as is well-known,

we get (1.4).

LEMMA A. Let I and I be defined as in theorem 2. Suppose I is
not empty and 03BC{(-~, 0)} &#x3E; 0. If I = I or if g(sl) = 1 for some
si with Re SI E I then there exists exactly one real so E I with

g(so) = 1. We have g’(so)  0.

PROOF. Let

Since gi(0) = g2(o) - 0, 0  gi(0+)  g’2(0+) and gi is convex
and g2 concave, there is at most one so with

and then g’ (so )  0. If g(s1 ) = 1 with Re si E I then g(Re sl ) &#x3E; 1.
But g’(0-) &#x3E; 0 and so there exists so e I with g(so) = 1. Finally,
if I = I i.e. I is open to the left, then gi( -s) - oo if s tends to
the left boundary of I. This also assures that there is so E I with
g(so) = 1.
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PROOF OF THEOREM 2.

a) According to lemma A the set S in theorem 1 contains

exactly one real so e7 with g’ (so)  0 and So &#x3E; Re SI for any
si E S. But y has span 1 and so so &#x3E; Re s, and so E I. With
A(so) = -1/g’(s0) and theorem 1 we see that (1.5) holds for
some r &#x3E; -so. (1.6) follows from (1.5).

b) This part follows immediately from theorem 1.
In the following for any signed measure y let (y) denote its

variation. We call y finite if the measure |03C8| is finite.

LEMMA B. Let ¡tm* be non-singular, , the singular part of e*,
and let K(x) and Ls(x), s E T with T an arbitrary index-set, be
non-negative Borel functions in x so that

(2.6) for every fixed finite interval I .

Then for any e &#x3E; 0 there exist an integer no ~ 1, a measure 99 with
infinitely often differentiable density with compact support, and
a signed measure q;’ such that

Moreover, for e  1 the renewal measure
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can be written as

(2.16)
with

Here v" is a finite signed measure with

PROOF. With 03B6{(- ~, ~)}  1, (2.9) and (2.10) it follows that
for n sufficiently large

Setting e = Ilm* -, and no = nm we get

The second term on the right hand side of (2.20) is absolutely
continuous. Let h(x) be its density. With (2.7), (2.8) and (2.9)
for A &#x3E; 0

and so with (2.7) and (2.20) for A sufficiently large

Set



338

and let, for d &#x3E; 0, 0(x) be some infinitely often differentiable
function with

With (2.6),

(2.33)

So with (2.20)

and therefore for 03B4 sufficiently small, again with (2.6)

Finally, for ô sufficiently small

Let ~ be the measure with density

and ~’ the sum of the measure 03B6n* and the signed measure with
density h(x)-p~(x). Then (2.11) holds, q and q’ are finite with
~{(-~, oo)}  1, and p~ is infinitely often differentiable with
compact support [-A, A].
With (2.18), (2.21), (2.24), (2.26)

which proves (2.12). With (2.11) this gives (2.13). From (2.8),
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(2.20) and (2.23) we get (2.14). With (2.19), (2.8), (2.22), (2.25),
(2.27)

which proves (2.15).
Moreover, if E  1 then from (2.12) it follows that v" is a finite

signed measure. So v-v" is defined, and with (2.11),

which proves (2.16). Note that the summations with respect to
j and k may be interchanged since v" is finite.

Finally, (2.17) follows with (2.7), (2.9) and (2.15).

PROOF OF THEOREM 3.

a) Let r E (0, R] with g(s) ~ 1 on Re 8 = -r. We apply
Lemma B for T = [-r, 0],

and keep the same notations. Denoting the moment generating
function of any finite measure or finite signed measure y different
from y by 1JlI’ we get that ~~x| |v"|{dx}, ~1(-r) and |v"|1(-r) are
finite.

In (1.8) and (1.9) we may replace v by v’ since

Note that g(s) and gn0(s) are analytic for Re se ( - R, 0), con-
tinuous for Re s e [-R, 0], that gn0(i03B8) =1=- 1 for 0 =1=- 0 and that

(2.28) gno(s) = 1+n003BC1s+o(|s|), for Isl - 0 and Re s ~ 0.
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Since q;1(S) tends to zero if 1 lm s ~ oo, uniformly in Re s E [- R, 0]
and |~’|1(-r) can be made arbitrary small

(2.29) |gn0(s)| ~ C  1, Re s E [-R, 0], for |Im s| sumciently large.

Therefore, for N sufficiently large and e sufficiently small the
function 1/(1-gn0(s)) is continuous on rand analytic within r
with the exception of a finite number of poles. Here This the con-
tour in the proof of theorem with replaced by N.

If X = n-10 · ~ * v", then X is a finite signed measure with
~{(- co, ~)} = 1, and Xl(s) is continuous on rand analytic
within F. Setting

we get with the Cauchy residue theorem

Here B(so) is the residue of 1/(1-gn0(s)) at s = so and Z is
defined by

But ~1(s0) = 1 if g(so ) = 1 and ~1(s0) = 0 if gn0(s0) = 1 and
g(s0) ~ 1. If so E S C Z then B (so ) = n-10 A (so). So we get

Let p(x) be the density of v’. In the same way as in the proof
of Stone [2], Theorem, it follows that

and

It follows easily that

With (2.29) and the Riemann-Lebesgue lemma
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The contributions of 03931 and T2 to the integral of (2.30) tend to
zero for N - oo. This follows with (2.29) and the fact that xl(s)
tends to zero for 1 lm s | ~ oo, uniformly in Re s e [-R, 0]. With
(2.28) we see that the contribution of C to the integral in (2.30)
tends to zero for a ~ 0. Therefore, from (2.30)-(2.34)

and (1.8), (1.9) follow from (2.35).

b) Compare the corresponding part of the proof of theorem 1.

PROOF oF THEOREM 4. Compare the proof of theorem 2. Use
Lemma A and theorem 3. Since g(s)  1 for real s e (so, 0) and
g(so) = 1 the condition (1.7) is fulfilled for some r &#x3E; -so.

3. Final remarks

REMARK 1. Let IÀ be lattice or some 03BCm* be non-singular.
Suppose 03BC{(- oo, 0)} &#x3E; 0 and let g(s) exist for some s  0. Then

there exists always a finite real number r  0 such that ~ esxv{dx}
converges for s E (r, 0) and diverges for s e ( - co, r).

This follows from theorem 2 and v{k} bounded, and from
theorem 4, (2.35) and p(x) bounded.

REMARK 2.

a) Suppose g(s) exists for Re s Ç 0. If

then the sum in (1.1) converges for r ~ ~ and equals v{k},
k ~ k0  0. This follows from the fact that the left side of (2.4)
tends to zero for r ~ co, uniformly in k  ko. Note that the
sum remains a finite one and (3.1) holds if the number of lattice-
points of p in ( - oo, 0) is finite.

b) Suppose g(s) exists for Re s &#x3E; 0. Similarly, if
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then the sum in (1.3) converges for r - co and equals v{k}-03BC-11,
k &#x3E; ko &#x3E; 0. Note that the sum remains a finite one and (3.2)
holds if the number of lattice-points of p in (0, ~) is finite.

Postscript. Further investigations have led to the stronger
result that theorem 3 continues to hold if (1.7) and (1.10) are
replaced by 03B61(-r)  1 and 03B61(r)  1. The condition in theorem
4 that 03B6{(0, ~)} = 0 can be dropped. We refer to van der Ge-
nugten [4].
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