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1. Introduction

Let X and E be topological spaces. Let Y be a superspace of X.
We say that X is E-embedded in Y provided that every contin-
uous function f : X - E admits a continuous extension f*: Y - E.
We shall be concerned with R-embedding, where R is the space
of the reals. All spaces will be assumed to be Hausdorff completely
regular. For some spaces X, the fact that X is R-embedded in Y
can be decided by examining the extension of only one function
f : X - R (this property of X is formulated precisely in the next
section). This paper contains some partial results concerning the
characterization of such spaces.
We shall now formulate a few statements of purely technical

character.
A function f : X ~ R is said to be absolutely extendable provided

that for every superspace Y of X, f admits a continuous extension
f* : Y - R. We say that f has vanishing oscillation outside compact
subsets of X provided that for every 8 &#x3E; 0 there exists a compact
subset C of X such that

1.1 PROPOSITION. A f unction f : X ~ R is absolutely extendable
i f and only i f f can be continuously extended over every compactifica-
tion o f X.

1.2 PROPOSITION. A f unction f : X ~ R has vanishing oscillation
outside compact subsets of X i f and only i f f is the limit of a uniformly
convergent sequence f1, f2, ··· of f unctions on X each of which is
constant outside a compact subset of X.

1 This paper has been prepared when the author was supported by the U.S. National
Science Foundation, Grant GP-5287. The author wishes to express his sincere
gratitude to Professor H. Shapiro who rendered a considerable help in preparing the
manuscript. The main results of the paper were announced in [6].
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PROOF. The sufficiency of the condition is obvious. To prove the
necessity consider the functions 03B1sn : R ~ R, s E R, n = 1, 2, ···,
defined by

Each «Sn is continuous and |03B1sn(t)-t| ~ 1/n for every t E R.
Assume that f : X -+ R has vanishing oscillation outside com-

pact subsets of X. For every positive integer n find a compact set
Cn C X such that 03C9(f, XBCn) ~ 1/n. Let s be a value of f on
XBCn (if XBCn is empty, then there is nothing to prove) and let
f n be the composition «Sn o f. in is constant outside Cn and the
sequence il, f2, ··· is uniformly convergent to f on X.

1.3 PROPOSITION. A f unction f : X - R is absolutely extendable
i f and only i f f has vanishing oscillation outside compact subsets of X.

PROOF. The necessity of the condition is obvious; the sufficiency
follows from 1.1 and 1.2.

2. The property (Pi). R-compact spaces

2.1 DEFINITION. We say that a space X has the property ( P1 )
provided that there exists a continuous function f : X - R such
that for every superspace Y of X, X is R-embedded in Y if and

only if the function f admits the continuous extension f* : Y - R.
A function f with the above property will be called (for a lack of

a better term) a proper f unction on X.
In this section we shall give a characterization of R-compact

spaces having property ( P1 ). A space is R-compact iff it is homeo-
morphic to a closed subspace of some topological power Rm of R.
Intuitively speaking, an R-compact space is a space which is
either compact or admits a large number of continuous unbounded
functions (precisely: X is R-compact iff for every po E 03B2XBX
there is a continuous function f : X - R which is unbounded on
every neighbourhood of po ). In the next section we shall state some
partial results concerning the property ( P1 ) in arbitrary space.
A function f : X -+ R is said to be bounded only on compact
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subsets of X provided that for every subset A of X, if f is bounded
on A, then Ã (== the closure of A in X) is compact.

2.2 PROPOSITION. A space X admits a continuous function
f : X - R that is bounded only on compact subsets of X i f and only
i f X is locally compact and Lindelof.

Proof is obvious 2.

2.3 PROPOSITION. Let f : X ~ R be a continuous f unction which
is bounded only on compact subsets of X. Let Y be a superspace of X.
X is R-embedded in Y i f and only i f the function f admits a conti-
nuous extension f * : Y ~ R.

PROOF. The necessity of the condition is obvious; we shall prove
the sufficiency. Let f* be the continuous extension of f with
f * : Y ~ R. Let g be an arbitrary continuous function with
g : X - R. It is clear that if a continuous function a : R - R

tends sufficiently fast to + oo as Iti - + oo, then the function
g(p)/03B1(f(p)) has vanishing oscillation outside compact subsets of
X. (It suffices to take a continuous function x : R - R such that

03B1(t) &#x3E; n sup {|g(p)| : p E Cn+1}+1
for 1 t &#x3E; n, where Cn = {p E X : |f(p)|  n}.) By 1.3, g(p)/03B1(f(p))
is absolutely extendable. Let g* be a continuous extension of
g(p)/03B1(f(p)) with g* : Y - R. It is clear that g*(p). 03B1(f*(p)) is
a continuous extension of g over Y.

2.4 COROLLARY. A locally compact Lindelof subspace X o f Y is
R-embedded in Y i f and only i f there exists a continuous function
g : Y ~ R such that g|X is bounded only on compact subsets of X.

2.5 THEOREM. Let X be an R-compact space. X has property ( P1 )
i f and only i f X is locally compact and Lindelof. Furthermore, a
continuous f unction f : X ~ R is a proper function i f and only i f f
is bounded only on compact subsets of X.

PROOF. Assume that f : X ~ R is a continuous function and
assume that there is a set A such that f is bounded on A and AX
is not compact. Then A03B2XBX ~ ~; let po E A03B2XBX. f can be

2 Recall that for a locally compact space X the following conditions are equivalent.
(a) X is Lindelôf;
(b) X is a-compact (i.e., X is the union of countably many compact subsets);
(c) X = ~n Cn, where Cn are compact and Cn C Int Cn+l;
(d) the ideal point oo in the one-point compactification tx = X u {~} of X satisfies

the first axion of countability.
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extended over X u {po} ; in fact, one can modify f outside a neigh-
borhood of po so that it becomes bounded on the whole of X. But
X is not R-embedded in X u {po}. Thus f is not a proper function
on X. The rest of the theorem follows now from Propositions 2.2
and 2.3.

3. Proper functions for arbitrary spaces

From the results of the previous section it is easy to obtain a
characterization of proper functions for arbitrary spaces. We have
to recall a few known facts and definitions.
An extension of X is any superspace eX of X such that X is

dense in eX. The canonical map of extension el X into an extension

c2 X is a continuous function cp : 03B51X ~ B2X which is the identity
on X. The canonical map (if it exists) is unique. We write
03B51X ===extB2X provided that there exists a canonical map of 03B51X
onto E2 X which is a homeomorphism. (For further information
see [4], Chi I. ) 03B2X admits a canonical map onto any compactifica-
tion of X.

The Q-closure of a subset P of a space X is the set of all points
q E X such that for every continuous function f : X - R, if

f(p) &#x3E; 0 for every p E P, then f(( ) &#x3E; 0. P is said to be Q-closed
in X provided that it is equal to its Q-closure in X. The Q-closure
of any subset of an R-compact space is again R-compact. If c,X
and c2X are compactifications of X, A is a Q-closed subset of c2X
containing X, and 99 is a canonical map of c1X onto c2X, then 99
maps the Q-closure of X in c1X into A.

03B2RX is an R-compact extension of X such that X is R-embedded
in 03B2RX. (03B2RX is also called the Nachbin completion of X.) PRX
coincides with the Q-closure of X in PX. X is R-compact iff
X == flRX; equivalently, X is R-compact iff X is Q-closed in flX.
Every continuous function f : X ~ R can be continuously

extended over 03B2X if we allow ± oo to be values of this extension.
We shall denote this extension by 1,6 (note that 1,6 is a function
into the two-point compactification of R). It is easy to see that f
is bounded only on compact subsets of X iff f03B2(p) = ±~ for
every p E 03B2XBX.

3.1 THEOREM. A continuous f unction f : X ~ R is proper i f and
only i f it satisfies the following two conditions:

(a) 1,6 is one-to-one on 03B2RXBX;
(b) f03B2(p) = ± oo for every p E px"",p RX.
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PROOF. Only the sufficiency requires a proof. Assume that Y is
a superspace of X such that f admits a continuous extension
g : Y - R. We can assume that Y is R-compact (if not, replace
Y by PRY). Let X be the Q-closure of X in Y ; X is R-compact,
hence X is Q-closed in 03B2X . Let go = g| (= the restriction of g
to ); let ç be the canonical map of 03B2X onto pX. The quality

holds for every p E X; hence, by continuity, (1) holds for every
p~03B2X. Since go is finite on X, we infer from (1) and (b) that
~-1[] ~03B2RX. Since X is Q-closed in 03B2, the reverse inclusion
also holds. Consequently, fJRX = ~-1[]. It follows that

(PO = CPIf3RX is a closed map (the restriction of a closed map to a
full counter-image is again closed ). From (1) and (a) we infer that
9’o is one-to-one. Thus ço is a homeomorphism; consequently,
PRX ==ext . Hence X is R-embedded in . But from (1) and
(b) we infer that g03B20(q) = ±~ for every q~03B2B; hence go is
bounded only on compact subsets of X. Since X is R-compact, we
infer from Theorem 2.5 that go is a proper function for X. Conse-
quently,.9 is R-embedded in Y. Thus X is R-embedded in Y. The
theorem is shown.
We did not find any interesting characterization of arbitrary

spaces with property ( P1 ). The following partial results follow
directly from Theorem 3.1.

3.2 PROPOSITION. If X has ( Pl ), then 03B2RX is locally compact and
Lindelof.

Recall that a space X is called extremat (in the sense of Fréchet,
see [1]) provided that every continuous function f : X - R is
bounded. Such spaces are also called pseudocompact or quasicom-
pact. X is extremal iff PR X =ext f3X.

3.3. THEOREM. Let X be an extremal space. A continuous function
f : X ~ R is proper i f and only if f03B2 is one-to-one on 03B2XBX.

3.4. THEOREM. Let X be an extremal locally compact space. X has
(P1) i f and only i f the Cech otttgrowth of X, 03B2XBX, is homeomorphic
to a subspace o f the closed interval I = [0, 1].

3.5. THEOREM. Every space with a countable Cech outgrowth has
(P1).

PROOF. If card (03B2XBX )  2(, then X is extremal. On the other

hand, for every countable subset of an arbitrary space there exists
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a continuous real function on the space which is one-to-one on this

subset (see [4], Theorem 1).
On the basis of Theorem 3.5 it is easy to give examples showing

that an extremal space with property (Pl) need not to be locally
compact and its Cech outgrowth need not to be homeomorphic to
a subspace of I.
We say that a space X has property (Pi) provided that there

exists continuous function f : X - I (i is the closed interval

[0, 1]) such that for every superspace Y of X, X is I-embedded in
Y iff f admits a continuous extension g : Y - I. A function f with
this property will be called a *-proper function. It can be shown
that a continuous function f : X - I is *-proper iff f03B2 is one-to-one
on 03B2XBX. It follows that a space X does not have property ( Pi )
unless X is extremal. But for such spaces properties ( P1 j and (P*1)
coincide.
We conclude with two questions.
It follows from Theorem 3.4 that for a locally compact extremal

space X property ( P1 ) depends only on the topological type of
the Cech outgrowth of X. Is this true for arbitrary extremal
spaces?
Does 03B2XBX being homeomorphic to a subspace of I imply that

X has (Pl)2

4. Generalizations of properties (Pl) and (P*1)

The purpose of this section is to state some questions concerning
generalizations of properties (P1 ) and ( Pi ) to higher cardinalities.

Let m be an arbitrary cardinal; we shall say that a space X has
property ( Pm ) provided that there exists a class F of continouous
real-valued function on X such that card F ~ m and for every
superspace Y of X, X is R-embedded in Y iff each function in F
can be extended to a continuous real-valued function on Y. Such a

class F will be called a proper class on X. Property (PQ) and
*-proper classes are defined in an analogous way. It is clear that
( Pm ) implies ( Pn ) and (P*m) implies ( Ptt ) for n &#x3E; m; furthermore,
every space has property ( Pm ) (as well as (P*m)) for a sufficiently
large m. (Properties ( Po ) and (PÓ) are equivalent; each of them
asserts that X is R-embedded in each of its superspaces; such

spaces coincide with those having exactly one compactification.)
It can be easily shown that F is a *-proper class on X iff the
continuous extensions of functions in g over 03B2X separate points of
03B2XBX (compare with Theorem 3.1 and the remarks at the end
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of § 3). This, in turn, implies that X cannot have property (P:o)
unless X is extremal; consequently, for m  N0, (Pm) implies
(P,,). Clearly, there are non-extremal spaces having property
(P*20); 1 do not know if it can be shown without the continuum
hypothesis that 2eo is the first such cardinal. It can also be shown
that a locally compact extremal space has ( Pm ) iff its Cech out-
growth is homeomorphic to a subspace of the Tihonov cube Im
(compare with 3.4). It follows that for locally compact extremal
spaces properties ( Pm ) and (Pn) are not equivalent for any two
distinct cardinals m and xt.3 On the other hand, for R-compact
spaces, properties (P1), (P2), ···, (Pn),···, n  0, are equiva-
lent ; this can be demonstrated by showing that F = {f1, ···, fn}
is a proper class for X iff f = max {|f1|, ···, |fn|} is a proper
function for X.

Property ( Pm ) for R-compact spaces is somewhat related to the
concept of R-defect introduced in [3]. (An R-non-extendable class
for X is a class F of continuous real-valued functions on X such
that for every extension 03B5X of X with eX =A X, at least one of the
functions in F does not admit a continuous real-valued extension
over eX. The R-defect of X [in symbols: defRX] is the smallest
cardinal m such that X admits an R-non-extendable class of

cardinality m. For further information see [3] and [5]. ) It can be
easily shown that

4.1. Il an R-compact space has property (Pm)’ then defR X  m.

In f act, a proper class on X is an R-non-extendable class for X.
From 2.5 and from 5.9 in [5] we infer that for m == 1 the above

implication can be reversed.

4.2. Let X be R-compact. X has (P1) i f and only i f defRX  1.

The converse of 4.1 fails for infinite m. We have the following.

4.3. Let m be an infinite cardinal of the f orm m = 2 n and let X
be a space with weight X ~ m. X has ( Pm) i f and only i f card
C(X, R) ~ m.

PROOF. The "if" part is obvious. To prove the converse it suffices
to show that for every class F of continuous real-valued functions
on X with card F ~ m there is a superspace Y of X such that Y
has only m continuous real-valued functions and each function in

3 In [2] Glicksberg proves that if X X Y is extremal, then 03B2(X x Y =egt 03B2X X 03B2Y.
On the other hand, if X is compact and Y is extremal, then X x Y is also extremal.

Consequently, for every compact space X we have 03B2X*BX* = top X, where
X* = X S(03A9) and S(03A9) is the space of all ordinals  Q.
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g admits a continuous extension over Y. We can assume that g
is an R-separating class for X. The parametric map h of X
corresponding to F (see Theorem 2.1 in [5]) is a homeomorphism
of X into Rm. It suffices to take as Y a superspace of X that is

homeomorphic to Rm by an extension of the homeomorphism h.
Rm has only m continuous real-valued functions; indeed, Rm has
a dense subset of cardinality n.

It follows from 4.2 that if m = 2" is infinite, then the discrete
space Xm of cardinality m does not have (Pm). On the other hand,
defRXm ~ m for "almost all" infinite cardinals; in particular, for
all m == 2", where n is Ulam non-measurable.

Consequently, the converse of 4.1 fails for all such cardinals.
1 do not know if 4.3 holds for infinite cardinals that are not of the
form 2" as well as if 4.2 fa ils for such cardinals. It appears that the
answer to this question depends upon the assumed rules of expo-
nentation of cardinals. In particular, 1 do not know if 4.2 holds
for the cardinal No. Let Q be the space of irrational numbers;
we have defRQ = 0; does Q have (PNo)? (Note that defR P &#x3E; 0,
where P is the space of rational numbers; therefore P does not
have (PNo).) We have defR R0 = 0; does R0 have (PNo)?
One can discuss the above problems in a more general context.

The property analogous to ( Pm ) but referring to functions with
values in a space E will be denoted by Pm(E); in the formulation
of this property all spaces are assumed to be E-completely regular.
F. Marin has pointed out to us that 4.1 holds true in this general
context: if and E-compact space X has property Pm(E), then
defEX  m. The study of property Pm(E) for E-extremal spaces
is more difficult. (An E-extremal space is an E-completely regular
space X with the property: for every continuous function

f : X ~ E, f[X] is compact.)
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