Compositio Mathematica

James E. West

The diffeomorphic excision of closed local compacta from infinite-dimensional Hilbert manifolds

Compositio Mathematica, tome 21, no 3 (1969), p. 271-291
http://www.numdam.org/item?id=CM_1969__21_3_271_0
© Foundation Compositio Mathematica, 1969, tous droits réservés.
L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

The diffeomorphic excision of closed local compacta from infinite-dimensional Hilbert manifolds

by
James E. West ${ }^{1}$

If M is an infinite-dimensional manifold, which open, dense submanifolds of it are homeomorphic or diffeomorphic to it by functions arbitrarily close to the identity? R. D. Anderson, David W. Henderson, and the author together have shown [2] that if M is a metrizable manifold modelled on a separable, infinite-dimensional Fréchet space, then each open, dense submanifold N of M with the property that for each open set U of M, U and $U \cap N$ have the same homotopy type is homeomorphic to M by a homeomorphism which may be required to be the identity on any closed subset of M lying in N and may be limited by any open cover of M. (A function f from a subset X of M into M is said to be limited by the open cover G of M if the collection $\{\{x, f(x)\} \mid x \in X\}$ refines G.) Such submanifolds include the complements of all closed, locally compact subsets of M, but the method of proof used cannot readily be adapted to give diffeomorphisms when M is a differentiable manifold, as it involves homeomorphisms between Fréchet spaces which are not diffeomorphic. The principal tools used in [2] may be traced conceptually from the proof due to V. L. Klee, Jr., [5], that a separable, infinite-dimensional Hilbert space is homeomorphic to the complement of each of its compacta. In 1966, Cz. Bessaga [3] produced a differentiable version of Klee's theorem in the special case of a single point, so it seemed natural to the author to try proving a differentiable version of [2] for complements of closed, locally compact subsets of differentiable manifolds on separable, infinite-dimensional Hilbert spaces (real). The analogy is complete, as the following statement of the theorem of this paper shows: If M is a metrizable C^{p}-manifold ($1 \leqq p \leqq \infty$) modelled on separable, infinite-dimensional Hilbert spaces, X is a closed, locally compact subset of M, U is an open subset of M containing X, and G is an open cover of M, then there is a C^{p}-diffeomorphism of M onto $M \backslash X$ which is the identity off U and is limited
${ }^{1}$ Supported in part by National Science Foundation grant GP 7952X.
by G. The proof is elementary in the sense that it requires only the Inverse Function Theorem, differentiable partitions of unity, and Bessaga's result, which requires nothing more sophisticated in its proof.

After completing most of the work on this paper, the author was apprised by R. D. Anderson that (a) by minor modifications of [1], it is possible to show that a number of topological linear spaces which possess Schauder bases are C^{∞}-diffeomorphic to the complements of each of their compacta and (b) Peter Renz of the University of Washington has recently obtained by a different method the result that a metrizable manifold modelled on a separable, infinite-dimensional Hilbert space is diffeomorphic to the complement of each of its closed local compacta. The author has also learned from David Henderson that quite recently D. Burghelea, N. Kuiper, and N. Moulis have proven results implying that each two open subsets of a separable, infinite-demensional Hilbert space which have the same homotopy type are C^{∞}-diffeomorphic.

Throughout this paper, H will denote a separable, infinitedimensional (real) Hilbert space, and differentiability will be taken in the sense of Fréchet. The term "manifold" will denote a manifold without boundary. The term " C^{∞}-partition of unity on $H^{\prime \prime}$ is taken to mean a collection S of C^{∞}-functions s from H into $[0,1]$ and a locally finite open cover $\left\{U_{s}\right\}$ of H such that

$$
\overline{s^{-1}((0, \infty))} \subset U_{s} \text { and } \sum_{s \in S} s(x)=1
$$

for each x in $H ; S$ is said to be subordinate to an open cover G of H if $\left.\overline{\left\{s^{-1}((0, \infty))\right.} \mid s \in S\right\}$ refines G. Given any open cover G of H, there is a C^{∞}-partition of unity subordinate to G (see [6]; p. 30).

The proof of Theorem 1 is broken into a sequence of 8 lemmas, several of which are not new but are included for purposes of completeness and reference.

Lemma 1. If X is a closed, locally compact subset of H, there is a complete, orthonormal basis $\left\{e_{n}\right\}_{n=1}^{\infty}$ for H with the property that if H_{1} is the closed, linear span of $\left\{e_{2 n-1}\right\}_{n=1}^{\infty}$ and P_{1} is the (orthogonal) projection of H onto H_{1}, then P_{1} is a homeomorphism on each compact subset of X.

Proof: Because X is a separable, locally compact, metric space, it is possible to find a collection $\left\{X_{i}\right\}_{i=1}^{\infty}$ of compacta of X for which each X_{i} is contained in the interior (relative to X) of its
successor and X is the union of the X_{i} 's. Let $\left\{z_{n}\right\}_{n=1}^{\infty}$ be a complete, orthonormal basis for H, and for each i and n let

$$
a_{i, n}=\sup \left\{\left|\left(x, z_{n}\right)\right| \mid x \in X_{i}\right\} .
$$

By the compactness of the $X_{i}{ }^{\prime}$ s, $\left\{a_{i, n}\right\}_{n=1}^{\infty}$ converges to zero for each i. Let $\{n(i)\}_{i=1}^{\infty}$ be a subsequence of the positive integers such that for each $i, a_{i, n(i)} \leqq 1 / i$, and observe that if $j \leqq i$, then $a_{j, n(i)} \leqq a_{i, n(i)}$. Let $\left\{A_{k}\right\}_{k=1}^{\infty}$ be an infinite collection of pairwise disjoint infinite subsets of the positive integers such that if each A_{k} is indexed by the positive integers in the natural order and is denoted by $\{m(k, p)\}_{p=1}^{\infty}$, then for each k and $p, m(k, p) \geqq 2^{k+p}$. Let, for each $k, x_{k}=\sum_{p=1}^{\infty} 2^{-p / z_{z(m(k, p))}}$. Since for each k, the point $y_{k}=2^{-\frac{1}{2}} z_{n(m(k, 1))}-z_{n(m(k, 2))}$ is orthogonal to each x_{j} and the y_{k}^{\prime} 's are all orthogonal, there is a complete, orthonormal basis $\left\{e_{n}\right\}_{n=1}^{\infty}$ for H such that for each $n, e_{2 n}=x_{n}$. Such a basis will suffice, for if x and y are in X and $P_{1}(x)=P_{1}(y)$, then $x-y$ is in the closed, linear span of the x_{k} 's. Thus,

$$
x-y=\sum_{k=1}^{\infty}\left(x-y, x_{k}\right)=\sum_{k=1}^{\infty}\left(\sum_{p=1}^{\infty}\left(x-y, z_{n(m(k, p))}\right) z_{n(m(k, p))}\right) .
$$

Hence,

$$
\left(x-y, z_{n\left(m\left(k^{\prime}, p\right)\right)}\right)=\left(\sum_{k=1}^{\infty}\left(x-y, x_{k}\right) x_{k}, z_{n\left(m\left(k^{\prime}, p\right)\right)}\right),
$$

but since

$$
\left(x_{k}, z_{n\left(m\left(k^{\prime}, p\right)\right)}\right)=0 \text { unless } k=k^{\prime}
$$

it is true that

$$
\left(x-y, z_{n\left(m\left(k^{\prime}, p\right)\right)}\right)=\left(x-y, x_{k^{\prime}}\right)\left(x_{k^{\prime}}, z_{n\left(m\left(k^{\prime}, p\right)\right)}\right)=2^{-p / 2}\left(x-y, x_{k^{\prime}}\right)
$$

therefore,

$$
\left(x-y, x_{k^{\prime}}\right)=2^{p / 2}\left(x-y, z_{n\left(m\left(k^{\prime}, p\right)\right)}\right)
$$

for each p. However, since there is an i for which both x and y are in X_{i}, and $m\left(k^{\prime}, p\right) \geqq 2^{k^{\prime}+p}$ for each p, if $p \geqq i$, then

$$
\begin{aligned}
\left|\left(x-y, z_{n\left(m\left(k^{\prime}, p\right)\right)}\right)\right| & \leqq\left|\left(x, z_{n\left(m\left(k^{\prime}, p\right)\right)}\right)\right|+\left|\left(y, z_{n\left(m\left(k^{\prime}, p\right)\right)}\right)\right| \\
& \leqq \mathbf{2} a_{i, n\left(m\left(k^{\prime}, p\right)\right)} \leqq \mathbf{2} a_{m\left(k^{\prime}, p\right), n\left(m\left(k^{\prime}, p\right)\right)} \leqq \mathbf{2}^{1-k^{\prime}-p}
\end{aligned}
$$

Thus, for each $p \geqq i$,

$$
\left|\left(x-y, x_{k^{\prime}}\right)\right|=2^{p / 2}\left|\left(x-y, z_{n\left(m\left(k^{\prime}, p\right)\right)}\right)\right| \leqq 2^{1-k^{\prime}-p / 2}
$$

This shows that for each $k,\left(x-y, x_{k}\right)=0$ and, thus, that $x=y$ and P_{1} is one-to-one on X, which proves the lemma.

Lemma 2. If H_{1} is a closed, linear subspace of H, P_{1} is the projection of H onto H_{1}, X is a closed subset of H, and $P_{1} \mid X$ is a homeomorphism of X onto a closed subset of H_{1}, then for any sequence $\left\{f_{i}\right\}_{i=1}^{\infty}$ of C^{∞}-diffeomorphisms of H onto itself satisfying the four conditions below, the uniform limit f of $\left\{f_{i} \cdots f_{1}\right\}_{i=1}^{\infty}$ is a homeomorphism of H onto itself such that $f \mid P_{1}(X)=\left(P_{1} \mid X\right)^{-1}$ and $f \mid H \backslash P_{1}(X)$ is a C^{∞}-diffeomorphism.
a) $\left\{f_{i} \cdots f_{1}\right\}_{i=1}^{\infty}$ is uniformly Cauchy.
b) $P_{1} f_{i}=P_{1}$, for all i.
c) f_{i+j} is the identity outside the open 2^{1-i}-neighborhood of X and the image under $f_{i} \cdots f_{1}$ of the open 2^{1-i}-neighborhood of $P_{1}(X)$, for each j.
d) For each x in $X, x=\operatorname{limit}_{i \rightarrow \infty} f_{i} \cdots f_{1}(x)$.

Proof: Condition (a) provides the existence of f as defined and its continuity; condition (c) ensures that $f \mid H \backslash P_{1}(X)$ is a C^{∞} diffeomorphism onto its image, and condition (d) is the statement that $f \mid P_{1}(X)=\left(P_{1} \mid X\right)^{-1}$. Therefore, the only remaining things to establish are that f is one-to-one, that $f(H)=H$, and that f^{-1} is continuous on X. Conditions (c) and (d) immediately yield that $f(H)=H$. To see that f is one-to-one, observe that if there were two points, x and y, of H for which $f(x)=f(y)$, then one of them, say x, would have to be in $P_{1}(X)$, and the other would have to be in $H \backslash \mathbf{P}_{1}(X)$. Condition (c) would then specify that there is a positive integer i and an open set containing $f_{i} \cdots f_{1}(y)$ on which f_{i+j} is the identity for each $j \geqq 1$, which, together with the fact that $f_{i} \cdots f_{1}$ is a homeomorphism of H, shows that $f(x) \neq f(y)$, after all. The continuity of f^{-1} at points of X is assured by (b), (c), and (d) together, for if x is in X and U is an open set containing $P_{1}(x)$, then for an i such that the open 2^{2-i}-neighborhood of $\boldsymbol{P}_{1}(x)$ lies in U, (b), (c), and (d) give that the open set

$$
2^{1-i} B_{1}^{0}+2^{1-i} B_{2}^{0}+P_{1}(x)
$$

is carried by $f_{i} \cdots f_{1}$ onto an open set V containing x (where B_{1}^{0} is the open unit ball in H_{1} about the origin and B_{2}^{0} is the open unit ball in the orthogonal complement of H_{1} about the origin). Now, conditions (b) and (c) guarantee that f_{i+j} carries V onto itself for each $j \geqq 1$. Therefore $f^{-1}(V)$ is contained in U, and f^{-1} is continuous.

Lemma 3. If Y is a separable, metric space, G is an open cover of Y, and X is a closed, locally compact subset of Y, then there is a star-
finite open cover $\left\{U_{i}\right\}_{i=1}^{\infty}$ of Y and a cover $\left\{X_{i}\right\}_{i=1}^{\infty}$ of X by compacta of X such that for each i, X_{i} is contained in U_{i}, and $\left\{\bar{U}_{i}\right\}_{i=1}^{\infty}$ refines G.

Proof: This may be done easily by embedding Y in the Hilbert cube, taking the closure of the image of Y, and using the compactness of the Hilbert cube after the fashion of Theorem 1 of [2] and Theorem 1 of [4].

Lemma 4. If X is a closed, locally compact subset of H and H_{1} is a closed, linear subspace of H for which (a) $\overline{X \backslash H}_{1}$ is compact and (b) if P_{1} is the projection of H onto H_{1}, then $P_{1} \mid X$ is a homeomorphism, then for any positive real number ε and open set W of H_{1} containing $P_{1}(X)$ there is a pair, f and g, of homeomorphisms of H onto itself satistying the following:

1) g is the identity off the intersection of $P_{1}^{-1}(W)$ with the open ε-neighborhood of X and moves no point more than ε;
2) $g \mid(H \backslash X)$ is a C^{∞}-diffeomorphism onto $g(H \backslash X)$;
3) f is a C^{∞}-diffeomorphism and is the identity off $P_{1}^{-1}(W)$;
4) $P_{1} f=P_{1} g=P_{1}$, and $f=f P_{1}+I-P_{1}$, where I is the identity, and
5) $f g\left|X=P_{1}\right| X$.

Proof: Let H_{2} be the orthogonal complement of H_{1}, let P_{2} be the projection of H onto $H_{2}\left(P_{2}=I-P_{1}\right)$, and, for convenience, assume that $\varepsilon \leqq 1$. Let a be a non-increasing C^{∞}-function from the real numbers into $[0,1]$ for which $a^{-1}(0) \supset[1, \infty)$ and $a^{-1}(1) \supset(-\infty, 0]$. Let $b=\sup \left\{\left|a^{\prime}(t)\right| \mid t\right.$ real $\}$, and observe that from the Mean Value Theorem, $b \geqq 1$. For each positive number c, define g_{c} to be the function from H_{1} to the real numbers such that $g_{c}(x)=a\left(\|x\|^{2} / c^{2}\right)$. Each g_{c} is a C^{∞}-function, and for each x in H, $\left\|g_{c}^{\prime}(x)\right\| \leqq 2 b / c$. Let $c_{1} \in(0, \varepsilon / 4)$ be small enough that the closed $2 c_{1}$-neighborhood in $P_{1}(X)$ of $P_{1} \overline{\left(X \backslash H_{1}\right)}$ is compact. Let G_{1} be an open cover of H_{1} refining $\left\{W, H_{1} \backslash P_{1}(X)\right\}$ for which (1) $U \in G_{1}$ implies that
$\sup \left\{\left\|P_{2}\left(P_{1} \mid X\right)^{-1}(x)-P_{2}\left(P_{1} \mid X\right)^{-1}(y)\right\| \mid x, y \in P_{1}(X) \cap U\right\} \leqq c_{1} / 4 b$, and (2) each element of G_{1} has diameter less than c_{1}. Let y_{1} be a function from G_{1} into H_{2} such that $y_{1}(U)$ is in

$$
P_{2}\left(P_{1} \mid X\right)^{-1}\left(U \cap P_{1}(X)\right) \text { if } U \cap P_{1}(X) \neq \emptyset
$$

and is the origin otherwise. Let S_{1} be a C^{∞}-partition of unity on H_{1} subordinate to G_{1}, and let u be a function from S_{1} into G_{1} such that
$u(s) \supset \overline{s^{-1}((0, \infty))}$ for each s in S_{1}. Set \bar{f}_{1} to be the function from H_{1} inte H_{2} defined by $\bar{f}_{1}(x)=\sum_{s \in S_{1}} s(x) y(u(s))$, and let $f_{1}=I+\bar{f}_{1} P_{1}$. It is immediate that f_{1} is a C^{∞}-diffeomorphism of H onto itself and is the identity off $P_{1}^{-1}(W)$. Let $f=f_{1}^{-1}=I-\bar{f}_{1} P_{1}$.

Let K_{1} be the closure of $\left\{x \in P_{1}(X) \mid f_{1}(x) \neq x\right\}$, and note that by (2) and the choice of c_{1}, K_{1} is compact. Let

$$
p_{1}: P_{1}(X) \rightarrow H_{2} \text { by } p_{1}(x)=\left(P_{1} \mid X\right)^{-1}(x)-f_{1}(x)
$$

If B_{i} is the closed unit ball of H_{i} centered about the origin, then

$$
p_{1} P_{1}(X) \subset\left(c_{1} / 4 b\right) B_{2}
$$

The homeomorphism g will be constructed as a uniform limit of C^{∞}-diffeomorphisms of H onto itself defined below.

Let $\left\{f_{i}\right\}_{i=1}^{\infty}$ be a sequence of C^{∞}-diffeomorphisms of H onto itself with f_{1} as above satisfying the following five conditions:

1) there is a set $\left\{c_{i}\right\}_{i=1}^{\infty}$ of positive numbers, with c_{1} as above, such that for each $i, 2 c_{i+1}<c_{i}<2^{-2 i} \varepsilon$;
2) if $i>1$, then $f_{i}(x)=x+g_{c_{i-1}}\left(x-f_{i-1} \cdots f_{1} P_{1}(x)\right) \bar{f}_{i} P_{1}(x)$, where \bar{f}_{i} is a C^{∞}-function from H_{1} into $\left(c_{i-1} / 4 b\right) B_{2}$ for which the open c_{i}-neighborhood of $P_{1}(X)$ and W both contain $\bar{f}_{i}^{-1}\left(H_{2} \backslash\{0\}\right)$;
3) for each $i, p_{i}=\left(P_{1} \mid X\right)^{-1}-f_{i} \cdots f_{1} \mid P_{1}(X)$ carries $P_{1}(X)$ into $\left(c_{i} / 4 b\right) B_{2}$;
4) $c_{i} B_{2}+f_{i} \cdots f_{1}\left(H_{1}\right) \subset f_{i} \cdots f_{1}\left(2^{-i} B_{2}+H_{1}\right)$, and
5) if y is in H_{1} and x is in $P_{1}(X)$, then $\|y-x\|<c_{i}$ implies that $\left\|P_{2} f_{i-1} \cdots f_{1}(y)-P_{2} f_{i-1} \cdots f_{1}(x)\right\|<2^{-2 i} \varepsilon$.

Such a sequence $\left\{f_{i}\right\}_{i=1}^{\infty}$ exists, for the conditions are arranged to provide an easy inductive construction as follows:
If a collection $\left\{f_{i}\right\}_{i=1}^{n}, n \geqq 1$, of diffeomorphisms is given satisfying conditions (1)-(5), let c_{n+1}^{\prime} be a positive number so small that for y in H_{1} and x in $P_{1}(X)$ with $\|y-x\|<c_{n+1}^{\prime}$,

$$
\left\|P_{2} f_{n} \cdots f_{1}(y)-P_{2} f_{n} \cdots f_{1}(x)\right\|<2^{-2 n-2} \varepsilon
$$

Let t_{1}, \cdots, and t_{n} be in $(0,1)$ such that if $0<\|x\|<t_{i}$, then $\left|\mathbf{1}-g_{c_{i}}(x)\right|<\mathbf{2}\left(b / c_{i}\right)\|x\|$, for each $i \leqq n$. (This can be done because $g_{c_{i}}^{\prime}(0)$ is the zero functional, and hence

$$
\left.\operatorname{limit}_{\|x\| \rightarrow 0}\left(g_{c_{i}}(x)-g_{c_{i}}(0)\right) /\|x\|=0 .\right)
$$

Let

$$
c_{n+1} \in\left(0, \min \left\{c_{n+1}^{\prime}, \frac{1}{2} c_{n}, 2^{-2 n-2} t_{1} \cdots t_{n} \varepsilon\right\}\right)
$$

and let $d_{n+1} \in\left(0, c_{n+1}\right)$ be so small that for x and y in $P_{1}(X)$ with

$$
\|x-y\|<d_{n+1},\left\|p_{n}(x)-p_{n}(y)\right\|<c_{n+1} / 4 b
$$

Now, let G_{n+1} be an open cover of H_{1} which refines $\left\{W, H_{1} \backslash P_{1}(X)\right\}$ and is of mesh less than d_{n+1}; let $y_{n+1}: G_{n+1} \rightarrow H_{2}$ be a function such that $y_{n+1}(U)$ is in

$$
p_{n}\left(P_{1}(X) \cap U\right) \text { if } P_{1}(X) \cap U \neq \emptyset
$$

and is the origin otherwise; let S_{n+1} be a C^{∞}-partition of unity on H_{1} subordinate to G_{n+1}, and let $u_{n+1}: S_{n+1} \rightarrow G_{n+1}$ be a function such that for s in $S_{n+1}, u_{n+1}(s) \supset \overline{s^{-1}((0, \infty))}$. Let

$$
\bar{f}_{n+1}(x)=\sum_{s \in S_{n+1}} s(x) y_{n+1}\left(u_{n+1}(s)\right)
$$

for each x in H_{1}, and define

$$
f_{n+1}: H \rightarrow H \text { by } f_{n+1}(x)=x+g_{c_{n}}\left(x-f_{n} \cdots f_{1} P_{1}(x)\right) \bar{f}_{n+1} P_{1}(x)
$$

At this point, it will be shown that f_{n+1} is a C^{∞}-diffeomorphism of H onto itself. The proof is a standard argument involving the Inverse Function Theorem, the Mean Value Theorem, and the Banach Contraction Principle (for explicit statements of these theorems and for proofs, see pages 11 and 12 of [6]). The Inverse Function Theorem implies that in order to show that f_{n+1} is a C^{∞} diffeomorphism of H onto itself, it is sufficient to show that f_{n+1} is one-to-one, that $f_{n+1}(H)=H$, and that for each x in $H, f_{n+1}^{\prime}(x)$ is a linear homeomorphism of H onto itself. In order to show that f_{n+1} is one-to-one and carries H onto itself, it suffices to show that for each y in H, the function o_{y} of H_{2} into itself defined by the formula $o_{y}(x)=P_{2}(y)-g_{c_{n}}\left(x-P_{2} f_{n} \cdots f_{1} P_{1}(y)\right) \bar{f}_{n+1} P_{1}(y)$ has a unique fixed-point, since if x_{y} is a fixed point of o_{y}, then

$$
o_{y}\left(x_{y}\right)=x_{y}=P_{2}(y)-g_{c_{n}}\left(x_{y}-P_{2} f_{n} \cdots f_{1} P_{1}(y)\right) \bar{f}_{n+1} P_{1}(y)
$$

Thus,

$$
P_{2}(y)=x_{y}+g_{c_{n}}\left(x_{y}-P_{2} f_{n} \cdots f_{1} P_{1}(y)\right) \bar{f}_{n+1} P_{1}(y)
$$

and

$$
\begin{aligned}
y=P_{1}(y)+x_{y}+g_{c_{n}}(& \left.P_{1}(y)+x_{y}-f_{n} \cdots f_{1} P_{1}\left(P_{1}(y)+x_{y}\right)\right) \\
& \cdot \bar{f}_{n+1} P_{1}\left(P_{1}(y)+x_{y}\right)=f_{n+1}\left(P_{1}(y)+x_{y}\right)
\end{aligned}
$$

In order to show that o_{y} has a unique fixed point, the Banach Contraction Principle asserts that it suffices to find a k in $(0,1)$ such that for each x and x^{\prime} in $H_{2},\left\|o_{y}(x)-o_{y}\left(x^{\prime}\right)\right\| \leqq k\left\|x-x^{\prime}\right\|$. The Mean Value Theorem shows that if k is a uniform bound on the norm of the derivative of o_{y}, then this happens. For each y in H,
the constant k may be taken to be $\frac{1}{2}$, for if y is in H and x is in H_{2},

$$
o_{y}^{\prime}(x)=-g_{c_{n}}^{\prime}\left(x-P_{2} f_{n} \cdots f_{1} P_{1}(y)\right) \cdot \bar{f}_{n+1} P_{1}(y)
$$

where "." denotes the scalar multiplication of the linear functional and the element of H. Since

$$
\begin{aligned}
\left\|o_{y}^{\prime}(x)\right\| & \leqq\left\|g_{c_{n}}^{\prime}\left(x-P_{2} f_{n} \cdots f_{1} P_{1}(y)\right)\right\|\left\|\bar{f}_{n+1} P_{1}(y)\right\| \\
& \leqq 2\left(b / c_{n}\right)\left(c_{n} / 4 b\right)=\frac{1}{2}
\end{aligned}
$$

f_{n+1} is a one-to-one map of H onto itself.
To complete the verification that f_{n+1} is a C^{∞}-diffeomorphism of H onto itself, there only remains to show that for each x in H, $f_{n+1}^{\prime}(x)$ is a linear homeomorphism of H onto itself. By the Closed Graph Theorem, this is equivalent to showing that for each x, $f_{n+1}^{\prime}(x)$ is one-to-one and carries H onto itself. For each x and y in H,

$$
\begin{aligned}
f_{n+1}^{\prime}(x)(y)= & y+g_{c_{n}}^{\prime}\left(x-f_{n} \cdots f_{1} P_{1}(x)\right)\left(y-\left(f_{n} \cdots f_{1}\right)^{\prime}\left(P_{1}(x)\right)\left(P_{1}(y)\right)\right) \\
& \cdot f_{n+1} P_{1}(x)+g_{c_{n}}\left(x-f_{n} \cdots f_{1} P_{1}(x)\right) \cdot \bar{f}_{n+1}^{\prime}\left(P_{1}(x)\right)\left(P_{1}(y)\right) .
\end{aligned}
$$

Because both $\bar{f}_{n+1} P_{1}(x)$ and $\bar{f}_{n+1}^{\prime}\left(P_{1}(x)\right)\left(P_{1}(y)\right)$ lie in H_{2}, the kernel of $f_{n+1}^{\prime}(x)$ must also lie in H_{2}. However, H_{2} is an invariant subspace of $f_{n+1}^{\prime}(x)$, and $f_{n+1}^{\prime}(x) \mid H_{2}$ is a linear homeomorphism of H_{2} onto itself, since for y in H_{2},

$$
f_{n+1}^{\prime}(x)(y)=y+g_{c_{n}}^{\prime}\left(x-f_{n} \cdots f_{1} P_{1}(x)\right)(y) \cdot \bar{f}_{n+1} P_{1}(x)
$$

and
$\left\|g_{c_{n}}^{\prime}\left(x-f_{n} \cdots f_{1} P_{1}(x)\right)(y) \cdot \bar{f}_{n+1} P_{1}(x)\right\| \leqq 2\left(b / c_{n}\right)\left(c_{n} / 4 b\right)\|y\|=\frac{1}{2}\|y\|$.
Thus, $f_{n+1}^{\prime}(x)$ is one-to-one, and since

$$
\left(f_{n+1}^{\prime}(x)\right)^{-1}=P_{1}-\left(f_{n+1}^{\prime}(x) \mid H_{2}\right)^{-1}\left(P_{2} f_{n+1}^{\prime}(x) P_{1}-P_{2}\right)
$$

f_{n+1} is a C^{∞}-diffeomorphism of H onto itself.
The collection $\left\{f_{i}\right\}_{i=1}^{n+1}$ satisfies conditions (1)-(5) rather easily. Conditions (1) and (5) are met explicitly by the choice of c_{n+1}, and condition (2) is satisfied by the construction of f_{n+1}, the fact that, by (3), $p_{n} P_{1}(X)$ lies in $\left(c_{n} / 4 b\right) B_{2}$, and the fact that no element of G_{n+1} meeting $P_{1}(X)$ contains points of $H_{1} \backslash W$ or farther than c_{n+1} from $P_{1}(X)$.

Condition (3) is met because if x is in $P_{1}(X)$, then

$$
\begin{aligned}
& p_{n+1}(x)=\left(P_{1} \mid X\right)^{-1}(x)-f_{n+1} \cdots f_{1}(x)=\left(P_{1} \mid X\right)^{-1}(x)-f_{n} \cdots f_{1}(x) \\
& \quad-g_{c_{n}}\left(f_{n} \cdots f_{1}(x)-f_{n} \cdots f_{1} P_{1} f_{n} \cdots f_{1}(x)\right) \bar{f}_{n+1} P_{1} f_{n} \cdots f_{1}(x) \\
& \quad=\left(P_{1} \mid X\right)^{-1}(x)-f_{n} \cdots f_{1}(x)-g_{c_{n}}\left(f_{n} \cdots f_{1}(x)-f_{n} \cdots f_{1}(x)\right) \bar{f}_{n+1}(x) \\
& \quad=p_{n}(x)-\sum_{s \in S_{n+1}} s(x) y_{n+1}\left(u_{n+1}(s)\right)
\end{aligned}
$$

and, therefore,

$$
\left\|p_{n+1}(x)\right\| \leqq \sup \left\{\left\|y_{n+1}(U)-p_{n}(x)\right\| \mid x \in U \in G_{n+1}\right\} \leqq c_{n+1} / 4 b
$$

by the choice of d_{n+1}.
In order to see that (4) is satisfied, observe that for each x in H_{1}, $f_{n+1} \mid\left(H_{2}+x\right)$ is a C^{∞}-diffeomorphism of $H_{2}+x$ onto itself. Hence, $f_{n+1} \cdots f_{1}\left(2^{-n-1} t_{1} \cdots t_{n} B_{2}^{0}+x\right)$ is an open neighborhood in $H_{2}+x$ of $f_{n+1} \cdots f_{1}(x)$. The argument below shows that it contains $c_{n+1} B_{2}^{0}+f_{n+1} \cdots f_{1}(x)$. If y is in $H_{2}+x, y \neq x$, and

$$
\left\|f_{i} \cdots f_{1}(y)-f_{1} \cdots f_{1}(x)\right\|<t_{i}
$$

then

$$
\begin{aligned}
\left(\frac{3}{2}\right)\left\|f_{i} \cdots f_{1}(y)-f_{i} \cdots f_{1}(x)\right\| & \geqq\left\|f_{i+1} \cdots f_{1}(y)-f_{i+1} \cdots f_{1}(x)\right\| \\
& \geqq \frac{1}{2}\left\|f_{i} \cdots f_{1}(y)-f_{i} \cdots f_{1}(x)\right\| .
\end{aligned}
$$

This is true because

$$
\begin{aligned}
\| f_{i+1} \cdots & f_{1}(y)-f_{i+1} \cdots f_{1}(x)\|=\| f_{i} \cdots f_{1}(y)-f_{i} \cdots f_{1}(x) \\
& -\left(g_{c_{i}}\left(f_{i} \cdots f_{1}(x)-f_{i} \cdots f_{1} P_{1} f_{i} \cdots f_{1}(x)\right) \bar{f}_{i+1} P_{1} f_{i} \cdots f_{1}(x)\right. \\
& \left.-g_{c_{i}}\left(f_{i} \cdots f_{1}(y)-f_{i} \cdots f_{1} P_{1} f_{1} \cdots f_{1}(y)\right) \bar{f}_{i+1} P_{1} f_{i} \cdots f_{1}(y)\right) \| \\
= & \| f_{i} \cdots f_{1}(y)-f_{i} \cdots f_{1}(x) \\
& -\left(\bar{f}_{i+1}(x)-g_{c_{i}}\left(f_{i} \cdots f_{1}(y)-f_{i} \cdots f_{1}(x)\right) \bar{f}_{i+1}(x)\right) \| \\
\geqq & \left\|f_{i} \cdots f_{1}(y)-f_{i} \cdots f_{1}(x)\right\| \\
& -\left(1-g_{c_{i}}\left(f_{i} \cdots f_{1}(y)-f_{i} \cdots f_{1}(x)\right)\right)\left\|\bar{f}_{i+1}(x)\right\| \\
\geqq & \left\|f_{i} \cdots f_{1}(y)-f_{i} \cdots f_{1}(x)\right\|\left(1-\left(\left\|\bar{f}_{i+1}(x)\right\| /\left\|f_{i} \cdots f_{1}(y)-f_{i} \cdots f_{1}(x)\right\|\right)\right. \\
& \left.\left(1-g_{c_{i}}\left(f_{i} \cdots f_{i}(y)-f_{i} \cdots f_{1}(x)\right)\right)\right) \\
\geqq & \left\|f_{i} \cdots f_{1}(y)-f_{i} \cdots f_{1}(x)\right\|\left(1-\left(c_{i} / 4 b\right) /\left(c_{i} / 2 b\right)\right) \\
= & \frac{1}{2}\left\|f_{i} \cdots f_{1}(y)-f_{i} \cdots f_{1}(x)\right\|,
\end{aligned}
$$

by the choice of t_{i}. A similar argument yields the other part of the inequality. Thus, if $\|y-x\|=2^{-n-1} t_{1} \cdots t_{n}$, then since

$$
\|y-x\|=\left\|f_{1}(y)-f_{1}(x)\right\|
$$

(for y in $H_{2}+x$), an induction shows that

$$
\left\|f_{n+1} \cdots f_{1}(y)-f_{n+1} \cdots f_{1}(x)\right\| \geqq c_{n+1}
$$

The set of all such y in $H_{2}+x$ is the boundary in $H_{2}+x$ of

$$
2^{-n-1} t_{1} \cdots t_{n} B_{0}^{2}+x
$$

so its image under $f_{n+1} \cdots f_{1}$ must be the boundary of

$$
f_{n+1} \cdots f_{1}\left(2^{-n-1} t_{1} \cdots t_{n} B_{2}^{0}+x\right)
$$

in $H_{2}+x$, which must therefore contain

$$
c_{n+1} B_{2}^{0}+f_{n+1} \cdots f_{1}(x)
$$

Since conditions (1)-(5) are satisfied, an induction shows the existence of an infinite sequence $\left\{f_{i}\right\}_{i=1}^{\infty}$ of C^{∞}-diffeomorphisms of H onto itself which meets all five of the conditions. These five conditions imply the four conditions of Lemma 2. Conditions (1) and (2) imply (a); (2) and the definition of f_{1} imply (b), and (1) and (3) imply (d). To show that (c) holds, let i and j be positive integers, and let y be in H. If $f_{i+j}(y) \neq y$, then, by (2), $\left\|P_{1}(y)-P_{1}(x)\right\|<c_{i+j}$ for some x in X and, by (5),

$$
\left\|P_{2} f_{i+j-1} \cdots f_{1} P_{1}(y)-P_{2} f_{i+j-1} \cdots f_{1} P_{1}(x)\right\|<2^{-2 i-2 j} \varepsilon
$$

Also, since
$g_{c_{i+j-1}}\left(y-f_{i+j-1} \cdots f_{1} P_{1}(y)\right) \neq 0,\left\|y-f_{i+j-1} \cdots f_{1} P_{1}(y)\right\|<c_{i+j-1} ;$ furthermore, by (3),

$$
\left\|x-f_{i+j-1} \cdots f_{1} P_{1}(x)\right\| \leqq c_{i+j-1} / 4 b \leqq \frac{1}{4} c_{i+j-1}
$$

Combining these inequalities gives

$$
\begin{aligned}
& \|x-y\|=\left\|P_{1}(x)-P_{1}(y)+P_{2}(x)-P_{2}(y)\right\| \\
& =\| P_{1}(x)-P_{1}(y)+P_{2}(x)-P_{2} f_{i+j-1} \cdots f_{1} P_{i}(x)+P_{2} f_{i+j-1} \cdots f_{1} P_{1}(x) \\
& \quad-P_{2} f_{i+j-1} \cdots f_{1} P_{1}(y)+P_{2} f_{i+j-1} \cdots f_{1} P_{1}(y)-P_{2}(y) \| \\
& =\| P_{1}(x)-P_{1}(y)+x-f_{i+j-1} \cdots f_{1} P_{1}(x)+P_{2} f_{i+j-1} \cdots f_{1} P_{1}(x) \\
& \quad-P_{2} f_{i+j-1} \cdots f_{1} P_{1}(y)+f_{i+j-1} \cdots f_{1} P_{1}(y)-y \| \\
& \leqq\left\|P_{1}(x)-P_{1}(y)\right\|+\left\|x-f_{i+j-1} \cdots f_{1} P_{1}(x)\right\| \\
& \quad+\left\|P_{2} f_{i+j-1} \cdots f_{1} P_{1}(x)-P_{2} f_{i+j-1} \cdots f_{1} P_{1}(y)\right\| \\
& \quad+\left\|y-f_{i+j-1} \cdots f_{1} P_{1}(y)\right\|<c_{i+j}+\frac{1}{4} c_{i+j-1}+2^{-2 i-2 j} \varepsilon \\
& \quad+c_{i+j-1}<2^{3-2 i-2 j} \varepsilon \leqq 2^{-i} \varepsilon .
\end{aligned}
$$

Therefore, f_{i+j} is the identity outside the open $2^{-i} \varepsilon$-neighborhood of X. Also, since if $f_{i+j}(y) \neq y$, then y is in $c_{i+j-1} B_{2}^{0}+t_{i+j-1} \cdots f_{1}\left(H_{1}\right)$, (4) yields that y is in $f_{i+j} \cdots f_{1}\left(2^{-i} B_{2}^{0}+H_{1}\right)$, so

$$
\left\|f_{1}^{-1} \cdots f_{i+j-1}^{-1}(y)-P_{1}(y)\right\| \leqq 2^{-i}
$$

Now, (2) shows that $\left\|P_{1}(y)-P_{1}(x)\right\|<c_{i+j}$ for some x in X; thus,

$$
\left\|f_{1}^{-1} \cdots f_{i+j-1}^{-1}(y)-P_{1}(x)\right\|<2^{-i}+c_{i+j}<2^{-i}+2^{-2 i-2 j}<2^{1-i}
$$

and (c) holds.
By Lemma 2, the uniform limit h of $\left\{f_{i} \cdots f_{1}\right\}_{i=1}^{\infty}$ is a homeo-
morphism of H onto itself which is a C^{∞}-diffeomorphism off $P_{1}(X)$ and which on $P_{1}(X)$ agrees with $\left(P_{1} \mid X\right)^{-1}$. Let $g=f_{1} h^{-1}$. Since each f_{i} for $i>1$ is the identity off the open ε-neighborhood of X, g is the identity off the ε-neighborhood of X, and because

$$
\left\|g^{-1}(x)-x\right\| \leqq \sum_{i=2}^{\infty}\left\|\bar{f}_{i} P_{1}(x)\right\| \leqq \frac{1}{4} \varepsilon
$$

g moves no point as much as ε. It is easy to verify that f and g are the desired homeomorphisms of H.

Lemma 5. If X is a compact subset of H lying in the open set U, then there is a real-valued function f of H into $[0,1]$ of class C^{∞} such that $X=f^{-1}(0)$ and $H \backslash U \subset f^{-1}(1)$.

Proof: This is an easy generalization from the well-known result in the case that H is finite-dimensional. (Or see [8], chapter \mathbf{V}, for a discussion of carriers.)

Lemma 6 (Bessaga). If H_{1} is any closed, infinite-dimensional, linear subspace of the real Hilbert space E, then there is a C^{∞}-diffeomorphism h of $E \backslash\{0\}$ onto E which is the identity off the unit ball of E centered at the origin and has the property that $(I-h)(E \backslash\{0\})$ is contained in H_{1}.

A proof of this lemma may be found in [3].
Lemma 7. If X is a closed, locally compact subset of the closed, linear subspace H_{1} of H and if H_{2} is a closed, infinite-dimensional, linear subspace of the orthogonal complement H_{1}^{\perp} of H_{1}, then for any open set U containing X, there is a C^{∞}-diffeomorphism h of $H \backslash X$ onto H which is the identity off U and has the property that $(I-h)$ $(H \backslash X)$ is contained in H_{2}.

Proof: The internal direct sum of two closed, orthogonal, linear subspaces, H_{i} and H_{j}, of H will be denoted by $H_{i}+H_{j}$; the symbol " $C+D$ " will continue to denote the set of all sums of pairs of elements, one from C and the other from D, for any subsets, C and D, of H. As before, P_{i} will denote the projection of H onto the closed, linear subspace H_{i}, and B_{i} will denote the closed unit ball of H_{i} centered at the origin. Let H_{4} be a one-dimensional, linear subspace of H_{2}, and let H_{3} be its orthogonal complement in H_{2}. Let e be an element of H_{4} of norm one, and let T be a linear isomorphism of H onto $H_{1}+H_{3}$ for which $P_{1} T=P_{1}$.

There is a C^{∞}-diffeomorphism f of H onto itself such that

1) $f\left(H_{1}+H_{3}\right) \cap H_{1}=T(X)=X$,
2) $f^{-1}\left(H_{1}+H_{3}\right) \cap\left(H_{1}+H_{3}\right)=X+H_{3}=T\left(X+H_{1}^{\perp}\right)$,
3) $P_{4} f \mid y+H_{3}$ is constant for each y in H_{1}, and
4) for each y in $\left(H_{1}+H_{3}\right) \backslash T(U),\left\|P_{2} f(y)\right\| \geqq 1$. The folllowing three paragraphs provide a construction of such a function.

For each x in X, let V_{x} be a relatively open set in H_{1} containing x for which there is a d_{x} in $(0,1)$ such that $V_{x}+d_{x} B_{3}$ is contained in $T(U)$. By Lemma 3, there exist open covers, $\left\{U_{i}\right\}_{i=1}^{\infty}$ and $\left\{W_{i}\right\}_{i=1}^{\infty}$, of H_{1} and a cover $\left\{X_{i}\right\}_{i=1}^{\infty}$ of X by compact subsets of X such that, for each $i, X_{i} \subset U_{i} \subset \bar{U}_{i} \subset W_{i}$ and such that $\left\{W_{i}\right\}_{i=1}^{\infty}$ is a star-finite refinement of $\left\{H_{1} \backslash X\right\} \cup\left\{V_{x}\right\}_{x \in X}$.

Let, for each i, a_{i} be a C^{∞}-function from H_{1} into [0,1] for which $a_{i}^{-1}(0) \supset\left(H_{1} \backslash W_{i}\right)$ and $a_{i}^{-1}(1) \supset \bar{U}_{i}$, unless $U_{i} \cap X=\emptyset$, in which case $a_{i}\left(H_{1}\right)=\{0\}$. (If $U_{i} \cap X \neq \emptyset, a_{i}$ may be obtained from a C^{∞} partition of unity of H_{1} subordinate to $\left\{W_{i}, H_{1} \backslash U_{i}\right\}$ by summing all elements which vanish on a neighborhood of $H_{1} \backslash W_{i}$.) For each i such that $U_{i} \cap X \neq \emptyset$, let $x(i)$ be an element of X for which $V_{x(i)} \supset W_{i}$, and, for each i, let

$$
d_{i}=\left\{\begin{array}{ll}
d_{x(i)}, & \text { if } U_{i} \cap X \neq \emptyset \\
1, & \text { if } U_{i} \cap X=\emptyset
\end{array}\right\}
$$

Define $a: H_{1} \rightarrow[0, \infty)$ by $a(x)=\prod_{i=1}^{\infty}\left(1+\left(1 / d_{i}\right) a_{i}(x)\right)$, where Π denotes real multiplication. Let $g: H \rightarrow H$ be defined by

$$
g(x)=\left(I-P_{3}\right)(x)+a\left(P_{1}(x)\right) P_{3}(x)
$$

Now, if y is in $\left(H_{1}+H_{3}\right) \backslash T(U)$ and $P_{1}(y)$ is in

$$
A=\cup\left\{U_{i} \mid U_{i} \cap X \neq \emptyset\right\}
$$

then $\left\|P_{3} g(y)\right\| \geqq 1$ because there is an i for which $P_{1}(y)$ is in U_{i} and, so, $\left\|P_{3}(y)\right\| \geqq d_{i}$. (Thus,

$$
\left.\left\|a\left(P_{1}(y)\right) P_{3}(y)\right\| \geqq\left(1+1 / d_{i}\right)\left\|P_{3}(y)\right\|>1 .\right)
$$

By Lemma 5, for each i there is a C^{∞}-function b_{i} from H_{1} into $[0,1]$ such that $b_{i}^{-1}(0)=X_{i}$ and $b_{i}^{-1}(1) \supset H_{1} \backslash U_{i}$, with the proviso that if $X_{i}=\emptyset$, then $b_{i}\left(H_{1}\right)=\{1\}$. Let $b: H_{1} \rightarrow[0,1]$ be defined by $b(x)=\prod_{i=1}^{\infty} b_{i}(x)$, and note that $b^{-1}(1) \supset H_{1} \backslash A$; furthermore, $b^{-1}(0)=X$. The function f may now be defined by

$$
f(x)=g(x)+b\left(P_{1}(x)\right) e
$$

By Lemma 6, there exists a C^{∞}-diffeomorphism p of $H_{1}^{\perp} \backslash\{0\}$ onto H_{1}^{\perp} which is the identity off the unit ball of H_{1}^{\perp} centered at the origin and has the property that $(I-p)\left(H_{1}^{\perp}\right) \subset H_{3}$. Let
$h=T^{-1} f^{-1}\left(P_{1}+p\left(I-P_{1}\right)\right) f(T \mid H \backslash X)$. This is the desired diffeomorphism of $H \backslash X$ onto H.

Lemma 8. If X is a closed, locally compact subset of H, U is an open subset of H containing X, and ε is a positive real number, then there is a C^{∞}-diffeomorphism of $H \backslash X$ onto H which is the identity off U and moves no point more than ε.

Proof: By Lemma 3, there is a star-finite open cover $\left\{V_{i}\right\}_{i=1}^{\infty}$ refining $\{H \backslash X, U\}$ and a cover $\left\{X_{i}\right\}_{i=1}^{\infty}$ of X by compact subsets of X which have the properties that (1) $\bar{V}_{i} \cap X$ is compact, for each i, and (2) for each $i, X_{i} \subset V_{i}$. By Lemma 1, there are three closed, linear subspaces, H_{1}, H_{2}, and H_{3}, of H such that each two are orthogonal, $H=H_{1}+H_{2}+H_{3}, H_{2}$ and H_{3} are infinite-dimensional, and P_{1} is a homeomorphism on each compact subset of X.

Let $A_{1}=\left\{V_{i_{1}}\right\}$, where i_{1} is the least integer i for which $V_{i} \cap X \neq \emptyset$, and, assuming A_{1}, \cdots, A_{n-1} to be defined with A_{j}^{*} denoting the union of all elements of A_{j}, let $A_{n}=\left\{V_{i} \mid V_{i} \notin \bigcup_{k=1}^{n-1} A_{k}\right.$, $V_{i} \cap X \neq \emptyset$, and either $V_{i} \cap A_{n-1}^{*} \neq \emptyset$ or i is the least integer for which V_{i} satisfies the first two conditions $\}$. Let $Y_{n}=\cup\left\{X_{i} \mid V_{i} \in A_{n}\right\}$. The collection $\left\{A_{n}^{*}\right\}_{n=1}^{\infty}$ has the property that $|n-m|>1$ implies that $A_{m}^{*} \cap A_{n}^{*}=\emptyset$, and each Y_{n} is compact.

Let d be the function from the set of pairs of subsets of H to the real numbers defined by $d(A, B)=\inf \{\|a-b\| \mid a \in A, b \in B\}$, and for each n, let $d_{2_{n-1}}$ be a positive number less than

$$
\begin{aligned}
& \min \left\{\left(\frac{1}{6}\right) \varepsilon, d\left(Y_{2 n-2}, H \backslash A_{2 n-2}^{*}\right),\right. \\
& \left.d\left(Y_{2 n-1}, H \backslash A_{2 n-1}^{*}\right), d\left(Y_{2 n}, H \backslash Y_{2 n}^{*}\right)\right\} .
\end{aligned}
$$

Now, for each n, set $Z_{2 n-1}$ to be the closed $\frac{1}{2} d_{2 n-1}-$ neighborhood of $Y_{2 n-1}$ in X, and note that each $Z_{2 n-1}$ is compact and its open $\frac{1}{2} d_{2 n-1}$-neighborhood lies in $A_{2 n-1}^{*}$. Consider $\left\{P_{1}\left(Z_{2 n-1}\right)\right\}_{n=1}^{\infty}$. Because P_{1} is an open map and is a homeomorphism on $Z_{2 n-3} \cup Z_{2 n-1} \cup Z_{2 n+1}$, for each n, there is a collection $\left\{W_{2 n-1}^{*}\right\}_{n=1}^{\infty}$ of open sets in H_{1} for which $P_{1}\left(Z_{2 n-1}\right) \subset W_{2 n-1} \subset P_{1}\left(A_{2 n-1}^{*}\right)$ and $W_{2 n-3} \cap W_{2 n-1}=W_{2 n-1} \cap W_{2 n+1}=\emptyset$, for each n; furthermore, there is a collection $\left\{W_{2 n}\right\}_{n=1}^{\infty}$ of open sets of H_{1} for which $P_{1}\left(Y_{2 n}\right) \subset W_{2 n} \subset P_{1}\left(A_{2 n}^{*}\right)$ and $W_{2 n-2} \cap W_{2 n}=W_{2 n} \cap W_{2 n+2}=\emptyset$, for each n. By Lemma 4, there is, for each n, a pair, $f_{2 n-1}$ and $g_{2 n-1}$, of homeomorphisms of H onto itself such that $f_{2 n-1}$ is a C^{∞} diffeomorphism of H which is the identity off $P_{1}^{-1}\left(W_{2 n-1}\right)$ and is a translation of each hyperplane parallel to $H_{2}+H_{3}$ into itself, $g_{2 n-1}$ is a C^{∞}-diffeomorphism on $H \backslash Z_{2 n-1}$, is the identity on the
complement of $P_{1}^{-1}\left(W_{2 n-1}\right)$ and on the complement of the open $\frac{1}{2} d_{2 n-1}$-neighborhood of $Z_{2 n-1}$, and moves no point more than $\frac{1}{2} d_{2 n-1}, f_{2 n-1} g_{2 n-1}\left|Z_{2 n-1}=P_{1}\right| Z_{2 n-1}$, and $P_{1} g_{2 n-1}=P_{1}$.

Let $d_{2 n-1}^{\prime} \in\left(0, d_{2 n-1}\right)$ be small enough that (a) the open $d_{2 n-1^{-}}^{\prime}$ neighborhood of $f_{2 n-1} g_{2 n-1}\left(Y_{2 n-1}\right)$ in $f_{2 n-1} g_{2 n-1}(X)$ lies in $f_{2 n-1} g_{2 n-1}\left(Z_{2 n-1}\right)=P_{1}\left(Z_{2 n-1}\right)$, (b) the open $4 d_{2 n-1}^{\prime}$-neighborhood of $f_{2 n-1} g_{2 n-1}\left(Y_{2 n-j}\right)$ lies in $f_{2 n-1}\left(A_{2 n-j}^{*}\right)$ and $f_{2 n-1} g_{2 n-1}\left(A_{2 n-j}^{*}\right)$, for $j=0,1$, and 2, and (c) the open $4 d_{2 n-1}^{\prime}$-neighborhood of $f_{2 n-1} g_{2 n-1}\left(Z_{2 n-1}\right)$ lies $P_{1}^{-1}\left(W_{2 n-1}\right)$. By Lemma 7, there is, for each n, a C^{∞}-diffeomorphism $h_{2 n-1}$ of $H \backslash P_{1}\left(Y_{2 n-1}\right)$ onto H which is the identity off the open $d_{2 n-1}^{\prime}$-neighborhood of $P_{1}\left(Y_{2 n-1}\right)$ and has the property that $\left(P_{1}+P_{3}\right) h_{2 n-1}=P_{1}+P_{3}$.

Each $h_{2 n-1}$ is the identity on $f_{2 n-1} g_{2 n-1} \overline{\left(Y_{2 n-2} \backslash Z_{2 n-1}\right)}$ and $f_{2 n-1} g_{2 n-1} \overline{\left(Y_{2 n} \backslash Z_{2 n-1}\right)}$ and carries the open $d_{2 n-1}^{\prime}$-neighborhoods of $f_{2 n-1} g_{2 n-1}\left(Y_{2 n-2} \backslash Y_{2 n-1}\right)$ and $f_{2 n-1} g_{2 n-1}\left(Y_{2 n} \backslash Y_{2 n-1}\right)$ in $H \backslash P_{1}\left(Y_{2 n-1}\right)$ into $f_{2 n-1}\left(A_{2 n-2}^{*}\right)$ and $f_{2 n-1}\left(A_{2 n}^{*}\right)$, respectively. This is because if z is in H and

$$
\inf \left\{\|z-x\| \mid x \in f_{2 n-1} g_{2 n-1}\left(Y_{2 n-2} \backslash Y_{2 n-1}\right)\right\}<d_{2 n-1}^{\prime}
$$

then, by (b), the open $3 d_{2 n-1}^{\prime}$-neighborhood of z lies in $f_{2 n-1}\left(A_{2 n-2}^{*}\right)$. Since $z-h_{2 n-1}(z)$ is in H_{2}, if $h_{2 n-1}(z) \neq z$, then, as $h_{2 n-1}$ is the identity off the open $d_{2 n-1}^{\prime}$-neighborhood of $P_{1}\left(Y_{2 n-1}\right)$, $\left\|z-h_{2 n-1}(z)\right\|<2 d_{2 n-1}^{\prime}$ and, hence, $h_{2 n-1}(z)$ is in $f_{2 n-1}\left(A_{2 n-2}^{*}\right)$. The same argument gives that $h_{2 n-1}^{\prime}$ carries the open $d_{2 n-1}^{\prime}-$ neighborhood of $f_{2 n-1} g_{2 n-1}\left(Y_{2 n} \backslash Y_{2 n-1}\right)$ into $f_{2 n-1}\left(A_{2 n}^{*}\right)$.

Let $F_{2 n-1}=\left(f_{2 n-1}^{-1} h_{2 n-1} f_{2 n-1} g_{2 n-1}\right) \mid H \backslash Y_{2 n-1}$. By (b) and (c), each $F_{2 n-1}$ is the identity off the intersection of $P_{1}^{-1}\left(W_{2 n-1}\right)$ with $A_{2 n-1}^{*}$ and is a homeomorphism of $H \backslash Y_{2 n-1}$ onto H which is a C^{∞}-diffeomorphism off $Z_{2 n-1}$. Define $F: H \backslash \bigcup_{n=1}^{\infty} Y_{2 n-1} \rightarrow H$ by $F(x)=\operatorname{limit}_{n \rightarrow \infty} F_{2 n-1} \cdots F_{1}(x)$, for each x in $H \backslash \bigcup_{n=1}^{\infty} Y_{2 n-1}$. Since $\overline{\left\{A_{2 n-1}^{*}\right\}_{n=1}^{\infty}}$ is a locally finite collection of sets (by virtue of of the fact that $\left\{V_{i}\right\}_{i=1}^{\infty}$ is star-finite) and the sets $A_{2 n-1}^{*}$ are pairwise disjoint, F is a homeomorphism which on $H \backslash \bigcup_{n=1}^{\infty} Z_{2 n-1}$ is a C^{∞}-diffeomorphism. Because each A_{n}^{*} lies in U, F is the identity off U.

Consider, now, the collection of sets

$$
\left\{Z_{2 n}=f_{2 n-1} f_{2 n+1} F\left(Y_{2 n} \backslash\left(Y_{2 n-1} \cup Y_{2 n+1}\right)\right\}_{n=1}^{\infty}\right.
$$

Each of these sets lies, except for a subset with compact closure, in $H_{1}+H_{2}$, and $\left(P_{1}+P_{2}\right) \mid Z_{2 n}$ is a homeomorphism of $Z_{2 n}$ into $H_{1}+H_{2}$. This statement may be verified as follows: Because
$Y_{2 n} \backslash\left(Y_{2 n-1} \cup Y_{2 n+1}\right)$ is a closed, locally compact subset of $H \backslash \bigcup_{n=1}^{\infty} Y_{2 n-1}, Z_{2 n}$ is a closed, locally compact subset of H. Because $F_{2 n-1}$ is the identity off $A_{2 n-1}^{*}$, for each n, these functions commute, and

$$
F\left|Y_{2 n} \backslash\left(Y_{2 n-1} \cup Y_{2 n+1}\right)=F_{2 n+1} F_{2 n-1}\right| Y_{2 n} \backslash\left(Y_{2 n-1} \cup Y_{2 n+1}\right) .
$$

By the condition on the sets $\left\{W_{2 m-1}\right\}_{m=1}^{\infty}$, each of the functions $h_{2 n+1}, f_{2 n+1}$, and $g_{2 n+1}$ commutes with all of the functions $h_{2 n-1}$, $f_{2 n-1}$, and $g_{2 n-1}$. Therefore

$$
Z_{2 n}=h_{2 n+1} h_{2 n-1} f_{2 n+1} g_{2 n+1} f_{2 n-1} g_{2 n-1}\left(Y_{2 n} \backslash\left(Y_{2 n-1} \cup Y_{2 n+1}\right)\right),
$$

and since

$$
f_{2 n+1} g_{2 n+1} f_{2 n-1} g_{2 n-1}\left(\left(Z_{2 n-1} \cup Z_{2 n+1}\right) \backslash\left(Y_{2 n-1} \cup Y_{2 n+1}\right)\right)
$$

lies in H_{1} and $h_{2 n+1} h_{2 n-1}\left(H_{1}\right)$ lies in $H_{1}+H_{2}$,

$$
f_{2 n+1} f_{2 n-1} F\left(\left(Z_{2 n-1} \cup Z_{2 n+1}\right) \backslash\left(Y_{2 n-1} \cup Y_{2 n+1}\right)\right)
$$

lies in $H_{1}+H_{2}$. However, $Z_{2 n}$ is the union of this set with

$$
f_{2 n+1} f_{2 n-1} F\left(\overline{\left.Y_{2 n} \backslash\left(Z_{2 n-1} \cup Z_{2 n+1}\right)\right)},\right.
$$

which is compact; so, $\overline{Z_{2 n} \backslash\left(H_{1}+H_{2}\right)}$ is compact. To see that $\left(P_{1}+P_{2}\right) \mid Z_{2 n}$ is a homeomorphism of $Z_{2 n}$ into $H_{1}+H_{2}$, observe that, from the definitions of the functions involved,

$$
P_{1}\left|Z_{2 n}=\left(P_{1} g_{2 n-1}^{-1} f_{2 n-1}^{-1} g_{2 n+1}^{-1} f_{2 n+1}^{-1} h_{2 n-1}^{-1} h_{2 n+1}^{-1}\right)\right| Z_{2 n},
$$

and

$$
\left(g_{2 n-1}^{-1} f_{2 n-1}^{-1} g_{2 n+1}^{-1} f_{2 n+1}^{-1} h_{2 n-1}^{-1} h_{2 n+1}^{-1}\right) \mid Z_{2 n}
$$

is a homeomorphism of $Z_{2 n}$ onto $Y_{2 n} \backslash\left(Y_{2 n-1} \cup Y_{2 n+1}\right)$. Because P_{1} is, by Lemma 1, a homeomorphism on $Y_{2 n} \backslash\left(Y_{2 n-1} \cup Y_{2 n+1}\right)$, P_{1} is a homeomorphism on $Z_{2 n}$. Therefore, since

$$
\left(P_{1}+P_{2}\right) \mid Z_{2 n}=\left(P_{1} \mid\left(P_{1}+P_{2}\right)\left(Z_{2 n}\right)\right)^{-1}\left(P_{1} \mid Z_{2 n}\right),
$$

$\left(P_{1}+P_{2}\right) \mid Z_{2 n}$ is also a homeomorphism.
For each n, let $d_{2 n} \in\left(0, \min \left\{d_{2 n-1}^{\prime}, d_{2 n+1}^{\prime}\right\}\right)$ be small enough that the open $d_{2 n}$-neighborhood of

$$
f_{2 n+1} g_{2 n+1} f_{2 n-1} g_{2 n-1}\left(Y_{2 n} \backslash\left(Z_{2 n-1} \cup Z_{2 n+1}\right)\right)
$$

is contained in $f_{2 n+1} g_{2 n+1} f_{2 n-1} g_{2 n-1}\left(A_{2 n}^{*}\right)$. This requirement is sufficient to guarantee that the open $d_{2 n}$-neighborhood of $Z_{2 n}$ also lies in $f_{2 n+1} g_{2 n+1} f_{2 n-1} g_{2 n-1}\left(A_{2 n}^{*}\right)$. This follows because if a point x of H is within $d_{2 n}$ of a point y of $Z_{2 n}$, then in the case that y is in

$$
\begin{array}{rl}
f_{2 n-1} f_{2 n+1} & F\left(\overline{Y_{2 n} \backslash\left(Z_{2 n-1} \cup Z_{2 n+1}\right)}\right) \\
& =f_{2 n+1} g_{2 n+1} f_{2 n-1} g_{2 n-1}\left(\overline{Y_{2 n} \backslash\left(Z_{2 n-1} \cup Z_{2 n+1}\right)}\right),
\end{array}
$$

the specific choice of $d_{2 n}$ shows that x is in $f_{2 n+1} g_{2 n+1} f_{2 n-1} g_{2 n-1}\left(A_{2 n}^{*}\right)$, while in the case that y is in $f_{2 n-1} f_{2 n+1} F\left(Z_{2 n \pm 1} \backslash\left(Y_{2 n \pm 1} \cup Y_{2 n \pm 2}\right)\right)$, then, by condition (c) on the choice of the set $\left\{d_{2 m-1}^{\prime}\right\}_{m=1}^{\infty}$, both x and y lie in $P_{1}^{-1}\left(W_{2 n \pm 1}\right)$, so $h_{2 n \mp 1}(y)=y$, and from the fact that $\left\|h_{2 n \pm 1}^{-1}(y)-y\right\|<d_{2 n \pm 1}^{\prime}$, it is true that $\left\|x-h_{2 n \pm 1}^{-1}(y)\right\|<4 d_{2 n \pm 1}^{\prime}$, which, from conditions (b) and (c) on the choice of $d_{2 n \pm 1}^{\prime}$ and the fact that $f_{2 n \mp 1}$ and $g_{2 n \mp 1}$ are the identity off $P_{1}^{-1}\left(W_{2 n \mp 1}\right)$, gives that x is in $f_{2 n+1} g_{2 n+1} f_{2 n-1} g_{2 n-1}\left(A_{2 n}^{*}\right)$.

Lemma 4 gives a collection $\left\{f_{2 n}, g_{2 n}\right\}_{n=1}^{\infty}$ of pairs of homeomorphisms of H onto itself such that each $f_{2 n}$ is a C^{∞}-diffeomorphism of $H, f_{2 n}(x+y)=f_{2 n}(x)+y$ for each x in H and y in H_{3}, $\left(P_{1}+P_{2}\right) f_{2 n}=P_{1}+P_{2}=\left(P_{1}+P_{2}\right) g_{2 n}, f_{2 n}$ and $g_{2 n}$ are the identity off $P_{1}^{-1}\left(W_{2 n}\right), g_{2 n}$ is the identity off the open $\frac{1}{2} d_{2 n}$-neighborhood of $Z_{2 n}, g_{2 n}$ moves no point more than $d_{2 n}$, and

$$
f_{2 n} g_{2 n}\left|Z_{2 n}=\left(P_{1}+P_{2}\right)\right| Z_{2 n}
$$

Lemma 7 gives a collection $\left\{h_{2 n}\right\}_{n=1}^{\infty}$ of functions such that each $h_{2 n}$ is a C^{∞}-diffeomorphism of $H \backslash t_{2 n} g_{2 n}\left(Z_{2 n}\right)$ onto $H, h_{2 n}(x)-x$ is in H_{3} for each x in $H \backslash f_{2 n} g_{2 n}\left(Z_{2 n}\right)$, for each n, and each $h_{2 n}$ is the identity off the intersection of $P_{1}^{-1}\left(W_{2 n}\right)$ with the image under $f_{2 n}$ of the open $d_{2 n}$-neighborhood of $Z_{2 n}$ and with the open $d_{2 n}-$ neighborhood of $H_{1}+H_{2}$. Let

$$
\begin{aligned}
F_{2 n}=\left(f_{2 n-1}^{-1} f_{2 n+1}^{-1} f_{2 n}^{-1} h_{2 n} f_{2 n} g_{2 n} f_{2 n+1} f_{2 n-1}\right) \\
\mid H \backslash F\left(Y_{2 n} \backslash\left(Y_{2 n-1} \cup Y_{2 n+1}\right)\right),
\end{aligned}
$$

and note that $F_{2 n}$ is the identity off

$$
P_{1}^{-1}\left(W_{2 n}\right) \cap\left(A_{2 n-1}^{*} \cup A_{2 n}^{*} \cup A_{2 n+1}^{*}\right)
$$

(This is true because $f_{2 n}, g_{2 n}$, and $h_{2 n}$ are the identity off $P_{1}^{-1}\left(W_{2 n}\right)$, $g_{2 n}$ is the identity off the open $d_{2 n}$-neighborhood of $Z_{2 n}$, which lies in $f_{2 n+1} g_{2 n+1} f_{2 n-1} g_{2 n-1}\left(A_{2 n}^{*}\right)$, and $h_{2 n}$ is the identity off the image under $f_{2 n}$ of the open $d_{2 n}$-neighborhood of $Z_{2 n}$, which together yield that $F_{2 n}$ is the identity off

$$
f_{2 n-1}^{-1} f_{2 n+1}^{-1}\left(P_{1}^{-1}\left(W_{2 n}\right) \cap f_{2 n+1} g_{2 n+1} f_{2 n-1} g_{2 n-1}\left(A_{2 n}^{*}\right)\right)
$$

which is $P_{1}^{-1}\left(W_{2 n}\right) \cap g_{2 n+1} g_{2 n-1}\left(A_{2 n}^{*}\right)$. Since $g_{2 n \pm 1}$ is the identity off $A_{2 n \pm 1}^{*}, F_{2 n}$ is the identity off $P_{1}^{-1}\left(W_{2 n}\right) \cap\left(A_{2 n-1}^{*} \cup A_{2 n}^{*} \cup A_{2 n+1}^{*}\right)$.) Thus, the $F_{2 n}$'s are the identity off a collection of pairwise disjoint
open sets, the closures of which form a locally finite collection of sets in H, so $G(x)=\operatorname{limit}_{n \rightarrow \infty} F_{2 n} \cdots F_{2}(x)$ is a C^{∞}-diffeomorphism of $H \backslash F\left(X \backslash \bigcup_{n=1}^{\infty} Y_{2 n-1}\right)$ onto H which is the identity off U. Let $h=G(F \mid H \backslash X)$. Now h is a C^{∞}-diffeomorphism of $H \backslash X$ onto H which is the identity off U. To verify that $\|h(x)-x\|<\varepsilon$ for each x in $H \backslash X$, observe that if x is in $A_{2 n-1}^{*} \cap P_{1}^{-1}\left(W_{2 n-1}\right)$, then

$$
\begin{aligned}
\|F(x)-x\| & =\left\|F_{2 n-1}(x)-x\right\|=\left\|f_{2 n-1}^{-1} h_{2 n-1} f_{2 n-1} g_{2 n-1}(x)-x\right\| \\
& <\left\|f_{2 n-1}^{1-} h_{2 n-1} f_{2 n-1}\left(g_{2 n-1}(x)\right)-g_{2 n-1}(x)\right\|+d_{2 n-1}
\end{aligned}
$$

and since $h_{2 n-1}(y)-y$ is in H_{2}, for all y in the domain of $h_{2 n-1}$, and $f_{2 n-1}\left(x+P_{2}(y)\right)=f_{2 n-1}(x)+P_{2}(y)$ for each x and y in H, $\|F(x)-x\|<d_{2 n-1}+2 d_{2 n-1}^{\prime}$. If, on the other hand, x is not in any $A_{2 n-1}^{*} \cap P_{1}^{-1}\left(W_{2 n-1}\right)$, then $F(x)=x$. Now, if y is in

$$
P_{1}^{-1}\left(W_{2 n}\right) \cap\left(A_{2 n-1}^{*} \cap A_{2 n}^{*} \cup A_{2 n+1}^{*}\right)
$$

then

$$
\|G(y)-y\|=\left\|f_{2 n-1}^{-1} f_{2 n+1}^{-1} f_{2 n}^{-1} h_{2 n} f_{2 n} g_{2 n} f_{2 n+1} f_{2 n-1}(y)-y\right\|
$$

and since $f_{2 n}(x)-x, g_{2 n}(x)-x$, and $h_{2 n}(x)-x$ all lie in H_{3}, for each x in the domains of these functions,

$$
\begin{aligned}
& \left\|f_{2 n-1}^{-1} f_{2 n+1}^{-1} f_{2 n}^{-1} h_{2 n} f_{2 n} g_{2 n} f_{2 n+1} f_{2 n-1}(y)-y\right\| \\
& \quad=\left\|f_{2 n}^{-1} h_{2 n} f_{2 n} g_{2 n}\left(f_{2 n+1} f_{2 n-1}(y)\right)-f_{2 n+1} f_{2 n-1}(y)\right\| \leqq 2 d_{2 n}+d_{2 n}
\end{aligned}
$$

therefore, for each x in $H \backslash X$,

$$
\|h(x)-x\|<3 d_{2 m}+2 d_{2 n-1}^{\prime}+d_{2 n-1}
$$

for some m and n, which is less than ε.
Theorem 1. Eeach matrizable C^{p}-manifold modelled on separable, infinite-dimensional Hilbert spaces is C^{p}-diffeomorphic to the complement of each of its closed, locally compact subsets; moreover, the diffeomorphism may be required to be the identity off any open set containing the locally compact set in question and may be limited by any open cover of the manifold.

Proof: Let M, X, U, and G be the manifold, locally compact set, open set, and open cover in question. Because the diffeomorphism to be constructed may be defined on each component of M separately, it may be assumed that M is connected and, hence, separable and modelled on the separable, infinite-dimensional Hilbert space H.

It suffices to prove the following statement (Statement A):

If V_{0}, \cdots, V_{n} are open subsets of H and X_{0}, \cdots, X_{n} are locally compact subsets of V_{0}, \cdots, and V_{n}, respectively, which are relatively closed in $\bigcup_{i=0}^{n} V_{i}$, then there is a C^{∞}-diffeomorphism of ($\bigcup_{i=0}^{n} V_{i} \backslash X_{0}$ onto $\bigcup_{i=0}^{n} V_{i}$ which is the identity off $V_{0} \backslash X_{0}$ and carries $X_{i} \backslash X_{0}$ into V_{i}, for each $i=1, \cdots, n$. This is true because then using the definition of M and Lemma 3, there are collections, $\left\{V_{i}\right\}_{i=1}^{\infty},\left\{W_{i}\right\}_{i=1}^{\infty}$, and $\left\{X_{i}\right\}_{i=1}^{\infty}$, of subsets of M such that $\left\{V_{i}\right\}_{i=1}^{\infty}$ is an open cover of M which is a star-finite refinement of G and is a refinement of $\{U, M \backslash X\}$, each element of which is C^{p}-diffeomorphic to an open subset of H by a function f_{i}, each X_{i} is a compact subset of $X, X=\bigcup_{i=1}^{\infty} X_{i},\left\{W_{i}\right\}_{i=1}$ is an open cover of M, and, for each $i, X_{i} \subset W_{i} \subset \bar{W}_{i} \subset V_{i}$. Now, Statement A gives a C^{∞}-diffeomorphism h_{1} of $f_{1}\left(V_{1} \backslash X_{1}\right)$ onto $f_{1}\left(V_{1}\right)$ which is the identity off $f_{1}\left(W_{1}\right)$ and carries $\left.f_{1}\left(X_{i} \backslash X_{1}\right) \cap V_{1}\right)$ into $f_{1}\left(W_{i} \cap V_{1}\right)$, for each i. Let g_{1} be the natural extension of $f_{1}^{-1} h_{1}\left(f_{1} \mid V_{1} \backslash X_{1}\right)$ to $M \backslash X_{1}$. Inductively, for each $i>1$, let h_{i} be a C^{∞}-diffeomorphism of

$$
f_{i}\left(g_{i-1} \cdots g_{1}\left(V_{i} \backslash \bigcup_{j \leqq i} X_{j}\right) \cap V_{i}\right)
$$

onto

$$
f_{i}\left(g_{i-1} \cdots g_{1}\left(V_{i} \backslash \bigcup_{j<i} X_{j}\right) \cap V_{i}\right)
$$

which is the identity off

$$
f_{i}\left(g_{i-1} \cdots g_{1}\left(W_{i} \backslash \bigcup_{j \leqq i} X_{j}\right) \cap W_{i}\right)
$$

and carries

$$
f_{i}\left(g_{i-1} \cdots g_{1}\left(X_{k} \backslash \bigcup_{i \leqq j} X_{j}\right) \cap V_{i}\right)
$$

into $f_{i}\left(W_{k} \cap V_{i}\right)$, for each $k>i$. Define g_{i} to be the natural extension of

$$
f_{i}^{-1} h_{i}\left(f_{i} \mid V_{i} \cap g_{i-1} \cdots g_{1}\left(V_{i} \backslash \bigcup_{j \leqq i} X_{j}\right)\right)
$$

to $g_{i-1} \cdots g_{1}\left(M \backslash \bigcup_{j \leqq i} X_{j}\right)$. Require that if $X_{i}=\emptyset$, then h_{i}, hence g_{i}, be the identity. Since g_{i} is the identity except when $V_{i} \subset U$ and since $g_{i} \cdots g_{1}(x) \neq g_{i-1} \cdots g_{1}(x)$ implies x is in V_{i}, there is a well-defined C^{p}-diffeomorphism $g(x)=\operatorname{limit}_{i \rightarrow \infty} g_{i} \cdots g_{1}(x)$ from $M \backslash X$ onto M. The function g^{-1} is the identity off U, and, because $\left\{V_{i}\right\}_{i=1}^{\infty}$ is a refinement of G, g^{-1} is limited by G.

In order to prove Statement A, first note that Lemma 8 easily implies that (Statement B) if U and V are two open subset of H, V is contained in U, and Y is a locally compact subset of V
which is relatively closed in U, then there is a C^{∞}-diffeomorphism of $U \backslash Y$ onto U which is the identity off V. To see this, let, by Lemma 3, $\left\{0_{i}\right\}_{i=1}^{\infty}$ and $\left\{Y_{i}\right\}_{i=1}^{\infty}$ be collections of subsets of U such that $\left\{0_{i}\right\}_{i=1}^{\infty}$ is a star-finite open cover of U refining $\{V, U \backslash Y\}$, $\left\{Y_{i}\right\}_{i=1}^{\infty}$ is a cover of Y by compact subsets of it, and each Y_{i} lies in 0_{i}. Let $\varepsilon_{i}=1 / 2 n_{i} \min \left\{d\left(Y_{j}, U \backslash 0_{j}\right) \mid 0_{j} \cap 0_{i} \neq \emptyset\right\}$, where n_{i} is the number of 0_{j} 's which intersect 0_{j}. Now, by Lemma 8, there is a C^{∞}-diffeomorphism h_{1} of $H \backslash Y_{1}$ onto H which is the identity off 0_{1} and moves no point more than ε_{1}. Define h_{i}, for $i>1$, inductively so that each h_{i} is a C^{∞}-diffeomorphism of

$$
H \backslash h_{i-1} \cdots h_{1}\left(Y_{i} \backslash \bigcup_{j<i} Y_{j}\right)
$$

onto H, is the identity off

$$
\mathbf{0}_{i} \cap h_{i-1} \cdots h_{1}\left(0_{i} \backslash \bigcup_{j \leqq i} Y_{j}\right)
$$

moves no point more than ε_{i}, and is the identity if $X_{i}=\emptyset$. Since $\left\{0_{i}\right\}_{i=1}^{\infty}$ is star-finite, no point has infinitely many distinct successive images and $h(x)=\operatorname{limit}_{i \rightarrow \infty} h_{i} \cdots h_{1}(x)$ is a well-defined function which is the identity off $V \backslash Y$ and which is a C^{∞}-diffeomorphism on $U \backslash Y$.

Now proceeding with the proof of Statement A, let V_{0}, \cdots, V_{n} be open subsets of H and X_{0}, \cdots, X_{n} be locally compact subsets of V_{0}, \cdots, V_{n}, respectively, which are relatively closed in $\bigcup_{i=0}^{n} V_{i}$. For each $j=0, \cdots, n$, let $Q_{j}=\left\{Z \mid Z=\bigcap_{i=0}^{n-j} X_{p(i)} \backslash \bigcup_{i=n-j+1}^{n} X_{p(i)}\right.$, for some permutation p of $\{0, \cdots, n\}$ carrying 0 to 0$\}$; let $Q=\bigcup_{j=0}^{n} Q_{j}$, and order $Q=\left\{Z_{m}\right\}_{m=1}^{2^{n}}$ in such a manner that if $j<k$, then all elements of Q_{j} precede those of Q_{k}. For each $m=1, \cdots, 2^{n}$, let $N_{m}=\bigcap_{i=0}^{n-j} V_{p(i)}$, where Z_{m} is in Q_{j} and p is a permutation for which $Z_{m}=\bigcap_{i=0}^{n-j} X_{p(i)} \backslash \bigcup_{i=n-j+1}^{n} X_{p(i)}$. Let Q_{k}^{*} denote the union of the elements of Q_{k}. For each $j>0$, the elements of Q_{j} form a set of pairwise disjoint, relatively closed, locally compact subsets of $\bigcup_{i=0}^{n} V_{i} \backslash \bigcup_{k=0}^{j-1} Q_{k}^{*}$, and each Z_{m} in Q_{j} lies in N_{m}. Therefore, for each $j>0$, there exists a collection of pairwise disjoint open sets M_{m} in $\bigcup_{i=0}^{n} V_{i} \backslash \bigcup_{k=0}^{j-1} Q_{k}^{*}$, one for each Z_{m} in Q_{j}, such that for each $m, Z_{m} \subset M_{m} \subset N_{m} \backslash \bigcup_{i=n-j+1}^{n} X_{p(i)}$, where j is such that Z_{m} is in Q_{j} and p is a permutation defining Z_{m} as above. By Statement B, there is a C^{∞}-diffeomorphism h_{1} of $\bigcup_{i=0}^{n} V_{i} \backslash Z_{1}$ onto $\bigcup_{i=0}^{n} V_{i}$ which is the identity off N_{1}. Inductively, for $1<m \leqq 2^{n}$, let h_{m} be a C^{∞}-diffeomorphism of

$$
\bigcup_{i=0}^{n} V_{i} \backslash h_{m-1} \cdots h_{1}\left(Z_{m}\right)
$$

onto $\bigcup_{i=0}^{n} V_{i}$ which is the identity off $h_{m-1} \cdots h_{1}\left(M_{m}\right) \cap N_{m}$. Let $h=h_{2^{n}} \cdots h_{1}$. This is a C^{∞}-diffeomorphism of $\bigcup_{i=0}^{n} V_{i} \backslash X_{0}$ onto $\bigcup_{i=0}^{n} V_{i}$ which is the identity off V_{0}; furthermore, if x is in $X_{i} \backslash X_{0}$ for some $i=1, \cdots$, or n, then $h_{m} \cdots h_{1}(x) \neq h_{m-1} \cdots h_{1}(x)$ implies that x is in M_{m} and $h_{m} \cdots h_{1}(x)$ is in N_{m}, so because M_{m} must lie in $V_{i}, h_{m} \cdots h_{1}(x)$ must also lie in V_{i}, and by induction, so must $h(x)$. Therefore, Statement A, and hence Theorem 1, is proved.

Remark. Since all of the functions f constructed in the Lemmas may easily be required to have the property that for a given onedimensional linear subspace H_{0} of $H, P_{0} f=P_{0}$, where P_{0} is the projection of H onto H_{0}, the proof of Theorem 1 easily generalizes to manifolds with boundary and the following corollary is true, since each paracompact Hilbert manifold is metrizable [7].

Corollary 1. Each paracompact C^{p}-manifold with boundary modelled on separable, infinite-dimensional Hilbert spaces is $C^{p_{-}}$ diffeomorphic to the complement of each of its closed, locally compact subsets; moreover, the diffeomorphism may be required to be the identity off any open set containing the locally compact set in question and may be limited by any open cover of the manifold.

In fact, since the above remark applies to the orthogonal complement of any infinite-dimensional linear subspace, one may require the diffeomorphism of Theorem 1 and Corollary 1 to carry a given closed submanifold into itself provided that each of its components which intersects the locally compact set in question is infinitedimensional.

REFERENCES

R. D. Anderson
[1] On a theorem of Klee, Proc. AMS 17 (1966), 1401-4.
R. D. Anderson, D. W. Henderson and J. E. West
[2] Negiligible subsets of infinite-dimensional manifolds, Compositio Math. (to appear).
Cz. Bessaga
[3] Any Hilbert space of infinite dimension is diffeomorphic with its unit sphere, Bull. Acad. Polon. Sci. Ser., Sci. Math. Astron. Phys. 14 (1966), 27-30.
S. Kaplan
[4] Homology properties of arbitrary subsets of Euclidean spaces, Trans. AMS 62 (1947), 248-271.
V. L. Klee, Jr.
[5] Convex bodies and periodic homeomorphisms in Hilbert space, Trans. AMS 74 (1953), 10-43.
S. Lang
[6] Introduction to Differentiable Manifolds, Interscience, New York, 1962.
R. S. Palais
[7] Homotopy theory of infinite dimensional manifolds, Topology 5 (1966), 1—16.
R. S. Palais
[8] Lectures on the Differential Topology of Infinite Dimensional Manifolds, Mimeographed Notes by S. Greenfield, Brandeis University, 1964-1965.
(Oblatum 31-7-68)
The Institute for Advanced Study

