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In a recent paper [1] Gilmer determined those rings R which
have a cyclic group of units. He showed that it is sufficient to

consider (finite) primary rings. In this note after proving a prelim-
inary result (Theorem 1) we restrict attention to finite primary
rings and show some connections between the additive group of
N, the radical of the ring R, and the multiplicative group 1+N.
In Theorem 2 we prove that if either N or 1+N is cyclic, R is
homogeneous (provided N ~ 0 - i.e. R is not a field) in the sense
that there is a positive integer k such that

are isomorphic elementary abelian groups under addition and
Nk+1 = o. Furthermore, if p &#x3E; 3, N is cyclic if, and only if 1+N
is cyclic. As a consequence of this theorem we are able to determine
the rings for which N is cyclic and those for which 1-i-N is cyclic
(Corollary to Theorem 2). Thus we obtain a quite different proof
of Gilman’s results as well as a proof of the well-known fact that
there is a primitive root, mod pk when p ~ 3. In a subsequent paper
we hope to discuss finite homogeneous rings in general and to
determine conditions under which the radical N is isomorphic (as
an additive group ) to the multiplicative group 1+N.

1. Terminology and notation

We recall that a primary ring is a commutative ring with 1
which contains a unique prime ideal N (see [2] p. 204). The facts
we need about primary rings are:

(1) A finite primary ring is a p-ring - i. e. every element has
additive order a power of a prime p.

( 2 ) R/N is a field
(3 ) N is nilpotent
The notation used is standard. We mention only the following:
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~ is used for direct product (of multiplicative groups), ~ is used
for direct sum (of additive groups); and for a finite set S, |S|
denotes the cardinality of S.

2. A preliminary result

THEOREM 1. Let R be a ring with 1 and N a nil ideal. Il G is the
group of units of R then H = 1+N is a normal subgroup of G and
GJH is isomorphic to the group of units of RjN. Furthermore,
the additive group NilNi+l is isomorphic to the multiplicative group
1+Ni/1+Ni+1 ( f or each integer i &#x3E; 1).

PROOF. We show first that 1+N is contained in G. Let
a E 1+N so that a = 1-f-x with x E N. Since x is nilpotent, x is
regular in the sense of Jacobson. Hence a has an inverse. Thus
1+N  G.

If v is the natural map from R to R = R/N, v maps G homo-
morphically onto a multiplicative subgroup G of R. Let H be the
kernel of the mapping from G to G. It is clear that H == 1 +N so
that H = 1-pN is a normal subgroup of G and GIH - G.
We verify next that G is the group of (all ) units of R. In fact,

let r +N be a unit of R; then there is an

Hence G is the group of units of R.
Since Ni and Ni+1 (i ~ 1) are nil ideals, 1-f-Ni and 1+Ni+1 are

normal subgroups of G and 1+Ni+1 ~ 1 +Ni: hence we can form
the quotient group 1+Ni/1+Ni+1.
Now consider the mapping q from Ni onto i+Nifi+Ni+1

defined by: x~ = (1+x)(1+Ni+1) for x E Ni. Let x, y E Ni and
let z E Ni be such that (1+x+y)(1+z) = 1 (z exists since 1+Ni
is a multiplicative group). Then

so that:

since 1+(1+z)xy~1+Ni+1. But this last equation shows that:

(x~)(y~) = (x+y)~ for x, y ENi - i.e. ~ is a homomorphism.
Now K(îî), the kernel of q, = {x~Ni|1+x~1+Ni+1}=Ni+1
Hence Ni/Ni+1 ~ 1+Ni/1+Ni+1 as we claimed.
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REMARK. The same method establishes the isomorphism
Ni/N2i ~ I+Ni/l+N2i.

3. Finite primary rings

PROPOSITION 1. Let R be a finite primary p-ring with prime ideal
N. Let G be the group of units of R and H = 1 +N. Then

(a) H  G and G/H ~ (R/N)* = the group of non-zero elements
of R/N. Furthermore, G = H 0 U, where U - (R/N)*.

(b) Ni/Ni+1 ~ 1+Ni/1 +Ni+1 for each integer i &#x3E; 1 (the left hand
side as an additive group and the right hand side as a multiplicative
group ).

(c) Ni/Ni+1 is an elementary p-group (under +) and

for each i &#x3E; 1 such that Ni ~ 0.

PROOF. (a) The first statement follows from Theorem 1 since
(RjN)* is the group of units of the field RIN. Now R/N is a Galois
field with pl elements and hence |(R/N)*|=pl-1; on the other
hand, |H| = INI = a power of p. Hence 1 GI = |H|(pl-1) and thus
G == H Q9 U, where U ~ G/H ~ (RIN)*.
(b) This follows directly from Theorem 1.

(c ) Ni/Ni+1 is an R-module but since N(Ni ) = Ni+’, it can also be
considered as an R fN-module - i.e. as a vector space over the field
R/N. But RIN has characteristic p so that p (Ni/Ni+1) = 0 which
shows that NilNi+l is an elementary p-group - provided Ni ~ 0.

Since Ni ~ 0 implies Ni/Ni+1 is a vector space over R/N of
dimension ~ 1, it has a basis of t elements, say (t &#x3E; 1). Then
|Ni/Ni+1| = tpl, where |R/N| = pl. Hence |R/N| ~ |Ni/Ni+1|
provided Ni ~ 0.

DEFINITION. The finite primary ring R with radical N is

homogeneous of type p if 3 an integer k such that

all have order p and Nk+1 = o.

THEOREM 2. Let R be a finite primary p-ring with prime ideal
N e 0 and let H = 1+N. Then

(a) if either the additive group N or the multiplicative group H is
cyclic, R is homogeneous of type p.
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(b ) For p ~ 3, N is cyclic i f , and only i f H is cyclic.
( c ) For p = 2 :
(i ) Il N is cyclic, H is cyclic i f , and only i f N2 = 0. In case N2 :A 0,
H = (-1) ~ H (2) were H(2) = 1+N2 is cyclic.
(ii) Il H is cyclic and N is not cyclic, N ~ Klein 4-group.

PROOF. Let 0 = Nk+1  Nk

(a) Since Ni/Ni+1 ~ 1+Ni/1+Ni+1 by Proposition 1 (b), either of
our hypotheses guarantees that N’IN’+’ is cyclic. But by Proposi-
tion 1 (c) N’INi+l is an elementary p-group for Ni ~ 0, and
|R/N| ~ |Ni/Ni+1|. Hence each of the groups

has order p. Note that |N| - pk.
We prove next the following assertion: (*) Assume that H is

cyclic and that Ni+’ is cyclic. If p &#x3E; 3 and i &#x3E; 1 or if p - 2 and
i ~ 2, Ni is cyclic.

PROOF OF (*). We can assume i  k since we already know that
Ni is cyclic for i &#x3E; k. We show that every element of order p in
Ni is in Ni+1; this will establish that Ni has a unique subgroup of
order p - since by assumption Ni+1 is cyclic. Indeed, let x E Nz
and assume that px = 0. Then (1+x)p = 1+xp and xp E Ni+2.
Since (1+x)p~1+Ni+2 and since I+Ni/l+Ni+2 is cyclic and
hence has 1+Ni+1/1+Ni+2 as its only subgroup of order p,
1+x E 1+Ni+1. Thus x c- Ni+’. This proves the validity of (*).
In particular, applying induction we have that if p ~ 3 and H is
cyclic, N is cyclic (i.e. the "if" part of (b )) , and if p = 2 and H is
cyclic, N2 is cyclic.
Now assume that H is cyclic and that N is not cyclic. Then

p = 2, k ~ 2 (since Nk is cyclic ); we show that N3 = 0. Assume to
the contrary that N3 ~ 0 and let x E N with 2x = 0. Then

(1+x)4 = 1+x4 ~ 1 +N4. l 1 +N41 2k-3 so that

1 - (1 +x4)2k-3 = (1 +x)2k-1
and this implies that x E N2. Thus N is cyclic. Hence if N is not
cyclic, p = k = 2 and N is isomorphic to the Klein 4-group. This
establishes (c) (ii).
We now prove a statement analogous to (*), viz. (**). Assume

that N is cyclic and that 1 +Ni+’ is cyclic. If p ~ 3 and i &#x3E; 1 or
if p = 2 and i ~ 2, 1 +Ni is cyclic.
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PROOF OF (**). We can assume that i  k. Let 1+x e 1+Ni
and assume (1+x)p = 1. Then

where

Letting uv = 1 (u is a unit) we obtain px = -xpv E Nip  Ni+2
since x E Nz. But NilNi+2 is cyclic of order p2 and Ni+1/Ni+2
is its only subgroup of order p. Hence x E Ni+’. Therefore

1+x E 1+Ni+1 and (**) is established. Thus the "only if" part
of (b) is proved and we have only (c) (i) left to verify.

So assume that N is cyclic and that p = 2. If N2 = 0, H ~ N
and H is cyclic. So assume N2 ~ 0. By (**), H(2) = 1+N2 is

cyclic. We show that -1 ~ H""’-H(2). Indeed

but if -1 E H(2), 2 E N2 and this implies that 2 = 2a for some
a EN since N2 = 2N. But then 2(1-a) = 0 so that 2 = 0 since
1-a is a unit. But this implies that N2 = 2N = 0 - a contradic-
tion. Hence H = (-1) 0 H(2) and (c) (i) is established.

COROLLARY. Let R be a finite primary p-ring with prime ideal
N =1= 0, let G be its group o f units and let H = 1+N. Then G is cyclic
i f and only i f H is cyclic. Furthermore, G is cyclic i f and only i f R
is isomorphic to one of the following:

On the other hand, N is cyclic i f and only i f either:

or

Note: We are using the notation: Z. = Z/(n).
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PROOF. Assume that N is cyclic, and suppose that p = pa for
some ac E N. Then p(1-a) - 0 and this implies that p = 0

( 1- a E 1 +N is a unit). Thus either p is a generator of N or N is of
order p.

In the first case, R has characteristic pk+’-, where pk = |N|. But
|R| - pk+1 so that R = Zpk+1. Theorem 2 (b ) and (c) (i) tells us
that H is cyclic if, and only if either p &#x3E; 3 or if p = 2 and k = 1.

In the second case, R has characteristic p and N2 = 0. Thus
R = Zp[x]/(x2) and it follows immedial ely that in this case H is
cyclic.

If the characteristic of R is 2, R = Z2+(a)+(a2) and

R ~ Z2[x]/(x3). If the characteristic of R is 4 and if 2 E NBN2,
we can take a = 2 and then 22 = 4 = 0 - a contradiction. Hence

b = 2. Then R = Z4+ (a) with 2a = 0 and a2 = 2 so that

R ~ Z[x]/Id{4, 2x, x2-2}.
Finally we verify that for these two rings with 8 elements, H is

cyclic. IHI = 4 and (1+a)2 == I+a2 = 1+b ~ 1 (in both cases).
Thus H is not the 4-group so must be cyclic.

If R is an infinite primary ring, its group of units cannot be

cyclic. For if 0 = Nk+1  Nk, Nk is a vector space over the field

R/N and thus Nk cannot be cyclic. But Nk ~ 1+Nk, a subgroup of
the group G of units of R. Hence G cannot be cyclic if N ~ 0. If
N = 0, R is a field and it is easy to see that its non-zero elements
do not form an (infinité) cyclic group.

If R is a commutative ring with identity and with descending
chain condition, then R is a direct sum of a finite number of

primary rings (see [2] Theorem 3 on p. 205). Now if R has a cyclic
group of units each of the primary rings has a cyclic group of
units - and hence must be finite. Thus we have proved:

PROPOSITION 2. Let R be a commutative ring with identity which
satisfies the descending chain condition. Il the group of units of R
is cyclic, R is finite.
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