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1. Introduction

If G is a group and r is a positive integer, G is said to have finite
rank r if each finitely generated subgroup of G can be generated
by r or fewer elements and if r is the least such integer. Here we
consider the effect of imposing finiteness of rank on groups which
have some degree of solubility in a sense which will now be made
precise.

If X is a class of groups, let

Px
denote the class of all groups which have an ascending series with

each factor in X and let
Lx

denote the class of locally-X groups, i.e., groups such that each
finite subset lies in a subgroup belonging to the class ¥. P and L
are closure operations on the class of all classes of groups. A class
X is said to be P-closed if ¥ = PX and L-closed if X = LX. Let
us denote by

X

the intersection of all the classes of groups which contain ¥ and
are both P and L-closed: clearly % is just the smallest P and L-
closed class containing ¥. It is easy to show that X is simply the
union of all the classes (PL)*¥, o = an ordinal number: these
classes are defined by
(PLy"1% = PL((PL)*%)
and
(PLY¥ = UA(PL )2 %
a <

for all ordinals « and all limit ordinals 4, ([5], p. 534).

1 The author acknowledges support from the National Science Foundation.
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Let U denote the class of abelian groups. We shall be concerned
here with the class _
A;
this is a class of generalized soluble groups containing for example
all locally soluble groups and all SN*-groups (see [6] for termino-
logy). Our object is to prove the following.

THEOREM. Let G be a group belonging to 9, the smallest class of
groups containing all abelian groups which is P-closed and L-closed,
and suppose that G has finite rank r. Then G is locally a soluble
minimaz group with minimax length bounded by a function of r only.

By a minimax group we mean a group G with a minimaz series
of finite length, i.e. a series

1=G, <G Q---<16G, =G

in which each factor satisfies either Max (the maximal condition
on subgroups) or Min (the minimal condition of subgroups). The
length of a shortest minimax series of G is called the minimax
length of G and is denoted by

m(G).

The theorem implies for example that every finitely generated
soluble group of finite rank is a minimax group: this furnishes a
partial solution to a problem raised in a previous paper ([9],
p. 518).

2. Proofs

We recall the well-known fact that an abelian group has finite
rank if and only if its p-component is the direct product of a
boundedly finite number (r,) of cyclic and quasicyclic subgroups
for each prime p and the factor group of its torsion-subgroup is
is isomorphic with an additive subgroup of a rational vector space
of finite dimension (r,). Moreover if r, is the least such integer, the
rank of the group is precisely ro—i—Max r,. (For example see
Fuchs [3] pp. 86 and 68).

Two preliminary results will be required.

LeMMA 1. Let G be a nilpotent group. Then G is a minimaz group
if and only if G|G’, its derived factor group, is a minimaz group.
For a proof of this see [10], Corollary 1.

LemMma 2 (Mal’cev [7], Theorem 4). Let G be a group with a series
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of normal subgroups? of finite length such that each factor of the series
is an abelian group of finite rank in which only finitely many primary
components are non-trivial. Then G has a normal subgroup of finite
index whose derived subgroup is nilpotent, i.e. G s milpotent-by
abelian-by-finite.

The proof of this lemma is a straightforward application of the
Kolchin-Mal’cev theorem on the structure of soluble linear groups.

PROOF OF THE THEOREM

(a) Assume that G is a finitely generated soluble group of finite
rank 7. We will prove that G is a minimax group and we note first
of all that in order to do this it is sufficient to show that G is nil-
potent-by-abelian-by-finite. For suppose that G has this structure.
Since subgroups of finite index in G are also finitely generated, we
can assume that G is nilpotent-by-abelian, i.e. G has a normal
nilpotent subgroup N such that G/N is abelian. By Lemma 1 we
can suppose without loss of generality that N is abelian, so that G
is finitely generated and metabelian and therefore satisfies the
maximal condition on normal subgroups by a result of P. Hall
([4], Theorem 3). The torsion-subgroup of N satisfies the maximal
condition on characteristic subgroups and also has finite rank.
Hence this subgroup is finite and we may take N to be a torsion-
free abelian group of rank =< r. Also

O

for a suitable finite subset {a,, a,, - - -, @,}. If follows that G is a
minimax group if and only if every 4 = a% (a e N) is. We can
therefore concentrate on A.

We identify 4 with an additive subgroup of an r-dimensional
rational vector space 7 and extend the action of G from 4 to V
in the natural way, so that G is represented by a group of linear
operators on V. Choose a basis for V. We can represent each ele-
ment g of G by an 7 Xr matrix M (g) with rational entries. Let the
components of a with respect to the basis be a,, - - -, @, and let G
be generated by g, - - -, g,. The primes occurring non-trivially in
the denominator of an a, or of an entry in an M(g,) or M(g;*)
form a finite set x, say. If b € A has components b,, - - -, b,, then
the denominators of the b,’s may be taken to be z-numbers. Hence
A is isomorphic with a subgroup of the direct sum of r copies of
@, the additive group of all rational numbers whose denominators

2 Actually it is not necessary for the terms of the series to be normal subgroups
here.
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are z-numbers. Since @ is a minimax group, so is 4.
Now let G be any finitely generated soluble group with finite
rank r. Then G has a normal series of finite length,

1=6,<6,<---<G,=G,

in which each G,,/G; is either torsion-free and abelian of rank
< r or else a direct product of abelian p-groups, each of rank = r.
Let n > 1 and write A = Gy; by induction on n G/4 is a minimax
group. If A is torsion-free, the hypotheses of Lemma 2 are fulfilled,
so G is nilpotent-by-abelian-by-finite and the first part of this
proof shows that G is a minimax group.

Suppose that 4 is periodic and G is not a minimax group. Then
A has infinitely many non-trivial primary components and there
is a normal subgroup B of G contained in A such that 4/B has
infinitely many non-trivial primary components and the p-
component is either elementary abelian of order = p” or a direct
product of < r groups of type p®. Clearly we can take B = 1. The
action of G on the p-component of 4 yields a representation of G
as a linear group of degree r over either GF(p) or the field of
p-adic numbers. In either case the strong form of the Kolchin-
Mal’cev Theorem ([11], Theorem 21) shows that there is an integer
m depending only on r such that R = (G™)’ acts unitriangularly
on each primary component of 4. Hence
(2) [4,R,---, R]=1.

<—r—
Since G/A is a minimax group, it is nilpotent-by-abelian-by-finite
by Lemma 2; hence for some n > 0 S = (G") is such that SA4/4
is nilpotent. Let T = (G™")’; then G/G™ is finite and T is nil-
potent by (2), so G is nilpotent-by-abelian-by-finite. Hence G is
a minimax group, which is a contradiction.

We have still to provide a bound for m(G) when G is any finitely
generated soluble group of rank r. Let P denote the maximal
normal periodic subgroup of G and let N/ P be the Fitting subgroup
of G/P. Clearly P satifies Min and by Theorem 2.11 of [8], G/N
satisfies Max. Hence writing H for N/P we have

m(G) < m(H)+2.

H is locally nilpotent and torsion-free and has finite rank, so by a
theorem of Mal’cev, ([7], Theorem 5), H is nilpotent. Let M be a
maximal normal abelian subgroup of H; then M coincides with its
centralizer in H and H/M is essentially a group of automorphisms
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of M. Since M is torsion-free and abelian of rank =< r and since H
is nilpotent, it follows that

(M, H, -, Hl=1;
also H/M, being isomorphic with a group of unitriangular rxr
matrices, has nilpotent class < r—1. Hence if ¢ is the nilpotent
class of H, ¢ =< 2r—1. By Theorem 4.22 of [8]

m(H) < 8[logy(c+1)]+8.
By combining these inequalities we obtain
m(G) < 8[logy(2r)]+5.

(b) Let G be a locally soluble group of finite rank r. Some infor-
mation about the structure of G is necessary before we can go
further. Let H be any finitely generated subgroup of G. Then H
is soluble with rank =< r and consequently H has an ascending
normal series each factor of which is either torsion-free and
abelian of rank =< r or elementary abelian of order dividing p" for
some prime p. The action of H on a factor of this series gives rise
to a representation of H as a linear group of degree r. Now a well-
known theorem of Zassenhaus ([12]) asserts that the derived
length a soluble linear group of degree r does not exceed a certain
number n = n(r) depending only on r. Hence H™, the (n-+1)th
term of the derived series of H, centralizes every factor of the
original ascending series of H. It follows that H™ is a hypercentral
(or ZA)-group. Since n is independent of H, G™ is locally hyper-
central, i.e. locally nilpotent. By results of Mal’cev and Cernikov
([7], p- 12) in a locally nilpotent group of finite rank each primary
component is hypercentral and satisfies Min and the torsion-factor
group is nilpotent. Thus we have established the following.

Let G be a locally soluble group of finite rank. Then G has a normal
subgroup T such that G|T is soluble and T is a periodic hypercentral
group with each of its primary components satisfying Min.?

(¢) It remains only to show that every -group with finite rank
is locally soluble. Suppose that this is not the case and that « is
the first ordinal for which groups of finite rank in the class
(PL)*9 need not be locally soluble. « cannot be a limit ordinal.
Let G be a group of finite rank in the class (PL)*%(; then G has an

3 Thus torsion-free locally soluble groups of finite rank are soluble (Carin [2]).
On the other hand locally soluble groups of finite rank are not soluble in general —
see [1], p. 27.
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ascending series whose factors all belong to the class L(PL)*-19
and by minimality of « are therefore locally soluble. We will
denote this ascending series by {G, : § < y}. Suppose that G is not
locally soluble and let 8 be the first ordinal for which G, is not
locally soluble. Again § is not a limit ordinal, so both G,4_; and
Gy/G4_; are locally soluble.

Let H be a finitely generated subgroup of G,;. Then H/H n G,_,
is soluble and H n G;_, is locally soluble; consequently by (b)
there is an integer n such that H™ is periodic and hypercentral.
Now by (a) H/H™1 is a minimax group and this implies that
H™[H®+D gatisfies Min and so has only finitely many non-trivial
primary components. Let S = H™. Then for all but a finite
number of primes p, S,, the p-component of S, lies in S’. Since S
is the direct product of its primary components, this means that
S, = (S,). But each S, is soluble, as a locally nilpotent p-group
of finite rank, so all but a finite number of the S,’s are trivial and
therefore S is soluble. However this implies that H is soluble and
Gy is locally soluble, a contradiction.

In conclusion we remark that in [5] (p. 538) P. Hall has shown
that even SI*-groups need not be locally soluble, so certainly

gl-groups need not be either.
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