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Existence in mathematics

Dedicated to A. Heyting on the occasion of his 70th birthday

by

R. L. Goodstein

In discussing the question of the existence of mathematical
entities 1 propose to take the existence of real objects in the real
world for granted and to ignore the philosophical problem raised
by the use of thé word real, a problem which I have attempted
to discuss elsewhere [1]. 1 shall need to stress the distinction
between real collections, like the coins in a particular box at â
particular moment, and the collections of mathematics, like the
residues modulo five, or the triangular primes; and between the
models of mathematics, the structures thought to exhibit the
consistency of some set of properties, and models in the real
world, such as the prototypes of a new invention. Thus in con-
sidering the question of the existence of natural numbers 1 shall
be concerned with the existence of, for instance, the number two
itself and not with real instances of the number, the pair of robins
in my garden or the eyes in my head. 1 shall assume that the use
of number words in these real contexts presents no difficulty and
shall confine.my considerations to the purely mathematical use of
number words. Of course the logical problem of the application of
mathematics to the real world is a very interesting one of great
philosophical importance; my purpose in ignoring it is simply to.
confine this essay to one particular aspect of the problem of the
existence of mathematical entities. 1 realize that it may be argued
that if the problem of the application of mathematics to the real
world is ignored then the problem of the existence of mathematical
entities reduces simply to that of the existence of terminology or
notation, and that mathematics deprived of application in the
real world is just a meaningless game, but I hope to show that
view is mistaken.
The problem of the existence of the primary entities of mathe-

matics is analogous to the problem of the existence of the king of
chess, or the ace of spades. Does it make sense to talk of the
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existence of the king of chess? Does the king of chess exist in the
real world, or is he a fiction? Certainly there is no object in the
real world to which we can point and say this is the king of chess.
None of the pieces in a set of chess pieces is in this sense the king
of chess, for a piece of wood or ivory can be lost or found but
not the king of chess. When we call a particular piece of wood,
in a particular game the king of chess, we recognise this particular
object as an actor playing a part; we could if we wish give the
part to another pieee or to a lump of coal. The piece in question
is just a sign for thé king not the king himself. In saying that
something is a sign for something, we appear however to be
begging the question of existence; surely it may be said we cannot
have a sign for something which does not exist. Yet we have a
sign for conjunction, does conjunction exist? And we have no-
entry signs. What exists in these cases is the use of the sign, the
role of the sign in language, or in the world of action. The king of
chess is no person or object in the real world, but a particular role
in a game. So perhaps we must ask, not does the king of chess
exist, but does chess exist? If you teach someone to play chess
what you teach are the rules of chess; of course just knowing the
rules is not playing chess. Although in learning chess there is

nothing corresponding to the physical skill that has to be acquired
in learning a ball game, (for we can ignore the actual movement of
the chess pieces which would require skill only in very exceptional
circumstances), nevertheless the rules simply limit thé game and
to learn to play chess is to learn the tactics and strategy of chess.
But to answer the question whether chess exists, all that we can
do is to point to the rules. Where are these rules to be found?
Presumably there is some agreed set of rules (sentences written
in the official rule book of the world chess fédération let us

suppose) which like the standard yard serves as the original from
which copies may be made, yet one is not tempted to think that
if this standard rule book was destroyed then chess would cease
to exist. But .of course if all copies of the rules were lost, copies on
paper or in the memories of men then chess would cease to exist
however many beautiful sets of these pieces remained, and if
other games were played with these pieces then these games would
not be chess, but what should we say if the new game played with
these pieces was in fact according to the old rules, but no one
knew ?

If .we now turn from chess to arithmetic we see that the answer
to our first question, does the number two exist is that the number
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two is one of the roles played by the signs in arithmetic and that
the proper question to ask is not does the number two exist, but
does arithmetic exist. This question is immensely more difficult
to answer than the corresponding question for the game of chess.
There is no one agreed set of rules for arithmetic to which we can
point, only various "codifications of arithmetic", such as recursive
arithmetic, or some theory of sets. The existence of these diverse
codifications has tempted some philosophers of mathematics to
think that there must exist some primordial arithmetic (in man’s
intuition since it is clearly not elsewhere ) to which these codifica-
tions approximate and this tendency has been strengthened in
recent times by the discovery that in some sense no codification
is complete, but fails to include in its class of consequences some
arithmetical relation that we might have expected to find.
Whether or not man has a primordial intuition of arithmetic is a
matter for psychological investigation, but it is 1 think quite
irrelevant to the question of the existence of arithmetic. Even if
one could find an arithmetic imprinted in the brain this would be
only another codification (and doubtless very imperfect). The
greatest mathematicians have known at best only tiny fragments
of the sum of arithmetical knowledge. Admittedly it could be

agreed that what they knew was (like the similar portion of an
iceberg) only a part of the arithmetic that lies in their sub-

conscious, but this is only another way oi’ saying it was not in
their conscious mind, and could with as much illumination be
said to be in God’s mind - but not in man’s. Even if we found an
oracle who correctly answered every arithmetical question asked
of him, it would be a sheer assumption to suppose that answers
not yet elicited were in fact already known to the oracle. However
much we speeded up the questions some would remain unasked
and the answers would all have to be verified, so we cannot look
to a transcendental source for arithmetic to assure its existence.
Rather it seems to me we must regard arithmetic, not as a single
game like chess but rather as an evolving series of games. Just as
we can talk of an evolutionary development without assuming a
final end product, so we can contrast different codifications of
arithmetic without having to assume the existence of some whole
of which these codifications are part. A comparison with the
history of geometry is helpful at this point. Many remarkable
geometrical properties were known and a large body of geometrical
(ruler and compass) constructions had been worked out, before
the first attempts were made to codify geometry. The sense in
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which these properties were true, and the constructions correct,
at this earlier stage is very interesting to contemplate. 1 think
it must be conceded that this body of knowledge belonged at
first, not to mathematics but to a stage in the evolution of mathe-
matics from experimental physics. The constructions were correct
in so far as they worked, and achieved their aim, on the drawing
board. The geometrical facts were of various kinds; some were
physical properties of drawings (congruence of triangles) others
were already contained in partial codifications which exhibited
relationships between some properties and others. When the

attempt was made to codify systematically it was this existing
body of knowledge that needed to be included in the codification,
not some hypothetical universe of truths.
Whether natural numbers are the primary subject of arithmetic,

as they are conceived to be in recursive arithmetic, or are proper-
ties of classes as in set theory, is not a question about the real
world, but about the choice of formalism. It is only by confusing
the classes of set theory, a symbol role in a calculus, with real
classes that we are led to think that set theory gives numbers a
real existence denied to them in recursive arithmetic. The applica-
tion of arithmetic to the real world, which is made when we treat
real classes as number signs (an operation we so misleadingly
describe as abstracting the number concept from collections) is
outside any codification of arithmetic. Only the transformation
from one number sign to another belongs to formalism, for instance
from 1111 to 4; what we call the perception that a cat, a dog,
a sheep and pig in a field make four animals in the field is a fairly
complicated series of steps, the first of which consists in marking
a 1 for each animal in the field. Exactly how this is done is perhaps
unimportant; we may look at each animal in turn and say "one",
or eut a notch on a stick as the stick touches each animal in turn,
or make a mark on paper. The remaining steps are those we take
in a formal calculus from 1111 through 211, 31, 4 by means of
the definitions 11 = 2, 21 = 3, 31 = 4 (where 21 denotes 2 and 1,
not twenty-one of course).

I want to turn now from the logical problem of the existence of
numbers to the purely mathematical problem of the existence of
numbers with certain properties, for instance the existence of an
even number which is not a sum of two primes. This may be called
the secondary problem of existence, which takes for granted the
structure of arithmetic, and is concerned with features of this
structure. 1 used to think that it was an essential logical pecularity
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of such a question that we knew how to look for an affirmative
answer but have no means of finding a negative answer. Thus we
may enumerate all even numbers and test each in turn to see

whether it is a sum of two primes or not; in this way we may
chance upon an even number with the desired property, but
failing to find one is no proof that such a number does not exist.
But we can put the search for a negative answer on the same
footing as the search for a positive answer. We may number all
the sentences and proofs of some formalisation Z, say, of arith-
metic, in particular the sentence G, say, which affirms that any
even number is a sum of two primes, and then we may test each
number in turn to see if it is the number of a proof of this sentence.
Carrying out the two searches in parallel we may as readily chance
upon a negative as an affirmative answer to the original question.
However for our present purpose it is more interesting to

suppose that we search not just for a proof of G but also for a
proof of its contrary G. If we chance upon an even number
2n (n &#x3E; 2) which is not a sum of two primes this would be of no
philosophical interest; but suppose we chance upon a proof of
ï G. This proof might of course be no more than the verification
that some particular number is not a sum of two primes, but it
might be an indirect proof which showed that from G a contra-
diction may be derived in Z. Supposing that Z contains an
existential quantifier 3 the indirect proof would establish the
sentence

Our task is to examine the nature of this existence assertion. Now
there are some formal systems in which from the proof of an
existence assertion 3x G(x) we cân calculate an actual number n
for which G(n ) holds, (using "calculate" in a sense which we must
make clearer later on). Leaving such a case on one side for the
moment let us assume that a certain sentence 3x Gx has been

proved in a formal calculus, but no number n for which G(n)
holds has been found. Shall we then say that an n for which
G (n ) holds exists but has not been found? It might at first seem
reasonable to talk of the existence of something which has not
been found, by analogy for instance with Physics where the exist-
ence of certain elements was predicted by the periodic table but
the elements were unknown until they were produced by nuclear
fission. I think however this analogy is a false one. On the one
hand the proof of 3x Gx is not a psediction that an x satisfying
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G(r) will one day be found and on the other hand can we speak
of the existence of an unknown concept (other than metaphorical -
ly), unless we suppose that there is some transcendental mind in
which it exists, an assumption which makes mathematics a branch
of theology. It would seem preferable to say that a formal system
in which xG(x) is provable, but which provides no method for
finding the x in question, is one in which the existential quantifier
fails to fulfill its intended function; this does not oblige us to reject
the formalism, only the intended interpretation of it. Of course
there is a sense in which we may say that a number exists but has
not been found. For example, the least prime greater than (1010)!
exists but is not known. However, what we mean in this case is
that a way of determining this prime is, known, although no one
has made the journey. In fact in such cases what we are asserting
to exist is a function. We can say that there is a prime greater than
(101° ) ! because the function "the smallest k ~ 2 which divides
n!+1" supplies a prime greater than n for each n.
. Let us now return .to consider a system in which a value of n
for which G (n ) holds is somehow determined by a proof of 3x G (x ).
Leaving aside the trivial case in which xGx is itself derived from
G (n ), we can imagine that the required n is determined as a
function of the number g say of G(x) and the number p, say,
of the proof of 3x Gx; thus

and given the values of g and p we can calculate n. The burden of
existence now falls on the function f. Under what circumstance
shall we say that a function exists. The question of the existence
of a function is bound up with the question of the definition of a
function. If we merely say a function f(n) exists if there is a rule
which determines the value of f(n) when n is given then of course
we have merely replaced the problem of function existence

(definition) by that of rule existence (definition), and we have
made no progress. Let us start with a particular case, the existence
of the sum function in arithmetic. In recursive arithmetic the sum
function x+y is defined by the recursion

(where sx is the successor of x). This is clearly not a definition
in the sense of explaining a new term in terms of an old one. The
unknown + appears on both sides of the recursive definition

z+sy = s(x+y), and the recursion definition does not enable us
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to eliminate x+y in favour of some other concept. The definition
does however enable us to eliminate the plus sign in any such
context as sss0+ss0, and enables us to transform this sign complex
into sssss0 in which the plus sign no longer appears. Thus to say
that an addition exists (in recursion arithmetic) is just to say that
the plus sign has a role in arithmetic and that the sum function
serves to transform 03BE+~ for any numerals 03BE, ~ into a numeral.
If we now ask how do we know that there is a function f(x, y)
with the properties f(x, 0 ) = x, f(x, sy ) = sf(x, y ) we must

assume that this depends upon what we mean by function exist-
ence. If we are asking for a proof of a formula of the form
f(f(x, 0 ) - x &#x26; f(x, sy) = sf(x, y)) then of course such a proof
can be given in a rich enough s ystem o f logic. But as we have already
seen even relatively weak systems with existence quantifiers may
fail to admit their intended interpretations, so how much less
grounds have we for supposing that a richer system secures the
intended interpretation of its quantifiers. No, the purpose of a
proof of the formula

is not to satisfy ourselves of the existence of the sum function,
for this it certainly cannot do, but to enable us to introduce the
sum function as a term in a formal system which lacks any other
mode of f unction definition.
The introduction of function signs into a formal system tempts

one to seek to distinguish between the existence of a function and
its computation. Let us say that a function f is computable in a
formalism Z if for each numeral a there is a numeral b such that
the equation f(a) = b is provable in Z, then we may prove that
(in a suitable Z) that there exists an f which is not computable
in Z. Let fi(n) be an enumeration of all one variable primitive
recursive functions; then it is well known that there is no decision
procedure for the class of identities fi(n) = 0. Further, let

so that for each i, Fi(n) is non-decreasing, primitive recursive,
and takes only the values 0, 1. Hence (in a suitable Z) we may
prove that (for each i) Fi(n) is constant from some n onwards,
i.e. we may prove the formula
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Finally we define ~(i) to be the least value of m such that

Then ~(i) is not computable in Z; for otherwise to each numeral
i there corresponds a numeral i such that ~(i) = j is provable in
Z, and since Fi(n) is primitive recursive there is a k such that
Fi(j) = k is provable in Z and therefore

is provable in Z.
If k = 0, it follows that fi(n) = 0 identically, and if k ~ 0 then

fi(j) ~ 0; thus the assumption that ~ is computable in Z leads
to a decision procedure for the class of equations

and since no such decision procedure exists, it follows that ~ is
not computable. Of course ~ can only be introduced in this way
into a formal system admitting a minimal operator, or some

corresponding rule of function introduction. The question which
interests us here is the one which we are first tempted to ask in
the form: is ~ really a function? Can there be functions which
cannot be computed? But the problem is not really one of exist-
ence but of word usage. Shall we call ~ a function since ~ is not
computable? We start with the definition that a function is an
association of argument with value, and clearly (on this définition)
it would make no sense to say that there is a function which has
no value for some argument. But the position with ~ is different,
for all that we have shown is that ~ "cannot be computed" in a
certain system, and this may be regarded as a deficiency of the
system rather than a failure of ~ to satisfy the definition of
function. And of course we may change the definition of function
to cover, for instance, partial functions (defined only for some
argument) and even, in extremis, to allow the class of arguments
for which the function is defined to be unspecified. It may be
argued that a function whose values cannot be computed in a
certain formal system, i.e. a function sign ~ for which no equation
§1 = j is provable with numerals i, j, is of no use in the system,
but whether this is so or not is purely a practical question and has
nothing to do with the problem of existence. As 1 have remarked
before, the intuitionist dispute about existence is at bottom a

dispute about the use of the word function.
The role of a function sign f in formalised arithmetic is best

described by saying that if f is a function sign then f0, f so, issu, ..
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are numerals ; in other words function signs serve to enrich the
class of numerals. A computation of a function for an assigned
argument ss ··· s0 is the derivation of an equation

between a numeral involving the sign f and one without J. A
system which admits non-computable functions is a system which
admits numerals outside the set 0, sO, ss0, ···.
Each succeeding category of numbers may pose afresh the

existence problem. What are rational. numbers, do rational

numbers exist? If we answer that rational numbers are ordered

pairs of natural numbers a/b (b ~ 0) with the arithmetic

we have thereby solved the problem by making rational number
a dispensable concept. Everything we say (in equations) about
rational numbers is equivalent to some statement about natural
numbers, in virtue of the above equivalence. But can we not
doubt the existence of ordered pairs of natural numbers even if
the existence of natural numbers is conceded? A pair of numbers
is not a concrete object like a pair of shoes. But a pair of numerals,
ordered say from left to right is just such a concrete object, and
the rules for the use of this ordered pair of numerals, the rational
number sign, are precisely what the rules of the arithmetic of
rational numbers are. Instead of describing the arithmetic of
rationals in terms of the transformation rules of the rational

number signs we could of course construct the rational numbers
within some other formal system, for instance within a formalisa-
tion of set theory, since by the well known device, an ordered
pair may be represented by a set. But it is important to recognise
that the rational number is no more securely based in the real
world by this device. The set to which the rational number is
thereby reduced, is just as much a role in a formal calculus as the
rational number is in the first definition, and since formalisations
of set theory are less secure from inconsistency than direct

.formalisations of arithmetic, constructing the rationals within
set theory, rather than outside it, is the more perilous route to
follow. The passage from rational to real numbers is more difficult.
1 do not refer to the technical difficulties in setting up the arith-
metic of real numbers, but to difficulties in the concept itself.
The Dedekind definition is perhaps the simplest, identifying a
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real number with a set of rational, and so making the theory of
real numbers a part of set theory. But if we seek for a formalisation
of the real number concept outside set theory we can use Cantor’s
definition, and by introducing function signs into the arithmetic
of rationals, identify real numbers with convergent pairs of func-
tions f(n)/g(n); in this way the problem of the existence of real
numbers is ,reduced to the problem of the existence of functions,
which we have already considered.
To each level of constructive definition of function (and of

convergence) corresponds a class of constructive real numbers.
At the strictest level of constructivity we have primitive recursive
real numbers and the associated analysis formalisable in a free
variable calculus. At the next level, that of general recursive
functions, the associated analysis may possibly also be formal-
isable in a free variable calculus, but since there can be no general
procedure for deciding whether a set of equations determines a
general recursive function or not, the system lacks the essential
attribute of a formalisation that its syntax be finitely character-
ised ; the natural formulation of general recursive arithmetic and
analysis is by means of quantifiers over natural numbers. In the
Dedekind Theory too constructive definition of sets delimit

constructive classes of real numbers, and at the various levels of
constructivity the Dedekind and Cantor classes of real numbers
fail to coincide, or coincide or not according to the constructive
level of proof.

In studying the existence problem for complex numbers the
interest again lies in the diversity of possible definitions. Since a
complex number may be defined as an ordered pair of real
numbers with a certain arithmetic, and since an equation between
complex numbers is equivalent to a pair of equations between
real numbers, the existence of complex numbers vis-à-vis real
numbers is of the same order of logical difficulty as the existence
of rational numbers vis-à-vis natural numbers. The curious

product rule for complex numbers in the ordered pair definition
presents a purely pedagogical difficulty, not a logical one. It is
often said that the generation of the complex numbers as the
residue field of the ring of polynomials over the real numbers
modulo x2+1, is logically preferable to the axiomatisation in
terms of pairs of real numbers, both because the generation of a
field as a field of residues is an important general procedure and
because it obviates the artificial définition of multiplication that
mars the number pair approach. The generality of the method



80

of residue fields is undeniable but the logical advantage of its use
for the generation of complex numbers is illusory. For to define
the ring of polynomials, we must first define polynomial, and
the polynomial of modern algebra is simply an ordered set,

subject to a certain arithmetic more complicated than that of the
complex number as an ordered pair of reals. One cannot seek
logical priority for a definition which presupposes the existence
of ordered sets of arbitrary length in order to establish the exist-
ence of an ordered pair. A third method of defining the complex
numbers is to introduce a constant i and add to the axioms for a

field the axiom i2+1 = 0. This method of course raises the con-
sistency problem in an acute form. The new axiom contradicts
a well known property of real numbers; moreover the addition
of the axiom i2+1 = 0 to the axioms for an ordered field is readily
shown to be inconsistent. Now the field axioms, together with
the axiom i2+1 = 0 may be shown to be consistent by the method
of models. We argue that since the arithmetic of ordered pairs of
real numbers satisfies the field axioms and contains an element,
namely (0, 1), which satisfies the axiom

and since the arithmetic of pairs (x, 0) is isomorphic to the arith-
metic of real numbers, therefore this arithmetic of ordered pairs
furnishes a model of the axioms showing that the axiom system is
consistent - in the sense that any contradiction that could be
derived from the axioms could be derived in the arithmetic of
ordered pairs and so eventually in the arithmetic of real numbers.
Though of course this proves no more than relative consistency
it does give the third method of defining complex numbers at
least as much security as the first. But again logical priority must
be given to the ordered pair definition for the structure which this
axiomatisation détermines furnishes the model for the consistency
proof. It is sometimes argued however that the third method alone
is general enough to characterise the complex numbers, and that
the other methods merely construct models of the complex
numbers. At first sight this criticism may be thought to be valid.
If for instance we prove the axioms for Boolean algebra consistent
by observing that they are satisfied by the ring of integers modulo
2, the model which establishes consistency, is the logically prior
structure but cannot be identified with the concept of Boolean
algebra. The difference in the two cases is that the models of
Boolean algebra are not isomorphic structures, whereas one can
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show that every model of the field axioms fortified by the axiom
i2+1 = 0 is isomorphic to the arithmetic of pairs. It is then just
a matter of the choice of language whether we should now identify
the complex numbers with the arithmetic of pairs, or call this
arithmetic a model of the complex numbers; in either case this
arithmetic must be accorded priority.
Can a categorical system of axioms, a system with only iso-

morphic models, be held to define a concept? Or should we seek
to identify the concept with some one of the models? Clearly we
cannot ignore the problem of consistency since we would not
wish to say that an inconsistent set of axioms defines a concept.
A system of axioms may however be proved consistent without
appeal to the existence of a model, and so the existence of a model
cannot be necessary to give an axiom system the power of creating
a concept, if in truth an axiom system has this power. In fact
the very use of the language of models is the source of the con-
fusion. When we speak of a model satisfying a set of axioms (as
in the case of the arithmetic of pairs and the extended field axioms)
we are contrasting, not an abstract system with a concrete realisa-
tion as the language leads us to think, but two axiomatic systems.
Each in fact is a model of the other, for this is what the isomorphism
of the models really means. The arithmetic of pairs satisfies the
extended field axioms, and the extended field axioms characterise
an ordered pair with the same arithmetic. Our reason for calling
the first the model, and not the second, is that the first is trans-
parently free from contradiction (relative to the real number
system) whereas the other is not.
There is of course another sense in which we speak of models

in logic, when we talk for instance of so-called intuitive (i.e.
non-formal ) arithmetic as a model, or talk directly of an intuitive
model. But even in such cases the model is a logical structure,
not a mental, or a "real" entity; we reserve the term formal for a
particular style (or styles) of axiomatics and different styles of
formalisation are by contrast, misleadingly called intuitive (for
example when generality is only a feature of a proof and not made
explicit by the use of variables).
For more than a quarter of a century the axiom of choice and

its equivalents was a subject of controversy. Some mathematicians
used it freely and others shunned its use. Eventually Gôdel showed
that if say, Zermelo-Fraenkel set theory is consistent without the
axiom of choice then the addition of the axiom of choice does not
introduce a contradiction, (and recently P. J. Cohen showed that
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the axiom of choice is actually independent of the remaining
axioms). Looking back on the controversy the natural question
which arises is this: why did not every mathematician who drew
inferences from the axiom of choice before Gôdel’s proof of relative
consistency feel that he was wasting his time, since a subsequent
discovery of a contradiction would make all his efforts vain?
No doubt the mathematicians in question would answer that they
believed in the axiom, and as a psychological explanation this
perhaps suffices, but of course it is just as easy to believe in some-
thing false as in something true - as the centuries of belief in a
flat earth shows. And Specker proved the axiom of choice is

actually false in a seemingly "natural" formulation of set theory
due to Quine. Another defence could be that, since we do not
know that set theory without the axiom of choice is consistent,
those who deprived themselves of the axiom were no less credulous
than those who used it, but this is rather like saying that it is no
more foolish to drive a car on an icy road than on a dry one,
because there are accidents on dry roads.
Does the axiom of choice create the choice set? Can one supply a

missing set just by a declaration of existence? Of course no axiom,
no declaration of existence, can create a real object, but it is not
the purpose of an axiom to create a real object. An axiom has a
part to play only in a formal system. The axiom of choice is a
limitation on the use o f the word set in formalised set theory. The
acceptance or rejection of the axiom of choice is a decision about
the use of a word. Some prefer one use of the word and others a
different use. To ask if the axiom of choice is true is to confuse
the world of mathematics with the real world. The only relevant
question is whether such and such a body of axioms is consistent
- and fruitful. Why then should we stop short at the axiom of
choice? Why not throw into our formal system more and more
axioms, postulating Fermat’s last proposition, for instance, or the
existence of measurable cardinals? It may be that Fermat’s last

proposition and its denial are both consistent with (say) recursive
arithmetic, so that the addition of this proposition (or of its denial )
to arithmetic would be an enrichment of mathematics, but lacking
a proof of consistency (and independence) the adoption of

Fermat’s proposition as an axiom might simply lead to an im-
mense waste of human endeavour. We are not limited in our

choice of axioms by the nature of the world but by the state of
our knowledge of mathematics.

( Oblatum 3-1-’68) University of Leicester


