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Lawless sequences of natural numbers

Dedicated to A. Heyting on the occasion of his 70th birthday

by

G. Kreisel

Introduction

The two main subjects of a theory of choice sequences are, of
course, the notion (or, perhaps, class of notions) of choice sequence,
and the operations applied to such sequences. Both points are well
illustrated by the theory of convergent sequences of rational
intervals [rn, rn], r for short, and, say, the (usual) sum operation.
These r obey the condition, for n = 0, 1, 2, ···,

Thus, ro is chosen arbitrarily, rô must lie in the interval

(r0, r0+1), rI in [r0, r’0), r’1 in (r0, r’0] ~ (r1, r1+2-1) and so on.
The sum, say t, of r and s is given by tn = rn+1+sn+1,
tn = r’n+1+s’n+1. To verify that t satisfies the basic condition

we use

and

For any n, the values of tn and t’ are given by rn+1 and sn+1,
respectively r’n+1 and s’n+1. No use is made of any mule or law that
may (or may not) be involved in the calculation of r and s.

Specifically, the values of tn and tn depend only on (a finite number
of) values of r and s and not, for instance in the case of recursive
rules for r and s, on the defining equations.
The example shows that even if we started with a specif ic class

of rules for constructing sequences of rational intervals, we should
be led to consider operations, such as the sum above, which are
quite meaningful without the restriction to this class, or, in fact,
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without any restriction on the rules. In short, such operations
apply to choice sequences. The reader may compare this situation
with the case of algebraic operations on the real numbers. Even
when we start with the specif ic structure of the reals, we see that
the algebraic operations use little of this structure; as we say
nowadays, they apply in any real closed field. In contrast to the
notion of real closed fields, the notion of choice sequence has a
rather clear informal meaning, and it is therefore useful to describe
more fully in informal terms the objects we are going to study.
(The description will be made more precise by the axiomatic
analysis in the body of the text.)

Informal destinctions. Let us look more closely at the
restrictions on the sequences r in the example above. What is

typical here, at least of most examples in analysis, is that we have
a rule, given in advance, telling us for each n what (finite) se-
quences [ro, r’0], ···, [rn, r’n] are "admitted"; and that any such
sequence can be continued, i.e., there is also a pair [rn+1, rn+1]
such that the rule admits

e.g.,

This type of restriction is called a spread.1
We may reformulate the restriction used in the example, and

thus obtain a useful generalization. Instead of imposing a condi-
tion on a sequence r directly, we start with an unrestricted sequence
of pairs of rationals, say (an, bn) and associate with it, in a canonical
manner, a sequence an, d’ such that

[an, àn] always satisfies our condition,
if [ao, b0 ···, [an, bn], ···, [am, bm] satisfies our condition
for n ç m then = a., à’ = bn for n  m.

DEFINITION. Put am = am, a:n = bm if [a0, boy, ..., [am, bm]
satisfies our condition. If not, let no, necessarily ~ m, be the first
n such that [ao, bo], ..-, [ano, bno] does not satisfy the condition.
(no = 0 means that bo ~ a0 or bo &#x3E; a0+1.) Put àm = an0-1 if

n0 ~ 0, and àm = ao if no = 0, for all m &#x3E; no. Put a’m = a0 + 2-(m+1)

1 The particular spread here considered is stochastic, i.e., the restriction on

[rn+1, r’n+1] depends only on [rn , r’n] and not on any [rm, r.i for m  n. Though
stochastic spreads are not of special foundational importance, they are technically
interesting. ( I owe this information to Dr. Troelstra. )
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if no = 0, and otherwise

Note that the values of each am, a:n still only depend on a finite
number of values of (ai, bi) (i  m ), but not merely on, say,
am, bm.
The general principle involved is that we start with an un-

restricted sequence, and apply an operation to it to form a new
sequence. For any given spread, as shown in the example, we have
an operation which maps an unrestricted sequence into the spread
and leaves invariant any sequence that is already in the spread.
These operations are of the same kind as the sum operation above.
We shall return in Section 4 to the technical question what opera-
tions other than mappings into spreads are useful.
Once we think of restrictions we are led, as in Brouwer’s [2],

p. 323 (2), to consider more sophisticated versions: restrictions
on restrictions, so-called second order restrictions; third order
restrictions on second order restrictions and so forth. Brouwer
himself did not pursue his ideas, perhaps because he realized too
quickly that a theory of general higher order restrictions might
be hopelessly complicated (and inelegant even when compared
to the horrors of the worst kind of intuitionistic mathematics);
cf. footnote, p. 142, in [3].2
The sequences to be considered in detail in the present paper

are those where the simplest kind of restriction on restrictions is
made, namely some finite initial segment of values is prescribed,
and, beyond this, no restriction is to be made.3 1 expressed this
idea by absolutely free in [6], but shall call these sequences lawless

2 1 am indebted to A. S. Troelstra for the reference to [2] and to S. A. Kripke for
the reference to [3]. Correction. On p. 180 of [8] 1 misinterpreted Brouwer’s footnote
on p. 142 of [3] to refer to lawless sequences. Dr. Troelstra pointed out to me that
higher order restrictions are meant.

3 More precisely one first makes a general restriction on the species from which
the elements of the sequence are chosen; here natural numbers. The work extends

directly to any countable decidable species. To avoid a possible misunderstanding
it is as well to note the following distinction. The restriction involved in the notion
of lawless sequence is intended to mean that in any particular context only a
finite initial segment is used, not that the sequence is given by an initial segment
once and for all. (Formally, such independence of context would be expressed by
modifying axiom 2.3 on p. 15. putting "3n" between "Voc" and "~03B11"; evidently
several of the axioms of Section 2, e.g. 2.4, are false for this second kind of

notion.) In brief, the theory of lawless sequences cannot be said to be about
operations on a "finite amount of information".
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here.4 (We consider sequences of natural numbers; so in the ex-
amples above, pairs of rationals would be coded by a natural
number. )

Principal result (Section 2). We consider the context in

which the subject of sequences first presents itself, namely we
have variables for natural numbers, constructive number theoretic
functions (i.e., rules), lawless sequences, and species of such

objects, and consider compound expressions built up logically.
We find a complete analysis of lawless sequences in this contexte
Precisely, we give enough basic properties of the objects discussed,
to construct, for any assertion A in the present context, a A’ not
containing symbols for lawless sequences at all, which is equivalent
to A. More formally, A H A’ follows from the particular proper-
ties (axioms) of our basic notions.s The theory of the notions
other than lawless sequences, i.e., of the notions involved in A’,
is given in Section 1. The theory of Section 2 is specialized to
binary sequences in Section 3, superseding results on a fragment
given in [6].

General discussion. The following comments on the principal
results, may, 1 believe, be useful before reading the technical
sections; of course the latter can be read independently.

Elsewhere ([8], 2.523 on p. 136 and 2.622 on p. 140). 1 have
described theorems similar to the principal result above as elimina-
tion results. There I thought of the results as means of "getting
rid" or "analyzing away" certain notions of choice séquence
(for reasons given in footnote 12 below). But the principal result
is not to be interpreted in this way. We have simply discovered

4 The term lawless was proposed by Gôdel (in conversation) after he had seen the
properties of absolutely free sequences given in my paper [8]. (Neither of us knew
at the time Brouwer’s earlier anaiysis. ) In choosing between the two terms one faces
the familiar issue between freedom and licence (lawlessness). Ten years ago I

certainly felt that even the thought of restreint, e.g., the possibility of a diet, was
a restriction of freedom, and so 1 naturally used "absolutely free". With the years
the lure of licence has diminished: hence the present title. May healthier and
livelier (nowadays called "hippier") readers not be misled by it 1

5 ’rwo "refinements" are worth noting. First (for reasons set out in 1.1 below)
our formal language contains not only spécifie species, explicitly defined from
constants, but species variables. Second, there is also a proof theoretic result (but
not established in the present paper): if A can be formally derived from our axioms
for lawless sequences and constructive objects (numbers and constructive functions)
then A’ can be derived from our axioms for constructive objects. This syntactic
result is quite elementary, for instance derivable on primitive recursive arithmetic.
This provides the classical consistency proof left open in [6], p. 386.
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enough about lawless sequences to be able to assert A ~ A’ : this
does not "get rid" of lawless sequences since they are involved in
A itself! In other words, the situation is parallel to the elimination
of quantifiers in certain axiomatic theorems. More specifically,
recall that our formal systems are not complete. So not all state-
ments A’ are decided. It may well turn out that some A is evident
for our interpretation, while A’ is not: in this case we should

convince ourselves of A’ by using the result A ~ A’. (Note how-
ever, by the second result in footnote 5, that, at the present time,
any such use of lawless séquences seems to be eliminable since
the axioms of Section 2 seem to codify all known informal prin-
ciples valid for lawless sequences of natural numbers.)
An "unusual" feature of our exposition of the subject is the

explicit use of "constructive function" as a primitive concept. Of
course, it is used implicitly when the notion of constructive
function is "defined" as in recursion theory, since the notion is
involved in the quantifier combination Vx3y in Vx3yT(e, x, y).
Besides certain technical advantages, this explicit use is relevant
to the informal discussions of the notion of choice sequence

particularly by Myhill [12] and Troelstra [13]. They have con-
sidered certain problematic forms of the axiom of choice (problem-
atic, because one considers not arbitrary selection operators, but
extensional or even continuous ones). To disentangle the roles of
constructive functions and of choice sequences in these discussions,
one must avoid a premature identification between constructive
functions and some defined concept. (The literature is discussed
briefly at the end of Sections 1 and 4.) 6
A principal tool in our analysis is the notion of Brouwer operation

(Section 1) which is intended to formulate generally the continuity

g Correction. Another context where questions about constructive functions were
misstated as being about choice séquences, is in connection with Gôdel’s result on
Heyting’s predicate calculus (see e.g. [8], p. 146, 2.741). If the latter is complete
then, for each primitive recursive property A (n ) we have

where aB ranges over all constructive functions taking the values 0 or 1, and aBx
dénotes the séquence aB0, ···, aB(x-1)&#x3E;. Note that (~aB)(x ~ y)A(aBx) is

a decidable property of y, and équivalent to (~03B1*B)(x ~ y)A(a*Bx), where 03B1*B
ranges over choice séquences taking values 0 or 1 only. Gôdel’s argument establishes
(*), but only the weaker result

was stated. NB. The 03B1*B; are not lawless séquences, but choice séquences of the kind
used in analysis and illustrated in the introduction.
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property, i.e., dependence on an initial segment illustrated by the
sum operation at the beginning of the introduction. The basic
question, implicit in [1 ], is whether alt completely defined opera-
tions on choice sequences are Brouwer operations. The present
paper does not attempt to answer this question; but it verifies
that Brouwer operations are continuous, and that the familiar,
independently defined operations on choice sequences are Brouwer
operations. More generally, we give closure properties of this
class (species) of operations. Perhaps most important, we reduce
the problem, in the case of lawless sequences, to the question,
whether all continuous operations are Brouwer operations (by
virtue of the evident axioms of Section 2). Though the problem of
non-extensional operations discussed in [12] does not arise for
lawless sequences, it appears in Section 4 in connection with
certain derived notions of choice sequence involving both con-
structive functions and lawless sequences.
Throughout this paper Heyting’s formal rules of intuitionistic

logic are used. These rules are valid not only for the Brouwer-
Heyting interpretation of the logical particles, but also for Gôdel’s
interpretation in [4]. The axioms of the theory of (completed)
constructive objects in Section 1 hold for both interpretations
(when Gôdel’s is extended to a formalism with inductively
defirmed species). But Gôdel’s interpretation is not valid for the
theory of lawless sequences in Section 2 since, on his interpreta-
tion, we have

by footnote p. 113 of [7], which does not apply when we take
03B1x = 0 for Ax, where oc is a variable for lawless sequences of
natural numbers.

1. Constructive number theoretic functions
and Brouwer operations

We confine the description to essentials.

Variables: x, y, z, ··· for natural numbers; a, b, c, ··· for

monadic number theoretic functions; X, Y, Z for species, some-
times written Xn,m to indicate that X has n number and m
function arguments (this will be Xn,m,0 in the notation of the next
section to indicate that there are no arguments of lawless se-
quences).
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Constants: 0 and + for the successor (we write t+ for +t); j1 and
j2 for inverse pairing functions and KO,l for the species of Brouwer
operations. 

Relations : = (at least between numerical terms), V(a, x, y)
for function evaluation, also written a(x) - y or ax = y.
The usual formation rules for terms and f ormulae are used where

terms are understood to be numerical valued. The only function
"terms" are the function variables and function constants.
The axioms are divided into groups.

1.1. Closure conditions on the notion o f species expressing that
the basic relations are species, that logical operations can be used
to form species and that specialization of some arguments of a
species yields a species. (Definitions of species by quantification
of species variables are not used in the basic theory; see below.)
These axioms are exactly parallel to the class formation rules

in the theory of classes (see e.g. App. A of [9] ). Proof theoretically
the theory below is equivalent to a system obtained by replacing
axioms involving universal species quantification by axiom
schemata applied to definable relations. But such a schema leaves
open whether the corresponding axiom is valid for arbitrary
species or whether it depends on some special property of the
definable relations (such as extensionality of Tl and K0,1 in our
case).

1.2. Successor axioms. ~x x+ = 0, ~x~y(x+ = y+ ~ x = y),
and

One then derives in the usual way induction for Xn+1,m, and the
theorems

etc. 

1.3. Pairing axioms : ~x~y!z (j1z = x 1B j2Z = y).
For any function term t, we can "regard" t as defining a function

of two variables by using the convention (eliminable abbreviation )

whence by use of the pairing axioms we also have

The fact that t(x, y ) = z is in 41-form will be of use in Section 2.
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1.4. Closure conditions on the species o f constructive f unctions,
expressing the existence of a function, say Ô, such that ~x (Ôx = 0 ),
closure under composition, substitution, and permutation of

variables (when functions are regarded as binary); alternatively
one could use 03BB-terms.
To state the two elementary axioms of choice (the countable

axiom of choice A C -NF, from numbers "N" to functions "’F";
and the axiom of dependent choices DC - F ) we need an abbrevia-
tion for X containing at least one function argument b:

Note that our closure conditions imply

By use of A C -NF and induction, one derives closure under
primitive recursion.

1.4.1. Note that this derivation is much less elementary than
the usual proof that the recursion equations together with the
usual computation procedure provide a mechanical rule for com-
puting primitive recursive functions. For the function b in

A C -NF is thought of as defined from a proof of the premise
which definition is not frima jacie mechanical or recursive ([8],
p. 131, 2.35). One of the interesting consequences of certain
recursive realizability interpretations is that (within a limited
context), AC - NF or DC - FF are satisfied, in the sense of these
interpretations, even if one restricts oneself to mechanical rules.
But, while A C -NF is evident for the general notion of con-
structive function, the verification of a realizability interpretation
is never immediate.

1.4.2. We shall need concatenation theory to state the axioms for
Brouwer operations. We use the coding of [10], which is slightly
different from Kleene’s, but use Kleene’s ân for the (canonical)
representation of the sequence x0, ···, ai, · · four 1  n.

We use variables m, n, ... for natural numbers when we think
of them as codes for finite sequences, say 03BE1, ···, 1 ek. The empty
sequence has number 0.

j1m == k, the length of the sequence,
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j2M = 03BD(03BE1, ···, 03BEk) where j103BD(03BE1, ···, 03BEk) = Si , j203BD(03BE1, ···, 03BEk) =
03BD(03BE2, ···, 03BEk) if k &#x3E; i, = 0 if k = 1. (Thus v is a many-one num-
bering of finite sequences which is made 1-1 by giving the length
of the séquence.)

As usual we shall use * for concatenation, but write n * m for

*(n, m) (which in turn is to be interpreted according to con-
vention 1.3).
Note that if ~x(j2x  x) we can decide primitive recursively

whether any given n is in the range of v.

1.5. Brouwer operations, denoted by e, f, ···. These are intended
to be neighborhood f unctions defined on sequence numbers m so
as to induce an assignment of numbers to functions. Specifically,
em = x+ is to indicate that for all functions a "belonging" to the
neighborhood (03BE1, ···, 03BEk) with number m, i.e., for a such that
ay = 03BEy+1 for y  k or, again for aj1m = m (j1 m being the length
of the sequence m ! ), we assign the value x. If em = 0 we have
left open whether all functions in (03BE1, ···, 03BEk) get the same value.
An elementary consistency condition is therefore

The crucial continuity condition which generalizes the essential
properties of the sum operation in the introduction is

The critical point, stressed in the introduction, is the following
requirement on the quantifier combination Va3m. The existence
of m should not be derived by use of delicate properties or assump-
tions on possible rules for a, but, as in the case of the sum opera-
tion, should be insensitive to the class of rules considered. In the
present section, after having defined the species of Brouwer

operations, we shall do justice to this requirement by proving
1.51 for such operations e, using nothing about a except that its
values are determined! We do not even use such elementary closure
conditions as ~ab~x(bx = ax+). In the next section we shall
reformulate the requirement; instead of making restrictions on
the kind of proof of 1.51 to be used, we shall ask for a proof of a
different theorem, namely
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where oc ranges over choice sequences.?

A xioms for the species K0,1 of Brouwer operations. Let A [Y0,1]
denote the conjunction of

where ÿ is the number of the sequence consisting of the single
element y.

1.52 The axioms for Ko,l are: A [K] and

Note that this axiom expresses an induction principle which is
seen to hold if we think of K as generated according to the two
clauses A [K]. First we start with the neighborhood functions
1, 2, 3, which assign outright the value 0, 1, 2, ··· respectively
(to any a). Second, if e enumerates the sequence eO, el, e2, ... ·

in the sense

then e assigns to the sequence (aO, a1, ···) the value which ea°
assigns to (al, a2, ... ). If K is generated in this way, and X is
closed under these closure conditions, then X must contain K.
Note also that the induction principle, together with the other

axioms for constructive functions, implies a further strong closure
property of K, namely the axiom of choice 8

This closure condition makes the general theory of Brouwer

operations more elegant than giving an explicit list of Brouwer
operations.

7 We have here an instance of a very general principle, often applied without
analysis. We begin with an idea of a particular kind of argument or restriction to a
particular kind of evidence or proof. We then discover that this idea leads to the
same results, i.e., the same set of theorems (in a given language), as considering
a wider class of objects and allowing arbitrary proofs. A well known example of this
situation (already mentioned in the introduction) concerns the old idea of algebraic
proofs about real numbers stressed, for instance, in Sturm’s original publication.
This was later replaced by validity for all real closed fields. It should not be assumed
that a similar replacement will be useful for every informal notion of proof!

8 In contrast 1 do not see how to derive the axiom of dependent choices for
éléments of K, i.e. 

~e(Ke ~ f[Hf 039B X1,1(e,f)]) ~ Ve(Ke ~ f[Kf 039B f0 ~ e A ~xX1,1(fx,fx+1)])
where r e stands for ~m[f( * m ) = em] although it is intuitionistically valid.
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THEOREM. ~e[Ke ~ Ha3m3x(em = X+ n âjim = m)].
To avoid assuming closure conditions on the species of con-

structive functions, we prove a slightly stronger theorem by
induction on K:

PROOF. If e is a starting function, i.e., i, 2, ..., we take m = 0
and x = 0, 1, ... respectively. Next suppose that e0 = 0, iin = p
and ap = 03BEp+1 (here we use the fact that values of a are deter-
mined). By assumption, f~m[Kf A f m = e(03BEp+1 * m)]. In the

induction hypothesis, replace e by f, and n by n * 03BEp+1; if m is

such that

as required.
The elementary condition

follows by a straight induction on K. For further properties of K,
see [10].

1.6 Abbreviations. We write

and

where n. is the (1+y)th element of the sequence n.
The main theorem about K can be restated as

Note that the expression b(a) cannot be regarded as a function
of the two variables a and b, since we have -1 ~a~bx[b(a) = x].
In fact, by [10], using only the assumption that not all disjoint
constructively enumerable sets are constructively separable, we
have even -1 ~a~bx[Kb ~ b(a) = x].

In contrast (b|a) which, for a and b in K, is a composition
operation, can be extended to all pairs of constructive functions.
Formally, if C(e, f, g) expresses that g is the composition obtained
by applying (the functional with neighborhood function) e to f,
we have not only
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but also

An extension of the theory is obtained by replacing the axioms
(A C -NF ), (DC-F) 1.52, by the corresponding schemata ( for all
definable relations, quantification over species included).

Discussion. We now review the main reasons for using the
primitive notion of constructive function without making the
identification (or, better, restriction): constructive = recursive.
Here, for once, I seem to disagree with Kleene; see [5].

First, as far as formal elegance and generality are concerned,
the primitive notion presents, I believe, only advantages. In
particular, one sees what properties are actually used (and how
few!); besides, why should one clutter up the exposition with
recursion equations when one only uses such general facts as
 ~ab~x[bx = 0 ~ y(ay = x)]? The verification that the

species of recursive functions possesses these properties is quite
an independent matter. Further, the general properties are often
evident for the informal notion of constructive function when the

identification, constructive = recursive, is dubious. Specifically,
suppose we include Brouwer’s "empirical" sequences defined by
rules referring to the thinking subject (in [9] and particularly
[12]). All our axioms for constructive functions are still valid,
but the identification above is re f utable. (This central point of
[12] is not considered at all in Kleene’s answer [5]. )
Second, as far as a development of our subject is concerned, the

need for the primitive notion is even greater. It is somewhat
similar to the need, discussed in 1.1, for species variables instead
of a restriction to an explicit list of species. Amusingly, some of
the principal open problems in the subject of constructive func-
tions also involve species variables, in particular certain forms of
the axiom o f choice associating numbers ( "N" ) to functions ("F" ).
The usual form (AC-FN) is

where both X and Y are of type (1, 1 ) with variables a and x.
(AC-FN) is unproblematic for general species Y, but Y cannot
be expected to be definable from X by the operations (1.1).
Note that ~Y[~a!xY ~ (Y ~  Y)], ( i.e., Y is decidable),

since
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and

Now let us denote

("E" for extensional dependence of y on b)

(" C" for continuous. dependence of y on b).

Consider now the problematic forms
of the axiom of choice

and, for comparison with Section 2, with "BO" for Brouwer-

operation,

As they stand, these forms are certainly not plausible. In the
first place, some restriction on X is needed, e.g. that X be at least
extensional, i.e., ~a~b~x(~u[au = bu] ~ [X(a, x) ~ X(b, x)]).
But even this is not enough for (E-AC-FN) by [12]. As to the
identification, constructive = recursive, even (AC-FN) is not
valid for extensional X (if Y v i Y is interpreted to mean that Y
has a recursive characteristic function); though, for the identifica-
tion, VY[E(Y) - C(Y)] holds classically, 1 know of no intui-
tionistic proof; finally, Kleene gave a counterexample to

In contrast, I know no evident properties of constructive functions
which allow one to decide the corresponding questions, for suitable
kinds of species X. In short, a premature identification is bad
because it prejudges open problems.
What then is the motive behind the identification? 1 suspect

that people are reluctant to use the primitive notion, not for
formal or technical reasons, but simply because they feel ill at

ease with it. But then they should feel ill at ease with any con-
structive theory of recursive functions too, since the same notion
is already involved in the very definition of the notion of recursive
function, as mentioned in the general discussion on page 000.
In short, as is well known, the identification does not provide an
analysis of the primitive notion.
What can be saved from work done under the heading of this
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identification (in connection with our present subject)? Above
all we can get most useful results about the prool theoretic strength
of our axiomatic theory of constructive functions. We have

presented it as a second-order theory, but the additional axiom

reduces it to a first-order theory with KR, the species of recursive
Brouwer operations, i.e., a species of natural numbers, replacing
K. 1 do not see how to establish the axioms for constructive func-

tions when the variables a, b, · · range over the recursive func-
tions, and the logical particles are interpreted as by Heyting.
But the axioms are satisfied for a recursive realizability inter-
pretation if x realizes Ke only if x = e n KRx ([8], p. 141, 2.6292).
For related results see [5].

2. Lawless sequences of natural numbers

We modify the (two-sorted) formalism of Section 1 by adding
variables (x, fl, y, ... · for lawless sequences and variables Xn,m,p
for species having n numerical, m function and p sequence argu-
ments. The variables Xn,m of Section 1 are replaced by Xn,m,0.
The different sorts of objects are regarded as disjoint, e.g.

~x~03B1( x = oc). The closure conditions on species in (1.1) and on
K0,1,0 (1.52) are extended in the obvious way; in particular, we
have specialization of number and function arguments exactly
as in (1.1), while "specialization" of sequence arguments takes
the form of the axioms on p. 18. The only terms for sequences
are the variables ce, 03B2, y, ... · themselves. The rule for forming
numerical terms is extended so that oct is a numerical term if t

is one.
To state the axioms it is convenient to use two abbreviations:

ce e n expresses that for n ~ 0, n codes the sequence
(x0, ’ ’ ’, 03B1(j1n-1) where j1n is the length of n;
~ (03B1, 03B11, ···, (03B1p) stands for the conjunction of all formulae
J « == ce, for 1 ~ i ~ p.

2.1 ~n03B1(03B1 E n ) and, by convention, ~03B1(03B1 E 0 ).
This axiom expresses the fundamental requirement on lawless

sequences that any finite initial segment may be prescribed. Note
for reference that 2.1 is the only existential axiom on lawless
sequences. (For ce subject to chance only, 2.1 is absurd, and only
Vn -t 03B1(03B1 ~ n) holds.)
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To see the validity of 2.2 for our notion, recall first that a
lawless sequence is not to be conceived as a "completed" exten-
sion, but rather as a die or, perhaps better, the idea of a die.
Further, the meaning of  oc = f3 is that it is absurd that a = f3
be provable. Now, for given cc and f3, we either intend them to
denote the same object, e.g., the same die, or else it is absurd
that we could prove them to be identical since no restriction is

imposed except for a finite initial segment of values. What we
have in mind is that the dice, or whatever lawless objects are
considered, should be given or presented explicitly; we do not
allow "descriptions" which are not explicit enough to identify the
(intensional) objects described.
Axiom 2.2 allows us to argue by cases. Thus

Next, let Xo,o, +l be a species variable whose arguments are
oc, oc,, - - -, 03B1p and let X§ be obtained from X by replacing oc by 03B2.
Then

To see this, consider any oc, (Xl’ ..., 03B1p. To be able to assert X we
either have oc = (XIA X03B103B11 or ... a = 03B1p039B X03B103B1p or else ~ (03B1, 03B11, ···, 03B1p).
But in this last case, since the only restriction allowed on oc is that,
for some n, cc E n, we must also have X§ for P E n provided only
that no relation is imposed between P and one of the 03B11, ···, (Xp.
(The condition ~(03B2, (Xl’ ..., OCp) is needed; take p = 1 and 03B1 ~ ocl
for X.)
Note that, by the closure conditions on species, 2.3 also holds

with numerical and function parameters, Le., with Xn,m,p+1 in
place of X0,0,p+1. The following consequences 2.31- 2.33 of 2.3
are useful.

The direction - is an instance of the equality axioms. For the
converse, we argue by cases. If a = 03B2 there is nothing to prove.
If e (oc, 03B2)039B ~x(03B1x = 03B2x), apply 2.3 with ~x(03B1x = 03B2x) for X;
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we conclude n(03B1 ~ n039B ~03B3[(~(03B3, 03B2)039B 03B3 ~ n) ~ ~x(03B3x = 03B2x)]),
which conflicts with 2.1. Thus =A (oc, 03B2) ~  ~x(03B1x = 03B2x).
The Theorem 2.31 is a strong extensionality principle for lawless

sequences.

This is immediate from 2.1 and 2.3; as above, 2.32 could be
deduced from its special case with n = m = 0. Note that 2.32
allows us to "replace" existential operators "03B1" by universal
ones.

The direction ~ is logical: take n = 0. Suppose then that
X A ~n[(~03B1 E n)X ~ (Voe e n)Y]. First, by 2.3,

next

Since 3m[oc e mA(YP E m)Y03B103B2] ~ Y, we have Y.
Note that 2.33 allows us to distribute the universal quantifier

Bfoc over ~. More precisely, in this "distribution" we introduce
the restricted quantifier (da E n ), j ust as in 2.32 the quantifier
03B1 was replaced by the restricted quantifier

Finally, observe that the distribution of Voe over universal
numerical and function quantifiers does not depend on special
properties of lawless sequences since it is purely logical:

We now come to the only problematic axiom.

where we have used the abbreviation e(03B1) corresponding to 1.6.
By the Theorem of Section 1 (set out so as to apply equally to
e(03B1) as to e(a)) we have ~e(Ke ~ ~03B1in[e(03B1) = n]) and hence

~e[Ke ~ (VocX[oc,e(oc)J ~ ~m~n~03B1[(em = n+039B 03B1~m) ~ X(03B1, n)]) J,
which permits us to eliminate systematically the notation e(ot).
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Concerning a justification of this axiom, which makes explicit
Brouwer’s dogma [1] about the nature of everywhere defined
operations on choice sequences, observe that, by 2.3, if

~03B1xX(03B1, x), then, in the case of lawless sequences, x depends
continuously and hence extensionally on oc. Thus the doubts

corresponding to (E-AC-FN) and (C-AC-FN) at the end
of Section 1, do not apply in the case of lawless sequences:
(C-AC-LN) certainly holds. 2.4 asserts that every continuous
operation is a Brouwer operation. We do not analyze 2.4 further
in this paper (though its consistency is established by the remarks
in the discussion at the end of the present section). The following
fact, certainly known to Brouwer (and pointed out to me by
Gôdel ) is perhaps worth noting. If the axioms for K are interpreted
as a classical implicit definition, with function variables ranging
over all number theoretic functions, then it is a theorem that all

classically continuous operations on NN with the product topology,
have a neighborhood function in K. It is therefore not surprising
that the most familiar continuous operations e are obtained by
such an elementary use of the generation principles of K that Ke
can be proved quite constructively; so one hardly expects to have
a simple counterexample to Brouwer’s dogma. More generally,
many closure conditions on the class of continuous operations
which are usually proved non-constructively (for the usual

definition of continuity) can be proved intuitionistically for K.
In other words, the "usual" proofs can be separated into, first,
a non-constructive identification of K with the class of continuous

operations, and second, intuitionistic proofs about K.
Note that 2.4 allows us to distribute universal sequence quanti-

fiers over v. Recall that

whence

The next axiom asserts that if a constructive function depends
on a lawless sequence it depends on an initial segment.

The basic theory above may be extended by replacing the axioms
2.3, 2.4, 2.5, by schemata (without parameters for sequences), cf.
Section 1, p. 12.
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Similarly, for species (which are also conceived of as definite
constructions given by a laws):

for all f ormulae A not containing free variables for sequences other
than a. Note that 2.6 is formulated as a schema and not as a single
axiom because we do not have variables for species of species in
our formalism.

In the statement of the next theorem we adopt a convention.
In the context of the basic system the formulae A do not con-
tain any species variables; cf. the remark in (1.1). For the ex-
tended system, A may be arbitrary.

PRINCIPAL THEOREM. Il A is a closed formula of our systems there
is a f ormula A’ in the language of Section 1 such that A ~ A’
follows from the axioms listed above.

SKETCH OF THE PROOF. The theorem is established by an induc-
tion on the complexity of formulae A (containing lawless para-
meters). The measure is given by the number of logical symbols
except that, by definition, the complexity of a formula of the
form ([~ (OC’ 03B11, ···, 03B1p)039B OC E m] ~ B ) is that of B itself. In other
words, logical operations applied to decidable formulae need not
be counted. Note also that any conjunction a E n1 039B ··· A ce E nk
is equivalent to a single formula oc c- ni (1 ~ i ~ k) or is contra-
dictory. In the former case, the sequences ni, ni are pairwise
extensions of one another and ni is the longest among them.
Suppose A has all its free variables for (lawless) sequences

among oc, 03B11, ···, 03B1k, and its species variables of the type Xr,s,t+1
(i.e., containing sequence arguments) among Xri,si,ti+1 (1 ~ i ~ l).
We introduce new symbols X’ri+ti+1, si, 0, 1  i ç l with the axioms

where x03C3(j), 1 ~ j ~ ri, are the numerical arguments of X, a.,U)’
1 ~ j ~ Si’ the functional arguments, and (lEU), 1 ~ j ~ 1+ti,
the sequence arguments, and n1, ···, n1+ti are new numerical
variables. Then we introduce in the same way X"ri+ti,si,0 where
first, two sequence arguments in X have been identified to give
the species Y; thus X" is obtained from Y as X’ was obtained
from X, and so forth.
Then the induction hypothesis asserts: there is a formula A’ 

such that its variables for sequences are all free and among the
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free sequence variables of A, its free species variables are those
of A of the form Xr,s,0, and the X’, X", etc. introduced above
and A H A’ follows from the additional axioms above.
When the induction is completed, the additional axioms can

be removed by the closure conditions on species. Specifically, to
a given X there are X’, X", ... satisfying the axioms above, and
conversely. The converse uses the fact that ce, = oc, is decidable,
and so X(···, ! 03B1i, ···, ! IV ! ... ) for ai ~ IV and X(···, 03B1, ···, oc, ! ... )
are quite independent of each other. To treat adjacent universal
quantifiers replace ~03B1~03B2xA(03B1, 03B2, x) first by ~03B1xA(03B1, 03B1, x) ~
~03B1~03B2[03B1 ~ 03B2 ~ xA(03B1, 03B2, x)] and then apply 2.4 and 2.5 to show
that y depends continuously on both a and p.
Next the reduction of 3a to da in 2.32 and the distribution of

sequence quantifiers Va over all logical operations (2.33, 2.4,
2.41, 2.5, 2.6 and of course Vr, Va, and A) reduces the theorem
to the case of formulae A of the form

where B is atomic, i.e., oc = oc,, or t = t’ where t and t’ are numer-
ical terms containing oc, or Xr,s,1+p where oc is one of thé sequence
arguments of B. We consider the cases separately.

If B is oc = oci, we refute (*) by taking n in 2.1 so as to satisfy
j1n &#x3E; ilm and n ~ 03B1ij1n.

If B is t = t’ we have to look at the rules of term formation (or,
to be safe, we have to remember the property of the notion of
lawless sequence which led to the rules ). Only a finite number of
arguments of oc are involved, say t(0)i (1 ~ i ~ ko), t(1)j (1 ~ j ~ k1)
where t(1)j is obtained by applying symbols other than oc to 03B1t(0)i
say T, (oct(o), 03B1t(0)k0), and so forth. Introduce the new individual
variables u (0) u(1)j, ··· with the axioms t(1)j = Tj(u(0)1, ···, u(0)k0)
and equality axioms, t(0)i = tjO) ~ u(o) = ujO) etc. Then B is

reduced, by 2.1, to a formula not containing oc at all.
Finally suppose B is Xr,s,1+p. It was precisely this case which

led us to introduce the (eliminable) species variables X’, X", ···.
Refinement. As mentioned in footnote 5 we can give a finitist

reduction of our basic system to the system of Section 1. One
verifies meticulously that all the axioms and rules of Section 2
become theorems of Section 1 when each closed formula A ap-
pearing in the axioms and rules is replaced by A’ as constructed
above. For a detailed exposition, in a slightly more complicated
situation, see [10]. This reduction provides a classical consistency
proof for the present Section because Section 1 is a subsystem of
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classical analysis. From the classical point of view, i.e., without
understanding of the notion of lawless sequence, a consistency
proof is needed since there is no obvious classical interpretation
for our axioms. (Adding the law of the excluded middle certainly
makes our system inconsistent since e.g. Voc i i x(03B1x = 0) and
7 ~03B1x(03B1x = 0 ) both hold; so the « cannot be regarded as classical
"objects".) The intuitionistic consistency proof in terms of the
intended interpretation is of course more elegant than the finitist
reduction, but, as usual, the latter provides, as a byproduct,
conservative extension results which do not seem to be obvious
from the interpretation. Presumably corresponding results hold
for the extensions in Sections 1 and 2 respectively.

Discussion. The problematic axiom 2.4; further conservative
extension results. It is an easy exercise (cf. [8], p. 140,
2.623 -2.6234, and, in detail, [10]) to show that 2.4 and (what
Kleene calls) the "bar theorem" are equivalent in the presence of
the other axioms of Section 2. In fact if K is explicitly defined by

it can be proved to satisfy the basic axioms 1.52 for K by use of
the bar theorem. This means of course that the addition of K
is then a conservative extension.
What then is there to choose between 2.4 and the bar theorem

(applied to lawless séquences) ? The matter has been discussed in
[12] and [5], footnote 3. It seems to me that, formally, there is
little to choose in the sense that the tricks needed to infer one
from the other are of much the same kind. For an elimination
theorem and, as an application, for proof theoretic results about
the strength of the systems concerned, 2.4 seems much superior.
Personally, I think there is a real advantage in 2.4: not because
it is particularly evident that 2.4 is true, but because it is really
clear what 2.4 asserts.

3. Layvless binary sequences

denoted by variables OCBI 03B2B, ···; reduction to arithmetic. Instead
of allowing sequences of arbitrary natural numbers, we restrict .
ourselves to sequences of 0 and 1 or, alternatively, lawless predi-
cates of natural numbers. Beyond this restriction no further re-
striction is to be made except for fixing finite initial segments.
(The work below extends to uniformly bounded sequences too,
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i.e., ocn  an, a fixed, instead of ocbn  2.) The present theory
will be simpler than Section 2, roughly because binary sequences
form a compact space and continuous functions on such spaces
are uniformly continuous. More precisely, we shall show that the
action o f an e in K can be coded into a natural number. (This will
lead to a reduction to arithmetic because we can now separate
out axioms for constructive functions: 2.1- 2.3 do not involve
such objects, 2.4 is replaced by an arithmetic axiom, and 2.5, 2.6
are not needed if one drops functions and species altogether.)

Let A (m, x ) express that m is an array of length x, i.e., that m
is a sequence of pairs (ni, ui) for 0 ~ i  2x, each ni being a
sequence of 0 or 1 of length x, and ni, nj distinct for i ~ j. Thus
the ni list all possible sequences of 0 and 1 of length x; the natural
numbers ui may be thought of as associated to ni.
We write m(aB) = u for (3i  2x)(âgx = ni A u = u,). We may

think of m as defining a (continuous) operation on all binary
sequences, with modulus of continuity ~ x, since clearly
~03B1B!u[m(03B1B) = u]. Conversely we have the

The proof uses a straightforward induction on K. If e is a constant
with e(m) = u+, take x = 1 and m = ((0, u), (1, u)). Suppose
e(0) = 0 and suppose mo and ml, of lengths xo and xi respectively,
are the arrays corresponding to Âne (Ô * n) and Âne (î * n). Then
there is clearly an array of length 1-t-max (x0, x1) corresponding
to e.

Consequently axiom 2.4 (with p = 0) takes the form

The only other changes in the axioms of Section 2 are first the
addition of

and, instead of 2.1, we have

THEOREM. Let A be a closed formula in the language obtained
by adjoining (XB, 03B2B, ··· to first order arithmetic and extending the
rules of term formation accordingly. Then there is a formula A’
o f first order arithmetic itself such that A H A’ follows from our
axioms for binary lawless sequences.
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It is understood that we now throw in the recursion equations
for addition and multiplication since we do not have function
variables and hence not (AC-NF). Also since we do not have
species variables, the axioms involving universal quantifiers over
species are replaced by schemata.

Discussion. The theorem above improves Theorem 4 of [6]
where only formulae A of the form VABB were treated, with aB
as the only sequence variable in B. Naturally axiom 2.2 was not
used nor the restriction ~ (03B1, 03B11, ···, a p ) in 2.3. The schema

corresponding to 2.4’ was replaced by an equivalent form

It is worth noting that the need for some restriction such as in the
present 2.3 was clear ([6], p. 373, Remark 5.1). But, as so often
in logic, instead of facing the problem and getting an elegant
solution, 1 was being "practical" : for the immediate purpose of
[6], the fragment of formulae VABB was enough !
As in Section 2, though more simply, one can show that the

present theory o f binary lawless sequences is a conservative extension
of Heyting’s first order arithmetic.

This improves a result of Kripke [11 ] who was the first to show
that the fragment of the present theory considered in [6] (where
it was called "FC" ) is a conservative extension of Heyting’s
arithmetic. It may be remarked that for the method here de-
scribed ("elimination of lawless sequences") it is no easier to

prove Kripke’s result than the stronger result above.

4. Derived notions of choice sequence

or: how fundamental are lawless sequences? It is clear from the
examples in the introduction that the sequences used in intui-
tionistic analysis are not lawless. More formally (at least in so
far as Kleene’s system or the slightly 9 different system in [8],
p. 135 are adequate axiomatizations) the lawless sequences do

9 Correction. In [8] 1 did not state a proper substitution rule or, equivalently,
a proper restriction on the 03BB-symbols allowed. (Kleene had no restriction.) Since,
by [8], p. 135, l. - 3 and l. - 2, a choice sequence is given with a spread law, i.e.,
we mean 03B1*03C3 in 4.1 below and not oc*, the restriction on the 03BB-symbols t must ensure
that t maps a spread into a spread. Troelstra [13] discovered that not every 03BB-term
has this property. 1 owe the compound notion called a* below, to conversations
with Dr. Troelstra.
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not satisfy the formal principles of this subject. For instance, for
lawless a we have

or, more simply if we use variables for constructive functions,
-1 ~03B103B1~x(03B1x = ax) since, by 2.3, even ~a~03B1  ~x(03B1x = ax)
holds. We shall now consider whether the notion of choice sequence
involved in intuitionistic practice can be reduced to lawless

sequences, for instance by use of compound or defined notions.
To get some perspective we begin, in 4.1, by studying properties
of two such compound notions, and then, in 4.2, we consider their
use for the proposed reduction (was sie sind und was sie sollen).

4.1. Recall the informal distinctions in the introduction. Denote

by oc* and ce§f the pairs (a, oc) and (a03C3, oc ) respectively, where both
a and a03C3 E K, and, further au maps an arbitrary oc into a spread CI
as described in 2. We define an application or function evaluation

and similarly ce§y = z. We denote by X*m,n those species Xm,n,n
which depend only on the compound cc* and not on the components
a and oc, i.e., for m = n = 1

In contrast to the case of lawless sequences we now have

~b03B1*03C3~x(03B1*03C3x = bx) and a fortiori ~b03B1*~x(03B1*x = bx). We
simply take for CI the spread consisting of the single path given by
b, and for au (in (au, oc )) the function given by a03C3( * m ) = (by )+ ;
clearly au E K.
For a property which distinguishes between 03B1* and 03B1*03C3, consider

the closure condition

where (e|03B1*)(y) = z is defined by m[03B1 ~ m039B(e|a)( * m) = z+]
(cf. 1.6). We take for 03B2* the pair (e|a, oc). In contrast, by [13]
we have 

Instead we must restrict ourselves to e which map spreads into
spreads 10. (To state a corresponding result without the use of

10 Cf. footnote 9. This kind of restriction is of course very familiar; for instance
in intuitionistic analysis one requires not only that operations map (freely chosen)
real number generators again into real number generators, but, that, in addition,
equivalences be preserved.
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function variables e, one considers KR instead of K. )
More generally we have the following axiomatization problem

which (often) leads to a neat way of stating properties of com-
pound notions. Consider the language of Section 2, but with oc*
(or 03B1*03C3) replacing ex and X*m,n replacing Xm,0,n 11· Is there a simpler
set of axioms in the * language which implies exactly those formulae
which are translations (via our definitions above) of theorems of
Section 2 ? (Or, if one shares Kleene’s taste [5] one will drop
variables a, b,... form the * language: of course they are transla-
tions of formulae in Section 2 which do contain a, b, ···.) I hope
to come back to this axiomatization problem in another paper.
Here only two remarks are to be made (besides the postscript).

First the analogue of the axiomatization problem is familiar
from other branches of mathematics. Thus, even though real
numbers are (often) defined in terms of natural numbers and sets
of natural numbers, it has been useful to axiomatize the theory of
addition and multiplication of real numbers without mentioning
the definientes (in the theory of real closed fields ).

Second, it is not particularly plausible (without significant
restrictions on the species considered) that the current formal
systems mentioned at the beginning of this Section already solve
this axiomatization problem since, apparently, too much can be
proved there. Let us consider the continuity axiom (which
Kleene calls "Brouwer’s principle" ) :

This is translated (with a e K, b e K) by

But all that is obvious is

in other words, the quantifier b is too much! Note incidentally
that the species [pz = ixz - X(a, 03B2, x)] is not an X* at all.

If one uses function variables the situation can be stated more

neatly. Current systems assert the strong axiom, which we may
call

while the only obvious "similar" principle is

11 If one wants a language with constructive function variables (but no lawless
séquences!) one uses X*m,n,p corresponding to Xm,n+p,p in an obvious way.
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4.2. Reduction problems. Assume for the moment that 2 4* is

not valid, i.e., if we consider arbitrary proofs of ~03B1*xX*(03B1*, x),
x need not depend only on oc*, but may depend on the components
even though X* does not. (Put differently, e may depend on a
in (a, oc).) What conclusion are we to draw?

4.21. The simplest conclusion is that 2.4* is simply not valid
without additional conditions on the quantifier combination
doc* 3x. Here it is natural to consider the analogue to ~Y[E(Y) ~
C(Y)] on p. 13, which comes to this (for the identity operator i,
and Y* obtained from Y as on p. 23 ) : do we have

4.22. Another conclusion is to give up the attempt to reduce
2.4* to principles about lawless sequences only. This is considered
in [12] and [13]. Troelstra [13] points out some formal defects
of [12], and presents what seems to be a formally satisfactory
treatment. Further the general idea of [13] is most interesting.
The objects oc* involve constructive functions and hence the laws
used to define them; Troelstra considers the limits on the commu-
nication of such a law from one thinking subject to another, and
confines himself to intersubjective (communicable) laws. However
the detailed execution as it stands is less satisfactory: instead of
considering objective limits on communication, he considers a
collection of subjects who (frivolously?) withhold information.
If one is going to consider this game, one might as well consider
a mere game with symbols à la Hilbert and be satisfied with a
consistency proof. But Troelstra’s idea may well lead to a signifi-
cant analysis.

4.23. Finally we may wish to combine a reduction to lawless
sequences with a special interpretation of the quantifier combina-
tion ~a~03B1x or, equivalently, with a restriction on the proofs of
~a~03B1x considered ([8], p. 133, 2.5; p. 136, 2.531, also taken up
in [13] ). In terms of footnote 9, the formalization of the intuitive
situation is not done merely by considering a new kind of object,
(and thus only implicit restrictions on methods of proof) but also
retains explicit restrictions on proofs. Despite the intrinsic interest
of analyzing the notion of thinking subject as in [12] or [13],
it seems to me that the most natural situation to consider here
is nothing more recondite than the geometric notion o f continuity.
Let us remember that the classical rendering, i.e., arithmetization,



247

of the geometric idea of "continuity at each point of an interval"
is not immediately convincing, and is justified more or less by
consequences such as uniform continuity (in the case of closed
intervals). It is simply a fact that if we formally transfer the
classical version to the intuitionistic theory and use a universal
quantifier over constructive points, we cannot expect uniform
continuity to follow (and we know that it does not follow if we
identify constructive and recursive). In any case, if we use 03B1* to

represent points, the component a in (a, oc ) is a kind of coordinate,
always alien to geometric conceptions. So for geometric purposes
one has to express a strong independence of these coordinates and
it seems plausible that 2.4* does this correctly. (Of course, instead
of restrictions on proofs one can also have restrictions on defini-
tions of functionals F(03B1*), and then 2.4* expresses the conse-
quences of such restrictions made outside the * language, as far as
statements in the * language are concerned.) 12

Postscript concerning the axiomatization problem of Section 4.

Troelstra has pointed out that CS of [13] is certainly not satis-
fied by the objects (e, 03B1):03B1CS~03B1 ~x(ax=ax) holds in CS,
but, by Section 2, we have 03B1*~a -i ~x(03B1*x = ax ); take oc* = ( i, 03B1)
where i is the identity operator, that is i~K039B~03B1~x[(i|03B1)(X) =
03B1(x)]. As I see it, in terms of footnote 3, the idea behind CS
is that the objects 03B1CS are not pairs (e, oc) with e fixed once for
all, but "approximated" by sequences eo, el, e2, ··· in the sence
that the ranges of Âcxeolcx, 03BB03B1e0|e1|03B1, etc. contract. (Of course the
sequences e0|03B1, e0|e1|03B1, ··· themselves have little to do with one
another, except under special conditions [on e0, e1, ···]: e.g.,

e00(03B1) constant for all 03B1, [for given eo] e10(e1|03B1) constant, etc.)
Further work is needed to show whether the objects 03B1CS on the

pairs ( e, 03B1) are more suitable for the formulation of intuitionistic
practice.
We do have ~03B1*03C3a~x(03B1*03C3 x = ax) whenever is not the

universal spread since we cannot be sure that any lawless oc lies
wholly inside J.

12 Warning. This presents a change of view from [8], p. 134. At that time 1
simply did not see this justification, and so 1 had to be content with analyzing the
objects "away".
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