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A note on spread-cardinals

Dedicated to A. Heyting on the occasion of his 70th birthday

by

Dirk Van Dalen

0

Brouwer has defined the concept "gleichmächtig" in his early
papers [1 ], [2] and analyzed some of its properties. It was defined
quite generally for species. Knowing the pathological behaviour
of species we cannot expect to prove much about cardinals. We
propose therefore to restrict our attention for the time being to
spreads (and, since our results will mainly be negative, to fans).
The problem we discuss in this paper is the existence of a

natural partial ordering among this class of cardinals. There is no
doubt that the equivalence (gleichmächtigkeits) relation as defined
by Brouwer (which by the way coincides with Cantor’s définition)
is the most natural one. There appear to be more possibilities to
define the analogon of "equivalent to a subset of". As we will
show none of those give rise to a partial ordering.

This is rather disappointing as in another approach to construc-
tive cardinals, the RET’s of Dekker and Myhill, there is a natural
partial ordering [6].
The treatment below has been influenced by Tarski’s "Cardinal

Algebras" en Dekker and Myhill’s "Recursive Equivalence Types".

1. Definitions

For the intuitionistic terms the reader is referred to Heyting [7].
Capitals will denote spreads and fans, lower cast letters denote
mappings from spreads to spreads. a, f3, y ... · will denote cardi-
nals and 03BE, ~, 03B6 will denote elements of spreads. We will restrict
ourselves to undressed spreads [4].
DEFINITION 1.1. S - T iff there exists a full bijection f : S ~ T.
From now on we will delete the adjective "full", every mapping

f : S ~ T will be supposed to be defined on all of S.
Clearly ~ is an equivalence relation.
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DEFINITION 1.2. [S] = {T|T ~ S}.
We call the species [S] the cardinal of S.
For convenience the underlying species of nodes of a fan F (the

spread-direction [4]) is denoted by F, x1 ··· xn&#x3E; e P means that
x1 ··· xn&#x3E; is admissible under the spread law of F.

DEFINITION 1.3. S-f-T is a spread W defined by x1 ···, xn&#x3E; e Jt
iff 

S+T is the disjoint union of S and T. One can visualize the
disjoint sum of two fans by placing them side by side.

DEFINITION 1.4. [S]+[T] = {S+T].
It is easy to see that this sum of cardinals is well-defined. We

could define a countable sum of cardinals. As finite sums only are
used here we will refrain from doing so.

DEFINITION 1.5. S X T is a spread W defined by x1, ···, xn&#x3E; ~ W
iff 

DEFINITION 1.6. [S] X [T] = [S X T].
Again we have a well defined operation on cardinals.

DEFINITION 1.7. [S]p[T] iff there is an injection f : S ~ T
[S]03C3[T] iff there is a surjection g : T ~ S
[S]i[T] iff there is an injection f : S ~ T

and f(S) is removable in T
[S]03C4’[T] iff there is an R such that

LEMMA 1.8. t and 03C4’ coincide.

By assumption h is well-defined on T and hence by Brouwer’s
Bar Theorem there exists, a thin bar (removable subspecies of the
species of nodes) such that all e passing through a node of the bar
have the same value under h (the species 03BC1 in [3] ).

Define a new spread having as admissible segments the se-

l "inverses" of the pairing function J, cf. Davis, Computability and Unsolva-
bility, p. 45.
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quences of T starting at the bar. By renumerating the initial
segments we obtain a spread where the "even" segments belong
to R and the "odd" segments to the complement of R. This shows
that T - R’ + R" where R’ ~ S. The construction of the required
bijections is straightforward.

Clearly f(S) is removable in T.

LEMMA 1.9. p, a and T are reflexive and transitive.

PROOF: immediate.

2

We will show that for none of the relations p, a, t the Cantor-
Bernstein theorem holds. This is fairly evident as far as p and a
are concerned. In the case of T it is considerably harder. 1 even
entertained for some time the hope of proving t a partial ordering,
after fa°ling to do so 1 tried to construct a counterexample. The
one produced below is an inessential modification of the counter-
example presented at a seminar in Nijmegen. The main character-
istic of the demonstration is the repeated application of the fan
theorem. The absence of otherwise sophisticated intuitionistic

machinery seems rather surprising.
The construction itself is not too complicated, noting the basic

idea of finding a fan that has auto-injections but not too many,
it does not seem plausible to expect an easier construction (and
proof). Our result will be slightly stronger than announced since
we will deduce the statements even for fans.

2.1. There are fans F and G such that [F]p[G] and [G]p[F] and
not [F] = [G].

PROOF : Let F be the binary fan and G = F + E where E is a
fan consisting of one element.

2.2. There are fans F and G such that [F]Q[G] and [G]a[F] and
not [F] = [G].

PROOF: as above.

2.3. A counterexample will show that T is not a partial ordering
of the cardinals. As the construction is rather involved we will

develop some ad hoc techniques.



24

First we need a countable species of fans which are uncompa-
rable under T. For convenience we use a regular expression 2 to
define the admissible sequences: (0 ~ 1)* ~ 1*2*1*2*···1*
(or 2*). Employment of a string 1*2* ... of length n defines the
fan Hn (n &#x3E; 1). Using the fan-theorem one shows that [HnJr[Hm]
does not hold for n ~ m.
As an example we will show that H2 and H3 are incomparable

under i. Assume there is a bijective mapping f from H2 onto a
removable subfan F of H3.

In J?2 and H3 we distinguish four types of nodes:

type a: a node with at least one o.

type b : 11···1&#x3E;
type c: 11···12···2&#x3E;
type d: 11··· 12 ... 21 ... 1&#x3E;

As F is a removable subfan of H3 there is a finite species of nodes
{a1, ···, an} such that F consists of all choice sequences passing
through at least one of a1, ···, an.
We claim that no node c of type c is preceded by any of

ail , ..., an. If that were the case we could find a finite number of

nodes &#x26;i, ’ ’ ’, bk of H2 such that the subfan determined by
b1, ···, bk is mapped by f onto the subfan determined by c. No
node of type a or b can occur among 61, ’ ’ ’, bk, hence all b1, ···, bk
are of type c (in H2). This leads us into a contradiction since
b1, ··· bk, determine a subfan of exactly k elements and c deter-
mines an infinite subfan.

It follows that P does not contain nodes of type b, i.e. al , ..., an
are of type a or d.
By a similar kind of reasoning we find out that the choice

quences 11···122···&#x3E; of H2 are mapped onto choice sequences
11···12···211···&#x3E; of F by f.
This again leads us into contradiction since F contains finitely

2 Regular expressions (cf [5], [9] ) using the symbols 0,1, 2 are defined inductively:
(i) 0, 1, 2 are regular expressions,
(ii) if E and F are regular expressions then EF is a regular expression (con-

catenation)
(iii) if E and F are regular expressions then E V F is a regular expression
(iv) if E is a regular expression then E* is a regular expression.

The regular expressions can be used to denote sets of finite sequences of the symbols
0, 1, 2. 0, 1, 2 denote the sets {0&#x3E;}, {1&#x3E;}, {2&#x3E;}, if E and F denote the sets WE
and W F then E V F denotes W E U W F, EF denotes {ab|a E W E and b E WF}
and E* denotes ~n03C9WEn, where En = EE... E (n times).
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many elements of this kind and H2 has infinitely many of them.
Conclusion: [H2]03C4[H3] does not hold. An analogous but easier

reasoning shows that [H3]03C4[H2] fails too.

2.4. Let an (ordered) sequence {Fi} of fans be given. The
fan-sum F of this sequence is defined as follows:
Form a new sequence F’i : such that

then

and

Notation: F = FS(F1F2F3···).
For convenience let us call Âx[0] the spine of F.
The fan-sum is an immediate generalization of the finite sum.

2.5. Define the following fans:

Finally

Clearly G is a removable subfan of K and K is a removable
subfan of F. Hence [K]z[F], moreover we will show F - G and
therefore [F]i[K].

Using the facts that a finite segment of a fan sum can be
replaced by a sum and that

we establish the following relation
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2.6. It remains to be shown that F ~ K does not hold.

The figure below visualizes the fan F. The short single lines
represent the fans Hk . To simplify the proceedings we have
omitted primes.

We will derive a contradiction from the existence of a bijec-
tivity f from F to K. In the proof we will often apply the fan
theorem. The actual workmg out of the details is rather tedious
and uninteresting, therefore we will omit it. Any reader familiar
with the fan-theorem can readily supply the missing details.
We state the following facts (due to the fan-theorem): 

(i) the spine of a subfan Ai is mapped onto the spine of another
subfan A ; .

(ii) the spine of a subfan B, is mapped onto the spine of another
subfan B,.

(iii) the spine e of Do is mapped onto itself.
(iv) On the strength of (iii) we can find a node b of e (initial

segment) such that every ips through b is mapped onto an ips
through the topnode a of e and likewise there is a node c of e
such that every ips through c is mapped onto an ips through b.
It is no restriction to suppose that b dominates c.

(v) By (i) we can find for every subfan Ai a node ai such that
every ips through ai is mapped on an ips through a fixed node of
the corresponding subfan both by f and f-1.

Likewise we find with each subfan Bi a node bi with the same
properties.
Now consider all B and A spines through nodes of e that domi-

nate c. On each of the B spines locate the first subfan Hk. that
passes through bi and on each of the A spines locate the first
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subfan Hk; that passes through ai. Thus we effectively determine
a finite species of indices ki with the required property. Let k be
the maximum of this species, suppose k is odd, otherwise take
k+1. Consider the species S of subfans Hk that are dominated by
b and the subfans Hk of the subfans Bi. This clearly is a finite
species and we can determine the images of the concerned subfans
under f. Since f maps the B-subfans onto B-subfans and .K does
not contain the subfan B, S cannot be mapped onto itself.

Owing to the fact that f is bijective there are less subfans Hk
mapped into S from the complements 3 of S than there are
mapped from S into its complement. 
By (iv) and (v) the only possible subfans to be mapped from S

into its complement are those dominated by b and not by c.

Call this species of subfans 5:. The members of 5: which are
mapped into the complement of S must by (v) be subfans of
A i-subfans.

Also the members of S’ which occur as images of subfans from
the complement of S are subfans of Ai-subfans. Hence the
analogous species Tbc of subfans Hk+1 has the same properties as
Sbc, i.e. there are more elements of T (the species of Hk+1 anal-
ogous to 5) mapped into its complément than from the comple-
ment of T into T.

This clearly contradicts the fact that ah members of T must
occur as images under f.
Hence we showed that no bijective f exists such that f : F - K.

3

Even though T is not a partial ordering we can still study the
arithmetic of fan-cardinals (or spread-cardinals in general). Of
course one cannot expect all the results of Tarski’s cardinal

algebra’s, on the other hand most of the concepts introduced in
[10] still make sense and deserve attention.
As regarding the question which of the relations p, rr or T is

most natural, an answer does not readily present itself. Since none
of these is a partial ordering the species of fan cardinals is not as
pleasing as the collection of R.E.T.’s. In one sense r is to be

preferred above p and 03C3, namely under p and 03C3 there is a
"maximal" cardinal (that of the binary fan). And the existence
of such an object is presumably not attractive to most mathema-
ticians.

8 relative to the species of all subfans Hk .
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The usual procedure to obtain a partial ordering from a tran-
sitive, reflexive relation can be used, in my opinion the resulting
equivalence relation is inferior to Brouwer’s original definition.

Finally there is the possibility of Brouwer’s notion of congruence
[2] as a basis for cardinal-theory. However from Heyting’s [8]
it appears that congruence is too generous an equivalence relation.
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