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New sets of postulates for intuitionistic topology

Dedicated to A. Heyting on the occasion of his 70th birthday

by

A. S. Troelstra 1

Introduction

In [1] and [4], sets of postulates were considered which used
a decidable intersection relation between a countable collection
of closed pointsets; the interiors of these pointsets constituted a
basis for the topological space to be described. So the relation of
strong inclusion (classically: V is strongly included in W iff the
closure of V is contained in the interior of W) did not occur as a
primitive notion, in contrast to some of the (classical ) approaches
as described in [3].

In order to get a manageable system with strong inclusion as a
primitive notion, we should like to start with a basis (e.g. of
open sets) with an enumerable relation of strong inclusion (i.e.
the pairs for which the relation holds constitute the range of a
function defined on the natural numbers.).

This is a very strong requirement, therefore not a fortunate
choice if we want to prove without great effort for an important
class of spaces that they satisfy our set of postulates.
But it turns out that we can find a basis and an enumerable

binary relation (throughout this paper denoted by R) on the
basis, which implies strong inclusion and which is sufficient to
describe the topology.
With this starting point we are able to give a set of postulates

which describes larger classes of spaces than was possible in [4].
In some respects the new sets of axioms are more easily managed,
in other respects the systems of [4] possess technical advantages.
For the main theorems obtained for CIN-spaces in [4], analogous

theorems can be proved for the S-spaces introduced in this paper.
(Theorem 11 serves as an illustration).

1 During part of the time of the preparation of this paper the author was sup-
ported by the Netherlands Organization for the advancement of pure research
(Z.W.O. ).
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Our major aim however, is to show the possibility of an adequate
non-metrical description of separable metric and complete sepa-
rable metric spaces. The result is expressed in theorem 10.

CONVENTIONS. The intuitionistic topological notions can be
obtained by interpreting the well-known classical definitions

intuitionistically.
In particular, we choose the following definitions: topological

spaces are defined by their open pointspecies; a closure point of
a species V is a point p such that every neighbourhood of p
contains a point of V ; a pointspecies is closed if it contains its
closure points. A more detailed list of definitions can be found
in [4].

2t is a denumerably infinite sequence of objects, R denotes a
binary relation, R C U U. U0 = {0} u U. Capitals A, B, C, D
(indexed if necessary) are used to denote elements of 9L
For sequences x1, x2, ··· we use the notation xn&#x3E;~n=1 = xn&#x3E;n.

The set of natural numbers (zero not included) is denoted by N.
i, j, k, m, n are variables used for natural numbers.

Postulates will be denoted by SI, S2 etc.

For R we postulate

DEFINITIONS OF E, ~, Sec, 03A30, #.

THEOREM 1. # is an apartness relation on 10 with = as the
corresponding equivalence relation, i.e.

and for all Cn&#x3E;n E E,
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PROOF. As an example, we only prove for

We start with the remark (often used in the sequel) that

hence also

We can find a natural number v such that .., Sec (A,, B,,).
Since we have R(A03BD+1, A03BD) and R(B03BD+1, B03BD) we can also find a
natural number p such that R(C p’ A03BD) v ï Sec (C03BC, A03BD+1), and
R(C03BC, B03BC) ~  Sec (C03BC, B03BD+1). R(C03BC, A03BC) &#x26; R(C03BC, B03BD) would imply
Sec (A03BC, B03BD), therefore Sec (C03BC, A03BD+1) v .., Sec (C03BC, B,+,).

Since R(C, A ) &#x26; R(D, B) &#x26; Sec (C, D ) - Sec (A, B), it follows
that for 03BB = 03BC+03BD+1 : i Sec (CA, A03BB) v ï Sec (C03BB, B03BB), hence

An&#x3E;n # Cn&#x3E;n ~ Bn&#x3E;n # (Cn)n .
The remaining conditions can be proved by reasonings of the

same kind.

DEFINITIONS OF An&#x3E;*n, An&#x3E;n E B, [BJ,11*, An&#x3E;*n E [B], open
pointspecies, #. (An&#x3E;n, Bn&#x3E;n e 03A30).
We introduce a primitive notion, the species of point generators

II C 10. (For special classes of spaces a definable notion).

03A0* is called the species of points (of the space to be described).
Arbitrary points are denoted by p, q, r ; arbitrary pointspecies
by U, V, vv.

LEMMA 2. R(A, B) - [A] C [B].
Proof immediate.
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THEOREM 3. The open sets of H* define a topology with
apartness relation on 03A0*, i.e. Il*, 0 are open, arbitrary unions
and finite intersections of open sets are open, and if Tl is open,

p ~ V, q ~ V, then p # q.
PROOF. Straightforward, using lemma 2.

DEFINITION 13.

THEOREM 4.

Proof presents no special difficulty.
We introduce a new postulate:

THEOREM 5. Sec (A, B) ~ V Cn&#x3E;n ~ 03A0(Cn&#x3E;n e [A] n [B]).
PROOF: immediate from S2.

Next we introduce

S3. There exists a mapping f : N ~ U x 2( such that
R (A, B) ~ A, B&#x3E; ~ f(N). ( R is enumerable).

S4. R(A, B) ~ ~ C(R(A, C) &#x26; R(C, B)).
DEFINITION 14. A topological space described by U, R, II

such that S1-S4 are fulfilled, is called an So-space.
LEMMA 6. If for a topological space (described by 2!, R, (03A0)

SI, S2, S4 hold, and R(A1, A0), then a function f, defined on 03A0*
can be constructed, such that p e A1 ~ f(p) = 1, p ~ A0 ~ f(p) = 0
and 0  f(p)  1 for every p.

PROOF. The proof closely parallels the proof of 3.2.27 in [4],
which was inspired by [1 ], which was in turn an adaptation of the
well-known Urysohn-construction. Therefore we do not present
all straightforward details, which would be very tedious.
We construct A a for every OC = M2-n ( n eN, m ~ N u {0},

m  2n ) such that

This construction can be carried out inductively by inserting
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between every pair A2m2-n, A2(m+1)2-n an A(2m+1)2-n (using S4).
Let Bn&#x3E;n e II. We introduce a partially defined function 03C8B(n, k)
(defined for all n in combination with some k) by:

We remark that, since R(A(m+1)2-n, Am2-n), for a certain number
t(n, m) :  Sec (A(m+1)2-n, Bt(n,m)) v R(Bt(.,.), Am2-n)·
It follows that if t(n) = tB(n) = sup {t(n, m) : 1 ~ m ~ 2n}, then
y(n, k) is defined for 1 ~ t(n), while for all n, k, k’ :

We may suppose t(n) to increase monotonously, for an arbitrary
t’ which satisfies (1) can be replaced by a monotonous t:

Suppose 03C8(n, k) and y(n’, k) to be defined. Then it is easy to see
that n  n’ ~ y (n, k)  y (n’, k).

If R(Bk, A03C8(n, k)), then -i R(Bk’ A03C8(n, k)+2-n); if 03C8(n, k) = 1,
then 03C8(n’, k) = 1. Hence

Now we can prove that limn~~03C8(n, t(n)) exists, since for n ~ n’

Moreover, the value of this limit is independent of the particular
function t which satisfies (1), and for which y(n, t(n)) is defined.

This fact is readily verified.
Hence we can define a mapping F on II by

A straightforward verification learns us that

(By comparison of 03C8B, yc, tB and tC. )
Therefore we can introduce f by

Finally we have to verify the properties mentioned for f in the
conclusion of the lemma. We verify easily that

(Hence p e A1 ~ f(p) = 1, p 0 Ao -+ 1(p) = 0.)
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Finally f has to be proved to be continuous.

Likewise with Bn&#x3E;n substituted for Cn&#x3E;n, hence

The special cases y(n, t(n)) = 0, y(n, t(n)) - 1, can be treated
by adaptation of this reasoning, and produce the same result.
Hence f is continuous.

THEOREM 7. An So-space is metrizable.

PROOF. (Adaptation of the proof of 3.2.28 in [4], which is again
inspired by [1 ], just as the proof of lemma 6.)

Let 0393 be an So-space, described by U, R, II. Let Ai, A’i&#x3E;&#x3E;i
be an enumeration of all pairs Ai, A’i&#x3E; such that R(Ai, A’i).
(This is made possible by S3).
With every pair Ai, A’i&#x3E; we associate a continuous function

fi, such that 0  fi(p)  1, p e Ai ~ li(P) = 1, p ~ A’i ~ fi(p) = 0
(according to lemma 6). We define

We must show that p is an adequate metric for 0393, i.e.

(1) and (2) are trivial. Let p = Bn&#x3E;*n, q = Cn&#x3E;*n. Proof of (3).
Let p(p, q) &#x3E; 0.

p(p, q) &#x3E; 0 ~ Ilv(p )-lv(q)1 &#x3E; 2-w for certain v, Il EN. Suppose
f03BD(p)-f03BD(q) &#x3E; 2-03BC. f03BD is continuous (lemma 6), hence there are
Dl, D2 such that p e [Dl]e q e [D2] and
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Hence [D1] n [D2] = 0, so (by theorem 5) -, Sec (Dl, D2)’
Therefore, for a A suchthat R(B03BB, D1) &#x26; R (CA, D2): -, Sec(B03BB, C03BB),
hence p # q. Conversely, if p # q, then Sec (BA, Cx) for a certain
Â eN. Let B03BB+1, BÀ) = A03BD, A’03BD&#x3E;. Then 1,(p) = 1, 1,(q) = 0, hence
p(p, q) &#x3E; 0.

Proof of (4). (4) follows from the fact that for every i

Proof of (5). Let p e F, and let v be chosen such that

03A3~i=03BD+12-i = 2""  2-1e. fi , f2, ···, Iv are continuous functions,
hence there are D1, D2, ..., Dv such that

Therefore we can find a Bw such that R(Bag Di) for 1  i  v.

Let q e [B03BC]. Then

Proof of (6). Let p e [D]. For a certain natural number

Â, R(B03BB, D). R(B03BB+1, B03BB); let B03BB+1, B03BB&#x3E; = A03BD, A’03BD&#x3E;.

Since R(Bx, D) implies ~ m( Sec (B03BB, Cm) v R(Cm, D)), and the
first possibility would imply q ft [B03BB], we conclude to R(Cm, D),
hence q e [Dj. So U(2-V, p) C [D]. This proves (6).
Now we introduce the following postulate:
S5. There exists a sequence Ui&#x3E;i such that
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DEFINITION 15. A space defined by $l1, R, II such that Si - 5
are satisfied will be called an S*-space.

DEFINITION 16. A space r which is described by $l1, R, H, such
that SI - 2 are satisfied, is said to possess a perfect representation
by a species III C II, if 03A01 can be described as the species of
elements of a spread 0398, ~&#x3E; ( O spread law, ~ complementary
law) such that

(b) There is a mapping ~* such that

(c) Let oc denote a sequence of natural numbers,

THEOREM 8. Every S*-space possesses a perfect representation.
PROOF. For ill we can take:

The spread corresponding to III then can be defined according to
the standard construction in [5]. Take for the relation R occurring
in the description of the standard construction the relation R’
defined by

Requirement (a) of definition 16 is fulfilled since, if Cn&#x3E;n E 03A0,
we can find a number n(k) for every k, such that R(Cn(k), B ) for
some B E Uk (a consequence of S5(b)).
Hence by S5(d) CnCk) E Uk. Therefore

The perfectness follows from the fact that if

then there exists a C03BD(03BD ~ 03BC+1) such that R(C03BD, A03BC) &#x26; C, E U03BC+1.
Hence if we take Dn&#x3E;n to be given by

for n E N, then Dn&#x3E;n E Ill, Dn&#x3E;n ~ Cn&#x3E;n. From the description
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of the standard construction it is seen that this implies the
validity of (c) in definition 16. (b) also follows from a consideration
of the standard construction.

REMARK 1. Without restriction we may always suppose II for
an S*-space to be defined by

as follows from the proof of theorem 8.

REMARK 2. The definition of an S*-space by means of coverings
Xi reminds one of uniform spaces, and hence constitutes a "non-
topological" feature in the definition of S*-spaces.
Now we introduce the class of the S-spaces, (which turn out

to be special cases of S*-spaces ) in which this trait is eliminated.
We introduce a postulate:

S6. There exists a binary predicate S ~ U0  U0, such that

(a) 5(0,0),5(0, A ), S(A, 0) for every A,

(d) There exists a mapping g : N - U0 x U0, such that
S(A, B) ~ A, B) E g(N); Ø, 0), Ø, A&#x3E;, A, 0) E g(N)
( S is enumerable),

DEFINITION 17. A space described by means of U, R, S, II such
that S1-4, S6 are satisfied, is called an S-space.
THEOREM 9. Every S-space is an S*-space.
PROOF. Let r be an S-space defined by 2!, R, S, H, i.e. SI - 4,

S6 are satisfied.
We suppose f(i) = Ai, A’i&#x3E; (see S3) and define

2lk is enumerable for every k, and clearly /B k(Uk+1 C 2lk).
S5(e) is satisfied as a consequence of S6(f).
S5 (d): Let A e Uk+1 &#x26; R(B, A). Hence

this implies
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S5 (c): Let A E W,+,, Bn&#x3E;n E A, Bn&#x3E;n E Il.
Then for a certain v : R(Bv, A ). Since 2(k+l is a covering, there

is a C E 2(k+2’ such that Bn&#x3E;n E C, hence R(B03BC, C), so (S5 (d))
B .9 E Uk+2. Therefore B03BC+03BD E Uk+2 &#x26; R(B03BC+03BD, A).
S5 (b) is an immediate consequence of S6 (f) and the definition

of the Ui.

REMARK 3. For an S-space, S6 (f) can be taken as a definition
of II.

THEOREM 10. (a) The class of spaces homeomorphic to an
So-space coincides with the class of separable metrizable spaces.

(b) Every complete separable metrizable space is homeo-
morphic to an S-space.
PROOF. Let h be a separable, metrizable space; we suppose p

to be a metric, adequate with respect to F.
Let pn&#x3E;n denote a sequence of points, dense in 0393. There exists

a mapping r : N3 ~ rational numbers, such that

We put U = {U(ri, pj) : i eN &#x26; i ~ N}, where rn&#x3E;n is an enumer-
ation of the rational numbers of (0, 1). We write Ui, i for U(ri, pj),
and define

Clearly R is enumerable; we see that

Si is satisfied for R.
We proceed to show that for Bn&#x3E;n E 03A30, ~~n=1 Bn contains at

most one point. Let B - U(s qn); sn E rn&#x3E;n, qn E pn&#x3E;n. We
want to prove that limn~~ Sn = 0.

R(U(4-1s03BD, q03BD), U(2rls,,, q03BD)) holds; therefore a Il &#x3E; v can be

found such that

U(4-1 sv, qv) n U(se, qp) = Ø v R(U(s.., qe), U(2-1s,, qv))
(since ï Sec (A, B ) always implies A n B = 0).
In the first case 03C1(q03BC, q03BD)+s03BC  s03BD and p(qp, qv)  sI’ (since

q03BD ~ U(s03BC, q03BC)). So s03BC  s03BD-03C1(q03BC, q03BD), hence 2s03BC  s03BD, therefore

s,  2-1s03BD. In the second case immediately  2-1 s,, . Hence
limn~~sn = 0.
Now we can choose II C 03A30 such that S2 holds. Let F be

complete. We define
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S is then easily proved to be enumerable; all requirements of S6
are satisfied. If our only interest is to prove 0393 to be an S*-space
we may take Uk = {U(ri, pj) : r,  k-1}.
The verification of S4 is easy.
Since Bn&#x3E;n ~ Cn&#x3E;n is equivalent to limn~~ qn = limnn~~ xn,

if Bn = U(sn , qn)’ Cn = U(tn, xn), Bn&#x3E;n, (Cn)n E II, there exists
a bi-unique correspondence between the equivalence classes with
respect to ~ and the points of F. By a comparison of the defini-
tions of open species it follows directly that the same topology
is obtained in both cases.

Conversely, since an So-space is metrizable, and hence as a
consequence of S2 separable, (a) and (b) of our theorem are
proved.

REMARK 4. It is not difficult to verify (notation of [4], 3.3.1)
that, by taking 2f == Interior Ai,j&#x3E;i,j, an S*-space can be con-
structed from every CIN-space.
THEOREM il. Let 0393 be an S-space, and let I C N.

u {Wi : i ~ I} ~ Fez u {Interior Wi : i ~ I} ~ F.

PROOF. Analogous to the proof of theorem 2 in [5], using
theorems 8 and 9 of this papei.
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